
more information – www.cambridge.org/9780521833462

Computational Physics
Second Edition

This Second Edition has been fully updated. The wide range of topics covered in
the First Edition has been extended with new chapters on finite element methods
and lattice Boltzmann simulation. New sections have been added to the chapters on
density functional theory, quantum molecular dynamics, Monte Carlo simulation
and diagonalisation of one-dimensional quantum systems.

The book covers many different areas of physics research and different computa-
tional methodologies, with an emphasis on condensed matter physics and physical
chemistry. It includes computational methods such as Monte Carlo and molecular
dynamics, various electronic structure methodologies, methods for solving par-
tial differential equations, and lattice gauge theory. Throughout the book, the
relations between the methods used in different fields of physics are emphas-
ised. Several new programs are described and these can be downloaded from
www.cambridge.org/9780521833462

The book requires a background in elementary programming, numerical analysis
and field theory, as well as undergraduate knowledge of condensed matter theory
and statistical physics. It will be of interest to graduate students and researchers in
theoretical, computational and experimental physics.

Jos Thijssen is a lecturer at the Kavli Institute of Nanoscience at Delft University
of Technology.

http://www.cambridge.org/9780521833462

COMPUTATIONAL PHYSICS

Second Edition

JOS THIJSSEN
Kavli Institute of Nanoscience, Delft University of Technology

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521833462

© J. M. Thijssen 1999, 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999
Reprinted 2003

Second edition 2007

Printed and bound by MPG Books Group, UK

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-83346-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or
third-party internet websites referred to in this publication, and does not guarantee that any content on such

websites is, or will remain, accurate or appropriate.

Delhi, Mexico City

3rd printing 2012

http://www.cambridge.org
http://www.cambridge.org/9780521833462

Contents

Preface to the first edition page xi

Preface to the second edition xiv

1 Introduction 1
1.1 Physics and computational physics 1
1.2 Classical mechanics and statistical mechanics 1
1.3 Stochastic simulations 4
1.4 Electrodynamics and hydrodynamics 5
1.5 Quantum mechanics 6
1.6 Relations between quantum mechanics and classical

statistical physics 7
1.7 Quantum molecular dynamics 8
1.8 Quantum field theory 9
1.9 About this book 9

Exercises 11
References 13

2 Quantum scattering with a spherically symmetric
potential 14
2.1 Introduction 14
2.2 A program for calculating cross sections 18
2.3 Calculation of scattering cross sections 25

Exercises 27
References 28

3 The variational method for the Schrödinger equation 29
3.1 Variational calculus 29
3.2 Examples of variational calculations 32
3.3 Solution of the generalised eigenvalue problem 36
3.4 Perturbation theory and variational calculus 37

v

vi Contents

Exercises 39
References 41

4 The Hartree–Fock method 43
4.1 Introduction 43
4.2 The Born–Oppenheimer approximation and the

independent-particle method 44
4.3 The helium atom 46
4.4 Many-electron systems and the Slater determinant 52
4.5 Self-consistency and exchange: Hartree–Fock theory 54
4.6 Basis functions 60
4.7 The structure of a Hartree–Fock computer program 69
4.8 Integrals involving Gaussian functions 73
4.9 Applications and results 77
4.10 Improving upon the Hartree–Fock approximation 78

Exercises 80
References 87

5 Density functional theory 89
5.1 Introduction 89
5.2 The local density approximation 95
5.3 Exchange and correlation: a closer look 97
5.4 Beyond DFT: one- and two-particle excitations 101
5.5 A density functional program for the helium atom 109
5.6 Applications and results 114

Exercises 116
References 119

6 Solving the Schrödinger equation in periodic solids 122
6.1 Introduction: definitions 123
6.2 Band structures and Bloch’s theorem 124
6.3 Approximations 126
6.4 Band structure methods and basis functions 133
6.5 Augmented plane wave methods 135
6.6 The linearised APW (LAPW) method 141
6.7 The pseudopotential method 144
6.8 Extracting information from band structures 160
6.9 Some additional remarks 162
6.10 Other band methods 163

Contents vii

Exercises 163
References 167

7 Classical equilibrium statistical mechanics 169
7.1 Basic theory 169
7.2 Examples of statistical models; phase transitions 176
7.3 Phase transitions 184
7.4 Determination of averages in simulations 192

Exercises 194
References 195

8 Molecular dynamics simulations 197
8.1 Introduction 197
8.2 Molecular dynamics at constant energy 200
8.3 A molecular dynamics simulation program for argon 208
8.4 Integration methods: symplectic integrators 211
8.5 Molecular dynamics methods for different ensembles 223
8.6 Molecular systems 232
8.7 Long-range interactions 241
8.8 Langevin dynamics simulation 247
8.9 Dynamical quantities: nonequilibrium molecular dynamics 251

Exercises 253
References 259

9 Quantum molecular dynamics 263
9.1 Introduction 263
9.2 The molecular dynamics method 266
9.3 An example: quantum molecular dynamics for the hydrogen

molecule 272
9.4 Orthonormalisation; conjugate gradient and RM-DIIS

techniques 278
9.5 Implementation of the Car–Parrinello technique for

pseudopotential DFT 289
Exercises 290
References 293

10 The Monte Carlo method 295
10.1 Introduction 295
10.2 Monte Carlo integration 296
10.3 Importance sampling through Markov chains 299

viii Contents

10.4 Other ensembles 310
10.5 Estimation of free energy and chemical potential 316
10.6 Further applications and Monte Carlo methods 319
10.7 The temperature of a finite system 330

Exercises 334
References 335

11 Transfer matrix and diagonalisation of spin chains 338
11.1 Introduction 338
11.2 The one-dimensional Ising model and the

transfer matrix 339
11.3 Two-dimensional spin models 343
11.4 More complicated models 347
11.5 ‘Exact’ diagonalisation of quantum chains 349
11.6 Quantum renormalisation in real space 355
11.7 The density matrix renormalisation group method 358

Exercises 365
References 370

12 Quantum Monte Carlo methods 372
12.1 Introduction 372
12.2 The variational Monte Carlo method 373
12.3 Diffusion Monte Carlo 387
12.4 Path-integral Monte Carlo 398
12.5 Quantum Monte Carlo on a lattice 410
12.6 The Monte Carlo transfer matrix method 414

Exercises 417
References 421

13 The finite element method for partial differential equations 423
13.1 Introduction 423
13.2 The Poisson equation 424
13.3 Linear elasticity 429
13.4 Error estimators 434
13.5 Local refinement 436
13.6 Dynamical finite element method 439
13.7 Concurrent coupling of length scales: FEM and MD 440

Exercises 445
References 446

Contents ix

14 The lattice Boltzmann method for fluid dynamics 448
14.1 Introduction 448
14.2 Derivation of the Navier–Stokes equations 449
14.3 The lattice Boltzmann model 455
14.4 Additional remarks 458
14.5 Derivation of the Navier–Stokes equation from the

lattice Boltzmann model 460
Exercises 463
References 464

15 Computational methods for lattice field theories 466
15.1 Introduction 466
15.2 Quantum field theory 467
15.3 Interacting fields and renormalisation 473
15.4 Algorithms for lattice field theories 477
15.5 Reducing critical slowing down 491
15.6 Comparison of algorithms for scalar field theory 509
15.7 Gauge field theories 510

Exercises 532
References 536

16 High performance computing and parallelism 540
16.1 Introduction 540
16.2 Pipelining 541
16.3 Parallelism 545
16.4 Parallel algorithms for molecular dynamics 552

References 556

Appendix A Numerical methods 557
A1 About numerical methods 557
A2 Iterative procedures for special functions 558
A3 Finding the root of a function 559
A4 Finding the optimum of a function 560
A5 Discretisation 565
A6 Numerical quadratures 566
A7 Differential equations 568
A8 Linear algebra problems 590
A9 The fast Fourier transform 598

Exercises 601
References 603

x Contents

Appendix B Random number generators 605
B1 Random numbers and pseudo-random numbers 605
B2 Random number generators and properties of pseudo-random

numbers 606
B3 Nonuniform random number generators 609

Exercises 611
References 612

Index 613

Preface to the first edition

This is a book on computational methods used in theoretical physics research, with
an emphasis on condensed matter applications.

Computational physics is concerned with performing computer calculations and
simulations for solving physical problems. Although computer memory and pro-
cessor performance have increased dramatically over the last two decades, most
physical problems are too complicated to be solved without approximations to the
physics, quite apart from the approximations inherent in any numerical method.
Therefore, most calculations done in computational physics involve some degree
of approximation. In this book, emphasis is on the derivation of algorithms and the
implementation of these: it is a book which tells you how methods work, why they
work, and what the approximations are. It does not contain extensive discussions
on results obtained for large classes of different physical systems.

This book is not elementary: the reader should have a background in basic under-
graduate physics and in computing. Some background in numerical analysis is also
helpful. On the other hand, the topics discussed are not treated in a comprehensive
way; rather, this book hopefully bridges the gap between more elementary texts by
Koonin, Gould and Giordano, and specialised monographs and review papers on
the applications described. The fact that a wide range of topics is included has
the advantage that the many similarities in the methods used in seemingly very
different fields could be highlighted. Many important topics and applications are
however not considered in this book – the material presented obviously reflects my
own expertise and interest.

I hope that this book will be useful as a source for intermediate and advanced
courses on the subject. I furthermore hope that it will be helpful for graduates and
researchers who want to increase their knowledge of the field.

Some variation in the degree of difficulty is inherent to the topics addressed in this
book. For example, in molecular dynamics, the equations of motion of a collection
of particles are solved numerically, and as such it is a rather elementary subject.
However, a careful analysis of the integration algorithms used, the problem of per-
forming these simulations in different statistical ensembles, and the problem of

xi

xii Preface

treating long range forces with periodic boundary conditions, are much more diffi-
cult. Therefore, sections addressing advanced material are marked with an asterisk
(*) – they can be skipped at first reading. Also, extensive theoretical derivations are
sometimes moved to sections with asterisks, so that the reader who wants to write
programs rather than go into the theory may use the results, taking the derivations
for granted.

Aside from theoretical sections, implementations of algorithms are discussed,
often in a step-by-step fashion, so that the reader can program the algorithms him-
or herself. Suggestions for checking the program are included. In the exercises
after each chapter, additional suggestions for programs are given, but there are also
exercises in which the computer is not used. The computer exercises are marked
by the symbol [C]; if the exercise is divided up into parts, this sign occurs before
the parts in which a computer program is to be written (a problem marked with [C]
may contain major parts which are to be done analytically). The programs are not
easy to write – most of them took me a long time to complete! Some data-files and
numerical routines can be found on www.cambridge.org/9780521833469.

The first person who suggested that I should write this book was Aloysio Janner.
Thanks to the support and enthusiasm of my colleague and friend John Inglesfield
in Nijmegen, I then started writing a proposal containing a draft of the first hundred
pages. After we both moved to the University of Cardiff (UK), he also checked many
chapters with painstaking precision, correcting the numerous errors, both in the
physics and in the English; without his support, this book would probably never
have been completed.

Bill Smith, from Daresbury Laboratories (UK), has checked the chapters on
classical many-particle systems and Professor Konrad Singer those on quantum
simulation methods. Simon Hands from the University of Swansea (UK) has read
the chapter on lattice field theories, and Hubert Knops (University of Nijmegen,
The Netherlands) those on statistical mechanics and transfer matrix calculations.
Maziar Nekovee (Imperial College, London, UK) commented on the chapter on
quantum Monte Carlo methods. I am very grateful for the numerous suggestions
and corrections from them all. I am also indebted to Paul Hayman for helping me
correcting the final version of the manuscript. Many errors in the book have been
pointed out to me by colleagues and students. I thank Professor Ron Cohen in
particular for spotting many mistakes and discussing several issues via email.

In writing this book, I have discovered that the acknowledgements to the author’s
family, often expressed in an apologetic tone as a result of the disruption caused
by the writing process to family life, are too real to be disqualified as a cliché.
My sons Maurice, Boudewijn and Arthur have in turn disrupted the process of
writing in the most pleasant way possible, regularly asking me to show growing
trees or fireworks on the screen of my PC, instead of the dull black-on-white text

http://www.cambridge.org/9780521833469

Preface xiii

windows. Boudewijn and Maurice’s professional imitation of their dad, tapping on
the keyboard, and sideways reading formulae, is promising for the future.

It is to my wife Ellen that I dedicate this book, with gratitude for her patience,
strength and everlasting support during the long, and sometimes difficult time in
which the book came into being.

Preface to the second edition

Six years have passed since the first edition of this book appeared. In these years
I have learned a lot more about computational physics – a process which will
hopefully never stop. I learned from books and papers, but also from the excellent
colleagues with whom I worked on teaching and research during this period. Some
of this knowledge has found its place in this edition, which is a substantial extension
of the first.

New topics include finite elements, lattice Boltzmann simulation and density
matrix renormalisation group, and there are quite a few sections here and there in
the book which either give a more in-depth treatment of the material than can be
found in the first edition, or extensions to widen the view on the subject matter.
Moreover I have tried to eliminate as many errors as possible, but I am afraid that
it is difficult for me to beat the entropy of possible things which can go wrong in
writing a book of over 650 pages.

In Delft, where I have now a position involving a substantial amount of teach-
ing, I worked for several years in the computational physics group of Simon the
Leeuw. I participated in an exciting and enjoyable effort: teaching in an interna-
tional context. Together with Rajiv Kalia, from Louisana State, we let students from
Delft collaborate with Louisiana students, having them do projects in the field of
computational physics. Both Simon and Rajiv are experts in the field of molecular
dynamics, and I learned a lot from them. Moreover, dealing with students and their
questions has often forced me to deepen my knowledge in this field. Similar courses
with Hiroshi Iyetomi from Niigata University in Japan, and now with Phil Duxbury
at Michigan State have followed, and form my most enjoyable teaching experience.
Much of the knowledge picked up in these courses has gone into the new material
in this edition.

For one of the new parts of the book, the self-consistent pseudopotential and the
Car–Parrinello program, I worked closely together with Erwin de Wolff for a few
months. I am grateful for his support in this, and not least for his structured, neat
way of tackling the problem.

Many students, university lecturers and researchers have shared their corrections
on the text with me. I want to thank Ronald Cohen, Dominic Holland, Ari Harju,

xiv

Preface xv

John Mauro, Joachim Stolze and all the others whose names may have disappeared
from my hard disks when moving to a new machine.

Preparing this edition in addition to the regular duties of a university position
has turned out to be a demanding job, which has prevented me now and then from
being a good husband and father. I thank Ellen and my sons Maurice, Boudewijn
and Arthur for their patience and support, and express the hope that I will have
more time for them in the future.

1

Introduction

1.1 Physics and computational physics

Solving a physical problem often amounts to solving an ordinary or partial differ-
ential equation. This is the case in classical mechanics, electrodynamics, quantum
mechanics, fluid dynamics and so on. In statistical physics we must calculate sums
or integrals over large numbers of degrees of freedom. Whatever type of problem
we attack, it is very rare that analytical solutions are possible. In most cases we
therefore resort to numerical calculations to obtain useful results. Computer per-
formance has increased dramatically over the last few decades (see also Chapter 16)
and we can solve complicated equations and evaluate large integrals in a reasonable
amount of time.

Often we can apply numerical routines (found in software libraries for example)
directly to the physical equations and obtain a solution. We shall see, however, that
although computers have become very powerful, they are still unable to provide
a solution to most problems without approximations to the physical equations. In
this book, we shall focus on these approximations: that is, we shall concentrate on
the development of computational methods (and also on their implementation into
computer programs). In this introductory chapter we give a bird’s-eye perspective
of different fields of physics and the computational methods used to solve problems
in these areas. We give examples of direct application of numerical methods but
we also give brief and heuristic descriptions of the additional theoretical analysis
and approximations necessary to obtain workable methods for more complicated
problems which are described in more detail in the remainder of this book. The
order adopted in the following sections differs somewhat from the order in which
the material is treated in this book.

1.2 Classical mechanics and statistical mechanics

The motion of a point particle in one dimension subject to a force F depending on
the particle’s position x, and perhaps on the velocity ẋ and on time t, is determined

1

2 Introduction

by Newton’s equation of motion:

mẍ(t) = F[x(t), ẋ(t), t]. (1.1)

The (double) dot denotes a (double) derivative with respect to time. A solution can
be found for each set of initial conditions x(t0) and ẋ(t0) given at some time t0. Ana-
lytical solutions exist for constant force, for the harmonic oscillator (F = κx2/2),
and for a number of other cases. In Appendix A7.1 a simple numerical method
for solving this equation is described and this can be applied straightforwardly to
arbitrary forces and initial conditions.

Interesting and sometimes surprising physical phenomena can now be studied.
As an example, consider the Duffing oscillator [1], with a force given by

F[x, ẋ, t] = −γ ẋ + 2ax − 4bx3 + F0 cos(ωt). (1.2)

The first term on the right hand side represents a velocity-dependent friction; the
second and third terms are the force a particle feels when it moves in a double
potential well bx4 − ax2, and the last term is an external periodic force. An exper-
imental realisation is a pendulum consisting of an iron ball suspended by a thin
string, with two magnets below it. The pendulum and the magnets are placed on
a table which is moved back and forth with frequency ω. The string and the air
provide the frictional force, the two magnets together with gravity form some kind
of double potential well, and, in the reference frame in which the pendulum is at
rest, the periodic motion of the table is felt as a periodic force. It turns out that the
Duffing oscillator exhibits chaotic behaviour for particular values of the parameters
γ , a, b, F0 and ω. This means that the motion itself looks irregular and that a very
small change in the initial conditions will grow and result in a completely different
motion. Figure 1.1 shows the behaviour of the Duffing oscillator for two nearly
equal initial conditions, showing the sensitivity to these conditions. Over the past
few decades, chaotic systems have been studied extensively. A system that often
behaves chaotically is the weather: the difficulty in predicting the evolution of
chaotic systems causes weather forecasts to be increasingly unreliable as they look
further into the future, and occasionally to be dramatically wrong.

Another interesting problem is that of several particles, moving in three dimen-
sions and subject to each other’s gravitational interaction. Our Solar System is
an example. For the simplest nontrivial case of three particles (for two particles,
Newton has given the analytical solution), analytical solutions exist for particular
configurations, but the general problem can only be solved numerically. This prob-
lem is called the three-body problem (N-body problem in general). The motion of
satellites orbiting in space is calculated numerically using programs for the N-body
problem, and the evolution of galaxies is calculated with similar programs using
a large number of test particles (representing the stars). Millions of particles can

1.2 Classical mechanics and statistical mechanics 3

x

t

2

0

1

–2.5

–2

–1.5

–1

–0.5

0.5

1.5

2.5

0 10 20 30 40 50 60 70 80 90 100

Figure 1.1. Solution of the Duffing oscillator. Parameters are m = 1, a = 1/4,
b = 1/2, F0 = 2.0, ω = 2.4, γ = 0.1. Two solutions are shown: one with initial
position x0 = 0.5, the other with x0 = 0.5001 (ẋ0 = 0 in both cases). For these
nearly equal initial conditions, the solutions soon become uncorrelated, showing
the difficulty in predicting the time evolution of a chaotic system.

be treated using a combination of high-end computers and clever computational
methods which will be considered in Chapter 8. Electrostatic forces are related to
gravitational forces, as both the gravitational and the electrostatic (Coulomb) poten-
tial have a 1/r form. The difference between the two is that electrostatic forces can
be repulsive or attractive, whereas gravitational forces are always attractive.

Neutral atoms interact via a different potential: they attract each other weakly
through induced polarisation, unless they come too close – then the Pauli principle
causes the electron clouds to repel each other. The problem of many interacting
atoms and molecules is a very important subfield of computational physics: it is
called molecular dynamics. In molecular dynamics, the equations of motion for
the particles are solved straightforwardly using numerical algorithms similar to
those with which a Duffing oscillator is analysed, the main difference being the
larger number of degrees of freedom in molecular dynamics. The aim of molecular
dynamics simulations is to predict the behaviour of gases, liquids and solids (and
systems in other phases, like liquid crystals). An important result is the equation
of state: this is the relation between temperature, number of particles, pressure and
volume. Also, the microscopic structure as exhibited by the pair correlation func-
tion, which is experimentally accessible via neutron scattering, is an interesting
property which can be determined in simulations. There are, however, many prob-
lems and pitfalls associated with computer simulations: the systems that can be
simulated are always much smaller than realistic systems, and simulating a system
at a predefined temperature or chemical potential is nontrivial. All these aspects
will be considered in Chapter 8.

4 Introduction

1.3 Stochastic simulations

In the previous section we have explained how numerical algorithms for solving
Newton’s equations of motion can be used to simulate liquids. The particles are
moved around according to their mechanical trajectories which are governed by
the forces they exert on each other. Another way of moving them around is to
displace them in a random fashion. Of course this must be done in a controlled
way, and not every move should be allowed, but we shall see in Chapter 10 that it is
possible to obtain information in this way similar to that obtained from molecular
dynamics. This is an example of a Monte Carlo method – procedures in which
random numbers play an essential role. The Monte Carlo method is not suitable
for studying dynamical physical quantities such as transport coefficients, as it uses
artificial dynamics to simulate many-particle systems.

Random number generators can also be used in direct simulations: some process
of which we do not know the details is replaced by a random generator. If you
simulate a card game, for example, the cards are distributed among the players by
using random numbers. An example of a direct simulation in physics is diffusion
limited aggregation (DLA), which describes the growth of dendritic clusters (see
Figure 1.2). Consider a square lattice in two dimensions. The sites of the lattice
are either occupied or unoccupied. Initially, only one site in the centre is occupied.
We release a random walker from the boundary of the lattice. The walker moves
over the lattice in a stepwise fashion. At each step, the walker moves from a site to

Figure 1.2. Dendritic cluster grown in a DLA simulation. The cluster consists of
9400 sites and it was grown on a 175 × 175 lattice.

1.4 Electrodynamics and hydrodynamics 5

one of its neighbour sites, which is chosen at random (there are four neighbours for
each site in the interior of the lattice; the boundary sites have three neighbours, or
two if they lie on a corner). If the walker arrives at a site neighbouring the occupied
central site, it sticks there, so that a two-site cluster is formed. Then a new walker
is released from the boundary. This walker also performs a random walk on the
lattice until it arrives at a site neighbouring the cluster of two occupied sites, to
form a three-site cluster, and so on. After a long time, a dendritic cluster is formed
(see Figure 1.2), which shows a strong resemblance to actual dendrites formed in
crystal growth, or by growing bacterial colonies [2], frost patterns on the window
and numerous other physical phenomena.

This shows again that interesting physics can be studied by straightforward
application of simple algorithms. In Chapter 10 we shall concentrate on the Monte
Carlo method for studying many-particle systems at a predefined temperature,
volume and particle number. This technique is less direct than DLA, and, just as in
molecular dynamics, studying the system for different predefined parameters, such
as chemical potential, and evaluating free energies are nontrivial aspects which
need further theoretical consideration. The Monte Carlo method also enables us
to analyse lattice spin models, which are important for studying magnetism and
field theory (see below). These models cannot always be analysed using molecular
dynamics methods, and Monte Carlo is often the only tool we have at our disposal
in that case. There also exist alternative, more powerful techniques for simulating
dendrite formation, but these are not treated in this book.

1.4 Electrodynamics and hydrodynamics

The equations of electrodynamics and hydrodynamics are partial differential equa-
tions. There exist numerical methods for solving these equations, but the problem
is intrinsically demanding because the fields are continuous and an infinite number
of variables is involved. The standard approach is to apply some sort of discretisa-
tion and consider the solution for the electric potential or for the flow field only on
the points of the discrete grid, thus reducing the infinite number of variables to a
finite number. Another method of solution consists of writing the field as a linear
combination of smooth functions, such as plane waves, and solving for the best
values of the expansion coefficients.

There exist several methods for solving partial differential equations: finite differ-
ence methods (FDM), finite element methods (FEM), Fourier transform methods
and multigrid methods. These methods are also very often used in engineering
problems, and are essentially the domain of numerical analysis. The finite element
method is very versatile and therefore receives our particular attention in Chapter 13.
The other methods can be found in Appendix A7.2.

6 Introduction

1.5 Quantum mechanics

In quantum mechanics we regularly need to solve the Schrödinger equation for one
or more particles. There is usually an external potential felt by the particles, and
in addition there might be interactions between the particles. For a single particle
moving in one dimension, the stationary form of the Schrödinger equation reduces
to an ordinary differential equation, and techniques similar to those used in solv-
ing Newton’s equations can be used. The main difference is that the stationary
Schrödinger equation is an eigenvalue equation, and in the case of a discrete spec-
trum, the energy eigenvalue must be varied until the wave function is physically
acceptable, which means that it matches some boundary conditions and is normal-
isable. Examples of this direct approach are discussed in Appendix A, in particular
Problem A4.

In two and more dimensions, or if we have more than one particle, or if we want to
solve the time-dependent Schrödinger equation, we must solve a partial differential
equation. Sometimes, the particular geometry of the problem and the boundary
conditions allow us to reduce the complexity of the problem and transform it into
ordinary differential equations. This will be done in Chapter 2, where we shall study
particles scattering off a spherically symmetric potential.

Among the most important quantum problems in physics is the behaviour of
electrons moving in the field generated by nuclei, which occurs in atoms, molecules
and solids. This problem is treated quite extensively in this book, but the methods we
develop for it are also applied in nuclear physics. Solving the Schrödinger equation
for one electron moving in the potential generated by the atomic static nuclei is
already a difficult problem, as it involves solving a partial differential equation.
Moreover, the potential is strong close to the nuclei and weak elsewhere, so the
typical length scale of the wave function varies strongly through space. Therefore,
discretisation methods must use grids which are finer close to the nuclei, rendering
such methods difficult. The method of choice is, in fact, to expand the wave function
as a linear combination of fixed basis functions that vary strongly close to the nuclei
and are smooth elsewhere, and find the optimal values for the expansion coefficients.
This is an example of the variational method, which will be discussed in Chapter 3.
This application of the variational method leads to a matrix eigenvalue problem
which can be solved very efficiently on a computer.

An extra complication arises when there are many (say N) electrons, interacting
via the Coulomb potential, so that we must solve a partial differential equation
in 3N dimensions. In addition to this we must realise that electrons are fermi-
ons and the many-electron wave function must therefore be antisymmetric with
respect to exchange of any pair of electrons. Because of the large number of
dimensions, solving the Schrödinger equation is not feasible using any of the

1.6 Relations between quantum mechanics and classical statistical physics 7

standard numerical methods for solving partial differential equations, so we must
make approximations. One approach is the Hartree–Fock (HF) method,developed
in the early days of quantum mechanics, which takes into account the antisymmetry
of the many-electron wave function. This leads to an independent particle picture, in
which each electron moves in the potential generated by the nuclei plus an average
potential generated by the other electrons. The latter depends on the electronic wave
functions, and hence the problem must be solved self-consistently – in Chapter 4
we shall see how this is done. The HF method leads to wave functions that are fully
antisymmetric, but contributions arising from the Coulomb interaction between
the particles are taken into account in an approximate way, analogous to the way
correlations are treated in the mean field approach in statistical mechanics.

Another approach to the quantum many-electron problem is given by density
functional theory (DFT), which will be discussed in Chapter 5. This theory, which
is in principle exact, can in practice only be used in conjunction with approximate
schemes to be discussed in Chapter 5, the most important of which is the local dens-
ity approximation (LDA). This also leads to an independent-particle Schrödinger
equation, but in this case, the correlation effects resulting from the antisymmetry
of the wave function are not incorporated exactly, leading to a small, unphys-
ical interaction of an electron with itself (self-interaction). However, in contrast to
Hartree–Fock,the approach does account (in an approximate way) for the dynamic
correlation effects due to the electrons moving out of each other’s way as a result
of the Coulomb repulsion between them.

All these approaches lead in the end to a matrix eigenvalue problem, whose size
depends on the number of electrons present in the system. The resulting solutions
enable us to calculate total energies and excitation spectra which can be compared
with experimental results.

1.6 Relations between quantum mechanics and classical statistical physics

In the previous two sections we have seen that problems in classical statistical
mechanics can be studied with Monte Carlo techniques, using random numbers,
and that the solution of quantum mechanical problems reduces to solving matrix
eigenvalue problems. It turns out that quantum mechanics and classical statistical
mechanics are related in their mathematical structure. Consider for example the
partition function for a classical mechanics system at temperature T , with degrees
of freedom denoted by the variable X and described by an energy function (that is,
a classical Hamiltonian) H:

ZCl =
∑

X

e−H(X)/(kBT), (1.3)

8 Introduction

and that of a quantum system with quantum Hamiltonian H:

ZQM = Tr(e−H/(kBT)); (1.4)

‘Tr’ denotes the trace of the operator following it. We will show in Chapter 12 that
in the path-integral formalism, the second expression can be transformed into the
same form as the first one. Also, there is a strong similarity between the exponent
occurring in the quantum partition function and the quantum time-evolution oper-
ator U(t) = exp(−itH/�), so solving the time evolution of a quantum system is
equivalent to evaluating a classical or quantum partition function, the difference
being an imaginary factor it/� replacing the real factor 1/(kBT), and taking the
trace in the case of the quantum partition function rather than a sum over states in
the classical analogue.

These mathematical analogies suggest that numerical methods for either classical
statistical mechanics or quantum mechanics are applicable in both fields. Indeed,
in Chapter 11, we shall see that it is possible to analyse classical statistical spin
problems on lattices by diagonalising large matrices. In Chapter 12, on the other
hand, we shall use Monte Carlo methods for solving quantum problems. These
methods enable us to treat the quantum many-particle problem without systematic
approximations, because, as will be shown in Chapter 12, Monte Carlo techniques
are very efficient for calculating integrals in many dimensions. This, as we have seen
above, was precisely the problem arising in the solution of interacting many-particle
systems.

1.7 Quantum molecular dynamics

Systems of many interacting atoms or molecules can be studied classically by solv-
ing Newton’s equations of motion, as is done in molecular dynamics. Pair potentials
are often used to describe the atomic interactions, and these can be found from
quantum mechanical calculations, using Hartree–Fock,density functional theory or
quantum Monte Carlo methods. In a dense system, the pair potential is inadequate
as the interactions between two particles in the system are influenced by other
particles. In order to incorporate these effects in a simulation, it would be necessary
to calculate the forces from full electronic structure calculations for all configura-
tions occurring in the simulation. Car and Parrinello have devised a clever way to
calculate these forces as the calculation proceeds, by combining density functional
theory with molecular dynamics methods.

In the Car–Parrinello approach, electron correlations are not treated exactly
because of the reliance on LDA (see Section 1.5), but it will be clear that it is
an important improvement on fully classical simulations where the interatomic
interactions are described by a simple form, such as pair potentials. It is possible

1.9 About this book 9

to include some damping mechanism in the equations of motion and then let the
nuclei relax to their ground state positions, so that equilibrium configurations of
molecules and solids can be determined (neglecting quantum fluctuations).

1.8 Quantum field theory

Quantum field theory provides a quantum description for fields: strings in one
dimension, sheets in two dimensions, etc. Quantum field theory is also believed
to describe elementary particles and their interactions. The best known example
is quantum electrodynamics (QED) which gives a very accurate description of
the interaction between charged spin-1/2 fermions (electrons) and electromag-
netic fields. The results of QED are obtained using perturbation theory which
works very well for this case, because the perturbative parameter remains small
for all but the smallest length scales (at large length scales this is the fine structure
constant).

In quantum chromodynamics (QCD), the theory which supposedly describes
quarks bound together in a proton or neutron, the coupling constant grows large for
large scales, and perturbation theory breaks down. One way to obtain useful results
for this theory is to discretise space-time, and simulate the theory on this space-time
lattice on a computer. This can be done using Monte Carlo or molecular dynam-
ics techniques. The application of these techniques is far from easy as the QCD
field theory is intrinsically complicated. A problem which needs to be addressed
is efficiency, notably overcoming critical slowing down, which decreases the effi-
ciency of simple Monte Carlo and molecular dynamics techniques for the cases
which are of physical interest. The fact that quarks are fermions leads to additional
complications.

QCD simulations relate quark masses to masses and interaction constants of
hadrons (mesons, protons, neutrons).

1.9 About this book

In this book, the emphasis is on methods which do not merely involve straightfor-
ward application of numerical methods, and which are specific to problems studied
in physics. In most cases, the theory is treated in some detail in order to exhibit
clearly what the approximations are and why the methods work. However, some of
this theoretical material can be skipped at first reading (this is the material in the
sections marked with an asterisk *). Details on implementation are given for most
of the methods described.

We start off with a chapter on quantum mechanical scattering theory. This is
a rather straightforward application of numerical techniques, and is used as an

10 Introduction

illustration of solving a rather simple (not completely trivial) physical problem
on a computer. The results of a sample program are compared with experiment.
In Chapters 3 to 5 we discuss computational methods for the electronic structure:
variational calculus, Hartree–Fock and density functional theory. We apply these
methods to some simple systems: the hydrogen and the helium atoms, and the
hydrogen molecule. We calculate the energies of these systems. Chapter 6 deals
with solving the independent-particle Schrödinger equation in solids.

In Chapters 7 to 12 we describe molecular dynamics and Monte Carlo techniques
for classical and quantum many-particle systems. Chapter 7 contains an overview
of classical statistical mechanics, with emphasis on ensembles and on critical phe-
nomena, which are also important for field theory, as discussed in Chapter 15. The
molecular dynamics and Monte Carlo techniques are treated in Chapters 8 and 10.
The standard example of a molecular liquid, argon, is analysed, but simulations
for liquid nitrogen and for lattice spin systems (Ising model) are also discussed.
Chapter 9 deals with the quantum molecular dynamics technique.

The relations between classical and statistical mechanics are exploited in
Chapter 11 where the transfer matrix method for lattice spin systems is described.
The next chapter deals with the application of Monte Carlo methods to quantum
mechanics, and we revisit the helium atom which is now treated without Hartree–
Fock or DFT approximations.

In Chapter 15 we consider numerical methods for field theory. Techniques for
analysing the simplest interesting field theory, the scalar φ4 theory, are studied,
and methods for studying more complicated field theories (QED and QCD) are
discussed. Because of the relation between statistical and quantum mechanics, some
of the techniques discussed in this chapter are also relevant for classical statistical
mechanics.

Finally, in Chapter 16 modern computer architectures are briefly considered and
an example of a parallel algorithm for molecular dynamics is given.

The algorithms presented, and the programs to be written in the exercises, can
be coded in different languages: C, C++, Java, Fortran 77, Fortran 90 etc. Also,
an integrated scientific computer environment such as MatLab may be used. They
all have their pluses and minuses: Fortran 77 allows for dirty programming, but is
quite efficient, and the same holds for C; Fortran 90 is efficient and neat. MatLab
is easy to use, but not as efficient as using a high-level programming language.
Perhaps the most structured way of programming is by using the objected-oriented
programming paradigm, as implemented in the langauges C++ and Java. For large
and complex projects, these languages are unbeatable. However, for smaller jobs
MatLab or Fortran 90 is usually sufficient. It is my experience that students relatively
new to programming get their programs to run correctly most quickly when using
Fortran 90 or MatLab.

Exercises 11

Perhaps the most decisive criterion for choosing a particular language is whether
you have experience with it. There is no emphasis on any of these languages in
this book: they are all suitable for writing the numerical types of programs con-
sidered here. If asked for a recommendation, I would not hesitate to advocate
Fortran 90 as the most suitable language for inexperienced programmers. Students
with substantial programming skills are probably better off using C++ or Java.

It is hoped that in the future it might be easier to move around pieces of software
and embed them in new programs, using graphical user interfaces (GUIs). Object-
oriented programming (OOP) techniques will play a major role in this development.
Ideally, the programs in this book could be built using a set of building blocks which
are graphically connected by the programmer to form programs which include the
numerical work along with a user-friendly input/output environment.

Exercises

1.1 [C] In this problem it is assumed that you have at your disposal a routine for solving
an ordinary second order differential equation with given initial conditions (see also
Appendix A7.1).

(a) Write a program for the Duffing oscillator [see Eqs. (1.1) and (1.2)] and study the
motion for different sets of values of the parameters F0, ω, γ (use m = 1,
a = 1/4, b = 1/2) and initial conditions x0 and ẋ0.

(b) For the same values of the parameters, print out the values of x and p = ẋ each
time a period T = 2π/ω has elapsed. Plotting these points should yield a
structure like Figure 1.3. The resulting curve is called the strange attractor.

It is possible to assign a dimension to such a structure. This is done by covering it
with grids of different sizes, and counting the number of squares N(b) needed to
cover the structure with squares of size b × b. This number then scales with b as

N(b) ∝ b−Df , small b,

and the exponent Df is then the dimension. This is not always an integer number, and
if this is indeed not the case, we call the dimension, and the corresponding structure,
fractal.

(c) Argue that the dimension of a line determined in this way is equal to one, and that
that of a surface area is equal to two.

(d) Write a program to determine the fractal dimension of the strange attractor
constructed above. This proceeds as follows. First, read all the points of the
attractor into an array. The attractor lies in the square of side 6 centred at the
origin. Divide this square up into l × l cells, where l is first taken to be 2, then 4,
and so on up to l = 128. The side of the cells is then b = 6/l. A Boolean array of
size at least 128 by 128 assumes the value TRUE for cells which contain a point of
the attractor and FALSE if that is not the case. Fill this array by performing a loop
over the points on the attractor, and then count the number of filled cells N(b).

12 Introduction

p

x

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

Figure 1.3. Strange attractor for the Duffing oscillator. Values of the parameters
are F0 = 2.0, ω = 2.4, γ = 0.1. The initial conditions are x0 = 0.5, ẋ0 = 0.

The results log[N(b)] and log(b) should be written to a file. For an attractor of
25 000 points, the resulting points lie more or less on a straight line with slope
−Df ≈ −1.68, for 2 ≤ l ≤ 7.

1.2 [C] In this problem, we consider diffusion limited aggregation.

(a) Write a program for generating DLA clusters on a square lattice of size
150 × 150 (see Section 1.3). Generate a cluster of about 9000 sites, and write the
sites occupied by this cluster to a file for viewing using a graphics program.

(b) Another definition of the fractal dimension (see Problem 1.1) is obtained by
relating the number of sites N of the cluster to its radius of gyration, defined by

Rg = 1

N

N∑
i=1

(ri − r0)
2,

where

r0 = 1

N

N∑
i=1

ri

is the ‘centre of mass’ of the cluster. Show that the radius of gyration can be
rewritten as

Rg = 1

N

(
N∑

i=1

r2
i

)
− r2

0.

Use this formula to calculate the radius of gyration after every 200 newly added
sites, and write the values log(Rg), log(N) to a file. Plot this file and fit the results

References 13

to a straight line. The slope of this line is then the fractal dimension which must
be about 1.7.

References

[1] J. Awrejcewicz, ‘On the occurrence of chaos in Duffing’s oscillator,’ J. Sound Vibr., 108 (1986),
176–8.

[2] E. Ben-Jacob, I. Cohen, O. Sochet, et al. ‘Complex bacterial patterns,’ Nature, 373 (1986), 566–7.

2

Quantum scattering with a spherically
symmetric potential

2.1 Introduction

In this chapter, we shall discuss quantum scattering with a spherically symmetric
potential as a typical example of the problems studied in computational physics
[1, 2]. Scattering experiments are perhaps the most important tool for obtaining
detailed information on the structure of matter, in particular the interaction between
particles. Examples of scattering techniques include neutron and X-ray scattering
for liquids, atoms scattering from crystal surfaces and elementary particle collisions
in accelerators. In most of these scattering experiments, a beam of incident particles
hits a target which also consists of many particles. The distribution of scattered
particles over the different directions is then measured, for different energies of the
incident particles. This distribution is the result of many individual scattering events.
Quantum mechanics enables us, in principle, to evaluate for an individual event the
probabilities for the incident particles to be scattered off in different directions; and
this probability is identified with the measured distribution.

Suppose we have an idea of what the potential between the particles involved
in the scattering process might look like, for example from quantum mechanical
energy calculations (programs for this purpose will be discussed in the next few
chapters). We can then parametrise the interaction potential, i.e. we write it as
an analytic expression involving a set of constants: the parameters. If we evaluate
the scattering probability as a function of the scattering angle for different values
of these parameters, and compare the results with experimental scattering data,
we can find those parameter values for which the agreement between theory and
experiment is optimal. Of course, it would be nice if we could evaluate the scattering
potential directly from the scattering data (this is called the inverse problem), but
this is unfortunately very difficult (if not impossible): many different interaction
potentials can have similar scattering properties, as we shall see below.

14

2.1 Introduction 15

dΩ

ϑ

ϕ

y

x z

Figure 2.1. Geometry of a scattering process.

There might be many different motives for obtaining accurate interaction poten-
tials. One is that we might use the interaction potential to make predictions about
the behaviour of a system consisting of many interacting particles, such as a dense
gas or a liquid. Methods for doing this will be discussed in Chapters 8 and 10.

Scattering may be elastic or inelastic. In the former case the energy is conserved,
in the latter it disappears. This means that energy transfer takes place from the
scattered particles to degrees of freedom which are not included explicitly in the
system (inclusion of these degrees of freedom would cause the energy to be con-
served). In this chapter we shall consider elastic scattering. We restrict ourselves
furthermore to spherically symmetric interaction potentials. In Chapter 15 we shall
briefly discuss scattering in the context of quantum field theory for elementary
particles.

We analyse the scattering process of a particle incident on a scattering centre
which is usually another particle.1 We assume that we know the scattering potential,
which is spherically symmetric so that it depends on the distance between the
particle and the scattering centre only.

In an experiment, one typically measures the scattered flux, that is, the intensity
of the outgoing beam for various directions which are denoted by the spatial angle
� = (θ ,ϕ) as in Figure 2.1. The differential cross section, dσ(�)/d�, describes
how these intensities are distributed over the various spatial angles�, and the integ-
rated flux of the scattered particles is the total cross section,σtot. These experimental
quantities are what we want to calculate.

The scattering process is described by the solutions of the single-particle
Schrödinger equation involving the (reduced) mass m, the relative coordinate r
and the interaction potential V between the particle and the interaction centre:[

− �
2

2m
∇2 + V(r)

]
ψ(r) = Eψ(r). (2.1)

1 Every two-particle collision can be transformed into a single scattering problem involving the relative
position; in the transformed problem the incoming particle has the reduced mass m = m1m2/(m1 + m2).

16 Quantum scattering with a spherically symmetric potential

This is a partial differential equation in three dimensions, which could be solved
using the ‘brute force’ discretisation methods presented in Appendix A, but exploit-
ing the spherical symmetry of the potential, we can solve the problem in another,
more elegant, way which, moreover, works much faster on a computer. More spe-
cifically, in Section 2.3 we shall establish a relation between the phase shift and the
scattering cross sections. In this section, we shall restrict ourselves to a description
of the concept of phase shift and describe how it can be obtained from the solutions
of the radial Schrödinger equation. The expressions for the scattering cross sections
will then be used to build the computer program which is described in Section 2.2.

For the potential V(r) we make the assumption that it vanishes for r larger than
a certain value rmax. If we are dealing with an asymptotically decaying potential,
we neglect contributions from the potential beyond the range rmax, which must be
chosen suitably, or treat the tail in a perturbative manner as described in Problem 2.2.

For a spherically symmetric potential, the solution of the Schrödinger equation
can always be written as

ψ(r) =
∞∑

l=0

l∑
m=−l

Alm
ul(r)

r
Ym

l (θ ,ϕ) (2.2)

where ul satisfies the radial Schrödinger equation:{
�

2

2m

d2

dr2
+
[

E − V(r)− �
2l(l + 1)

2mr2

]}
ul(r) = 0. (2.3)

Figure 2.2 shows the solution of the radial Schrödinger equation with l = 0 for
a square well potential for various well depths – our discussion applies also to
nonzero values of l. Outside the well, the solution ul can be written as a linear
combination of the two independent solutions jl and nl, the regular and irregular
spherical Bessel functions. We write this linear combination in the particular form

ul(r > rmax) ∝ kr[cos δljl(kr)− sin δlnl(kr)]; (2.4)

k = √
2mE/�.

Here rmax is the radius of the well, and δl is determined via a matching procedure
at the well boundary. The motivation for writing ul in this form follows from the
asymptotic expansion for the spherical Bessel functions:

krjl(kr) ≈ sin(kr − lπ/2) (2.5a)

krnl(kr) ≈ − cos(kr − lπ/2) (2.5b)

which can be used to rewrite (2.4) as

ul(r) ∝ sin(kr − lπ/2 + δl), large r. (2.6)

2.1 Introduction 17

–V
r

V = 10

V = 0

V = 205

Figure 2.2. The radial wave functions for l = 0 for various square well potential
depths.

We see that ul approaches a sine-wave form for large r and the phase of this wave
is determined by δl, hence the name ‘phase shift’ for δl (for l = 0, ul is a sine wave
for all r > rmax).

The phase shift as a function of energy and l contains all the information about
the scattering properties of the potential. In particular, the phase shift enables us
to calculate the scattering cross sections and this will be done in Section 2.3; here
we simply quote the results. The differential cross section is given in terms of the
phase shift by

dσ

d�
= 1

k2

∣∣∣∣∣
∞∑

l=0

(2l + 1)eiδl sin(δl)Pl(cos θ)

∣∣∣∣∣
2

(2.7)

and for the total cross section we find

σtot = 2π
∫

dθ sin θ
dσ

d�
(θ) = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (2.8)

Summarising the analysis up to this point, we see that the potential determines
the phase shift through the solution of the Schrödinger equation for r < rmax. The
phase shift acts as an intermediate object between the interaction potential and the
experimental scattering cross sections, as the latter can be determined from it.

Unfortunately, the expressions (2.7) and (2.8) contain sums over an infinite num-
ber of terms – hence they cannot be evaluated on the computer exactly. However,
there is a physical argument for cutting off these sums. Classically, only those waves

18 Quantum scattering with a spherically symmetric potential

with an angular momentum smaller than �lmax = �krmax will ‘feel’ the potential –
particles with higher l-values will pass by unaffected. Therefore we can safely cut
off the sums at a somewhat higher value of l; we can always check whether the res-
ults obtained change significantly when taking more terms into account. We shall
frequently encounter procedures similar to the cutting off described here. It is the
art of computational physics to find clever ways to reduce infinite problems to ones
which fit into the computer and still provide a reliable description.

How is the phase shift determined in practice? First, the Schrödinger equation
must be integrated from r = 0 outwards with boundary condition ul(r = 0) = 0. At
rmax, the numerical solution must be matched to the form (2.4) to fix δl. The match-
ing can be done either via the logarithmic derivative or using the value of the
numerical solution at two different points r1 and r2 beyond rmax. We will use the
latter method in order to avoid calculating derivatives. From (2.4) it follows directly
that the phase shift is given by

tan δl = Kj(1)l − j(2)l

Kn(1)l − n(2)l

with (2.9a)

K = r1u(2)l

r2u(1)l

. (2.9b)

In this equation, j(1)l stands for jl(kr1) etc.

2.2 A program for calculating cross sections

In this section we describe the construction of a program for calculating cross
sections for a particular scattering problem: hydrogen atoms scattered off (much
heavier) krypton atoms. Both atoms are considered as single particles and their
structure (nucleus and electrons) is not explicitly taken into account. After com-
pletion, we are able to compare the results with experimental data. The program
described here closely follows the work of Toennies et al. who carried out various
atomic collisions experimentally and modelled the results using a similar computer
program [3].

The program is built up in several steps.

• First, the integration method for solving the radial Schrödinger equation is
programmed. Various numerical methods can be used; we consider in particular
Numerov’s method (see Appendix A7.1).

• Second, we need routines yielding spherical Bessel functions in order to
determine the phase shift via the matching procedure Eq. (2.9a). If we want to

2.2 A program for calculating cross sections 19

calculate differential cross sections, we need Legendre polynomials too. In
Appendix A2, iterative methods for evaluating special functions are discussed.

• Finally, we complete the program with a routine for calculating the cross
sections from the phase shifts.

2.2.1 Numerov’s algorithm for the radial Schrödinger equation

The radial Schrödinger equation is given in Eq. (2.3). We define

F(l, r, E) = V(r)+ �
2l(l + 1)

2mr2 − E (2.10)

so that the radial Schrödinger equation now reads:

�
2

2m

d2

dr2
u(r) = F(l, r, E)u(r). (2.11)

Units are chosen in which �
2/(2m) assumes a reasonable value, that is, not

extremely large and not extremely small (see below). You can choose a lib-
rary routine for integrating this equation but if you prefer to write one yourself,
Numerov’s method is a good choice because it combines the simplicity of a regular
mesh with good efficiency. The Runge–Kutta method can be used if you want to
have the freedom of varying the integration step when the potential changes rapidly
(see Problem 2.1).

Numerov’s algorithm is described in Appendix A7.1. It makes use of the special
structure of this equation to solve it with an error of order h6 (h is the discretisation
interval) using only a three-point method. For �

2/2m ≡ 1 it reads:

w(r + h) = 2w(r)− w(r − h)+ h2F(l, r, E)u(r) (2.12)

and

u(r) =
[

1 − h2

12
F(l, r, E)

]−1

w(r). (2.13)

It is useful to keep several things in mind when coding this algorithm.

• The function F(l, r, E), consisting of the energy, potential and centrifugal
barrier, given in Eq. (2.10), is coded into a function F(L,R,E), with L an
integer and R and E being real variables.

• As you can see from Eq. (2.9a), the value of the wave function is needed for two
values of the radial coordinate r, both beyond rmax. We can take r1 equal to the
first integration point beyond rmax (if the grid constant h for the integration fits
an integer number of times into rmax, it is natural to take r1 = rmax). The value
of r2 is larger than r1 and it is advisable to take it roughly half a wavelength
beyond the latter. The wavelength is given by λ = 2π/k = 2π�/

√
2mE. As

20 Quantum scattering with a spherically symmetric potential

both r1 and r2 are equal to an integer times the integration step h (they will in
general not differ by exactly half a wavelength) the precise values of r1 and r2

are determined in the routine and output to the appropriate routine parameters.
• The starting value at r = 0 is given by u(r = 0) = 0. We do not know the value

of the derivative, which determines the normalisation of the resulting function –
this normalisation can be determined afterward. We take ul(0) = 0 and
ul(h) = hl+1 (h is the integration step), which is the asymptotic approximation
for ul near the origin for a regular potential (for the H–Kr interaction potential
which diverges strongly near the origin, we must use a different boundary
condition as we shall see below).

programming exercise

Write a code for the Numerov algorithm. The input parameters to the routine
must include the integration step h, the radial quantum number l, the energy E
and the radial coordinate rmax; on output it yields the coordinates r1 and r2
and the values of the wave function ul(r1) and ul(r2).

When building a program of some complexity, it is very important to build it
up step by step and to check every routine extensively. Comparison with analytical
solutions is then of prime importance. We now describe several checks that should
be performed after completion of the Numerov routine (it is also sensible to test a
library routine).

Check 1 The numerical solutions can be compared with analytical solutions for
the case of the three-dimensional harmonic oscillator. Bound states occur for
energies E = �ω(n +3/2), n = 0, 1, 2, . . . It is convenient in this case to choose
units such that �

2/2m = 1. Taking V(r) = r2, we have �ω = 2 and the lowest
state occurs for l = 0 with energy E = 3.0, with eigenfunction Ar exp(−r2/2), A
being some constant. Using E = 3.0 in our numerical integration routine should
give us this solution with A = exp(h2/2) for the starting conditions described
above. Check this for r-values up to r2.

Check 2 The integration method has an error of O(h6) (where O indicates
‘order’). The error found at the end of a finite interval then turns out to be less
than O(h4) (see Problem A3). This can be checked by comparing the numerical
solution for the harmonic oscillator with the exact one. Carry out this compar-
ison for several values of N , for example N = 4, 8, 16, . . . For N large enough,
the difference between the exact and the numerical solution should decrease for
each new value of N by a factor of at least 16. If your program does not yield
this behaviour, there must be an error in the code!

2.2 A program for calculating cross sections 21

We shall now turn to the H–Kr interaction. The two-atom interaction potential for
atoms is often modelled by the so-called Lennard–Jones (LJ) potential, which has
the following form:

VLJ(r) = ε

[(ρ
r

)12 − 2
(ρ

r

)6
]

. (2.14)

This form of potential contains two parameters, ε and ρ, and for H–Kr the best
values for these are

ε = 5.9 meV and ρ = 3.57 Å. (2.15)

Note that the energies are given in milli-electronvolts! In units of meV and
ρ for energy and distance respectively, the factor 2m/�2 is equal to about
6.12 meV−1ρ−2. The potential used by Toennies et al. [3] included small cor-
rections to the Lennard–Jones shape.

For the Lennard–Jones potential the integration of the radial Schrödinger equa-
tion gives problems for small r because of the 1/r12 divergence at the origin. We
avoid integrating in this region and start at a nonzero radius rmin where we use the
analytic approximation of the solution for small r to find the starting values of the
numerical solution. For r < rmin, the term 1/r12 dominates the other terms in the
potential and the energy, so that the Schrödinger equation reduces to

d2u

dr2
= εα

1

r12
u(r) (2.16)

with α = 6.12. The solution of this equation is given by

u(r) = exp(−Cr−5) (2.17)

with C = √
εα/25. This fixes the starting values of the numerical solution at rmin

which should be chosen such that it can safely be assumed that the 1/r12 dominates
the remaining terms in the potential; typical values for the starting value of r lie
between 0.5ρ and 0.8ρ (the minimum of the Lennard–Jones potential is found
at r = 2). Note that Eq. (2.17) provides the starting value and derivative of the
wavefunction u at the starting point. In Appendix A7.1 a procedure is described by
which two consecutive values can then be found which, when used as the starting
values of the Numerov method, provide a solution with the proper accuracy. This
will not be the case when two consecutive points are simply set to the solution
Eq. (2.17), as this is not an exact solution to either the continuum differential
equation or to its discrete (Numerov) form.

You can adapt your program to the problem at hand by simply changing the
function F(l, r, E) to contain the Lennard–Jones potential and by implementing the
boundary conditions as described. As a check, you can verify that the solution does
not become enormously large or remain very small.

22 Quantum scattering with a spherically symmetric potential

2.2.2 The spherical Bessel functions

For the present problem, you need only the first six spherical Bessel functions jl and
nl, and you can type in the explicit expressions directly. If you want a general routine
for the spherical Bessel functions, however, you can use the recursive procedures
described in Appendix A (see also Problem A1). Although upward recursion can
be unstable for jl (see Appendix A), this is not noticeable for the small l values (up
to l = 6) that we need and you can safely use the simple upward recursion for both
nl and jl (or use a library routine).

programming exercise

Write routines for generating the values of the spherical Bessel functions jl
and nl. On input, the values of l and the argument x are specified and on output
the value of the appropriate Bessel function is obtained.

Check 3 If your program is correct, it should yield the values for j5 and n5 given
in Problem A1.

2.2.3 Putting the pieces together: results

To obtain the scattering cross sections, some extra routines must be added to the
program. First of all, the phase shift must be extracted from the values r1, u(r1) and
r2, u(r2). This is straightforward using Eq. (2.9a). The total cross section can then
readily be calculated using Eq. (2.8). The choice of rmax must be made carefully,
preferably keeping the error of the same order as the O(h6) error of the Numerov
routine (or the error of your library routine). In Problem 2.2 it is shown that the
deviation in the phase shift caused by cutting off the potential at rmax is given by

δl = −2m

�2
k
∫ ∞

rmax

j2
l (kr)VLJ(r)r

2dr (2.18)

and this formula can be used to estimate the resulting error in the phase shift or to
improve the value found for it with a potential cut-off beyond rmax. A good value
is rmax ≈ 5ρ.

For the determination of the differential cross section you will need additional
routines for the Legendre polynomials.2 In the following we shall only describe
results for the total cross section.

programming exercise

Add the necessary routines to the ones you have written so far and combine
them into a program for calculating the total cross section.

2 These can be generated using the recursion relation (l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x).

2.2 A program for calculating cross sections 23

l = 6

l =
5

l =
4

l = 0

r[�]

–4

–2

0

2

4

0 0.5 1 1.5 2 2.5

V
ef

f
(r

)[
m

eV
]

–6

6

Figure 2.3. The effective potential for the Lennard–Jones interaction for various
l-values.

A computer program similar to the one described here was used by Toennies et al.
[3] to compare the results of scattering experiments with theory. The experiment
consisted of the bombardment of krypton atoms with hydrogen atoms. Figure 2.3
shows the Lennard–Jones interaction potential plus the centrifugal barrier l(l+1)/r2

of the radial Schrödinger equation. For higher l-values, the potential consists essen-
tially of a hard core, a well and a barrier which is caused by the 1/r2 centrifugal term
in the Schrödinger equation. In such a potential, quasi-bound states are possible.
These are states which would be genuine bound states for a potential for which the
barrier does not drop to zero for larger values of r, but remains at its maximum
height. You can imagine the following to happen when a particle is injected into
the potential at precisely this energy: it tunnels through the barrier, remains in the
well for a relatively long time, and then tunnels outward through the barrier in
an arbitrary direction because it has ‘forgotten’ its original direction. In wave-like
terms, the particle resonates in the well, and this state decays after a relatively long
time. This phenomenon is called ‘scattering resonance’. This means that particles
injected at this energy are strongly scattered and this shows up as a peak in the total
cross section.

Such peaks can be seen in Figure 2.4, which shows the total cross section as a
function of the energy calculated with a program as described above. The peaks are
due to l = 4, l = 5 and l = 6 scattering, with energies increasing with l. Figure 2.5
finally shows the experimental results for the total cross section for H–Kr. We see
that the agreement is excellent.

You should be able now to reproduce the data of Figure 2.4 with your program.

24 Quantum scattering with a spherically symmetric potential

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3 3.5

l = 4

l = 5

l = 6

Energy [meV]

T
ot

al
 c

ro
ss

 s
ec

tio
n

[�
2]

5

50

Figure 2.4. The total cross section shown as function of the energy for a Lennard–
Jones potential modelling the H–Kr system. Peaks correspond to the resonant
scattering states. The total cross section is expressed in terms of the range ρ of the
Lennard–Jones potential.

T
ot

al
 c

ro
ss

 s
ec

tio
n

1 10

Energy [meV]

Figure 2.5. Experimental results as obtained by Toennies et al. [3] for the total
cross section (arbitrary units) of the scattering of hydrogen atoms by krypton atoms
as function of centre of mass energy.

2.3 Calculation of scattering cross sections 25

*2.3 Calculation of scattering cross sections

In this section we derive Eqs. (2.7) and (2.8). At a large distance from the scattering
centre we can make an Ansatz for the wave function. This consists of the incoming
beam and a scattered wave:

ψ(r) ∝ eik·r + f (θ)
eikr

r
. (2.19)

Here, θ is the angle between the incoming beam and the line passing through r
and the scattering centre. The function f does not depend on the azimuthal angle ϕ
because the incoming wave has azimuthal symmetry, and the spherically symmetric
potential will not generate m �= 0 contributions to the scattered wave. f (θ) is called
the scattering amplitude. From the Ansatz it follows that the differential cross section
is given directly by the square of this amplitude:

dσ

d�
= | f (θ)|2 (2.20)

with the appropriate normalisation (see for example Ref. [1]).
Beyond rmax, the solution can also be written in the form (2.2) leaving out all

m �= 0 contributions because of the azimuthal symmetry:

ψ(r) =
∞∑

l=0

Al
ul(r)

r
Pl(cos θ) (2.21)

where we have used the fact that Y l
0(θ ,φ) is proportional to Pl(cos θ). Because the

potential vanishes in the region r > rmax, the solution ul(r)/r is given by the linear
combination of the regular and irregular spherical Bessel functions, and as we have
seen this reduces for large r to

ul(r) ≈ sin

(
kr − lπ

2
+ δl

)
. (2.22)

We want to derive the scattering amplitude f (θ) by equating the expressions (2.19)
and (2.21) for the wave function. For large r we obtain, using (2.22):

∞∑
l=0

Al

[
sin(kr − lπ/2 + δl)

kr

]
Pl(cos θ) = eik·r + f (θ)

eikr

r
. (2.23)

We write the right hand side of this equation as an expansion similar to that in the
left hand side, using the following expression for a plane wave [4]

eik·r =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ). (2.24)

26 Quantum scattering with a spherically symmetric potential

f (θ) can also be written as an expansion in Legendre polynomials:

f (θ) =
∞∑

l=0

flPl(cos θ), (2.25)

so that we obtain:

∞∑
l=0

Al

[
sin(kr − lπ/2 + δl)

kr

]
Pl(cos θ)

=
∞∑

l=0

[
(2l + 1)iljl(kr)+ fl

eikr

r

]
Pl(cos θ). (2.26)

If we substitute the asymptotic form (2.5a) of jl in the right hand side, we find:

∞∑
l=0

Al

[
sin(kr − lπ/2 + δl)

kr

]
Pl(cos θ)

= 1

r

∞∑
l=0

[
2l + 1

2ik
(−)l+1e−ikr +

(
fl + 2l + 1

2ik

)
eikr

]
Pl(cos θ). (2.27)

Both the left and the right hand sides of (2.27) contain incoming and outgoing spher-
ical waves (the occurrence of incoming spherical waves does not violate causality:
they arise from the incoming plane wave). For each l, the prefactors of the incoming
and outgoing waves should be equal on both sides in (2.27). This condition leads to

Al = (2l + 1)eiδl il (2.28)

and

fl = 2l + 1

k
eiδl sin(δl). (2.29)

Using (2.20), (2.25), and (2.29), we can write down an expression for the
differential cross section in terms of the phase shifts δl:

dσ

d�
= 1

k2

∣∣∣∣∣
∞∑

l=0

(2l + 1)eiδl sin(δl)Pl(cos θ)

∣∣∣∣∣
2

. (2.30)

For the total cross section we find, using the orthonormality relations of the Legendre
polynomials:

σtot = 2π
∫

dθ sin θ
dσ

d�
(θ) = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (2.31)

Exercises 27

Exercises

2.1 [C] Try using the Runge–Kutta method with an adaptive time step to integrate the
radial Schrödinger equation in the program of Section 2.2, keeping the estimated
error fixed as described in Appendix A7.1. What is the advantage of this method over
Numerov’s method for this particular case?

2.2 [C] Consider two radial potentials V1 and V2 and the solutions u(1)l and u(2)l to the
radial Schrödinger equation for these two potentials (at the same energy):[

�
2

2m

d2

dr2 +
(

E − V1(r)− �
2l(l + 1)

2mr2

)]
u(1)l (r) = 0

[
�

2

2m

d2

dr2
+
(

E − V2(r)− �
2l(l + 1)

2mr2

)]
u(2)l (r) = 0.

(a) Show that by multiplying the first equation from the left by u(2)l (r) and the second

one from the left by u(1)l (r) and then subtracting, it follows that:

∫ L

0
dru(2)l (r)[V1(r)− V2(r)]u(1)l (r) = �

2

2m

[
u(2)l (L)

∂u(1)l (L)

∂r
− u(1)l (L)

∂u(2)l (L)

∂r

]
.

(b) If Vi → 0 for large r, then both solutions are given for large r by
sin[kr − (lπ/2)+ δ

(i)
l]/k. Show that from this it follows that:∫ ∞

0
dru(2)l (r)[V1(r)− V2(r)]u(1)l (r) = �

2

2mk
sin(δ(2)l − δ

(1)
l).

Now take V1 ≡ 0 and V2 ≡ V small everywhere. In that case, u(1)l and u(2)l on the left
hand side can both be approximated by rjl(kr), so that we obtain:

δl ≈ −2mk

�2

∫ ∞

0
dr r2j2

l (kr)V(r).

This is the Born approximation for the phase shift. This approximation works well for
potentials that are small with respect to the energy.

(c) [C] Write a (very simple) routine for calculating this integral (or use a library
routine). Of course, it is sufficient to carry out the integration up to rmax since
beyond that range V ≡ 0. Compare the Born approximation with the solution of
the program developed in the previous problem. For the potential, take a weak
Gaussian well:

V(r) = −A exp[−(r − 1)2], x < rmax

and
V(r) = 0, x ≥ rmax.

with A = 0.01 and rmax chosen suitably. Result?
(d) Now consider the analysis of items (a) and (b) where V1 is the Lennard–Jones

potential without cut-off and V2 with cut-off. Show that the phase shift for the

28 Quantum scattering with a spherically symmetric potential

Lennard–Jones potential without cut-off is given by the phase shift for the
potential with cut-off plus a correction given by:

δl = 2m

�2 k
∫ ∞

rmax

j2
l (kr)VLJ(r)r

2dr.

References

[1] A. Messiah, Quantum Mechanics, vols. 1 and 2. Amsterdam, North-Holland, 1961.
[2] S. E. Koonin, Computational Physics. Reading, Benjamin/Cummings, 1986.
[3] J. P. Toennies, W. Welz, and G. Wolf, ‘Molecular beam scattering studies of orbiting resonances

and the determination of Van der Waals potentials for H–He, Ar, Kr, and Xe and for H2–Ar, Kr
and Xe,’ J. Chem. Phys., 71 (1979), 614–42.

[4] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Washington DC,
National Bureau of Standards, 1964.

3

The variational method for the Schrödinger equation

3.1 Variational calculus

Quantum systems are governed by the Schrödinger equation. In particular, the solu-
tions to the stationary form of this equation determine many physical properties of
the system at hand. The stationary Schrödinger equation can be solved analytically
in a very restricted number of cases – examples include the free particle, the har-
monic oscillator and the hydrogen atom. In most cases we must resort to computers
to determine the solutions. It is of course possible to integrate the Schrödinger equa-
tion using discretisation methods – see the different methods in Appendix A7.2 –
but in most realistic electronic structure calculations we would need huge num-
bers of grid points, leading to high computer time and memory requirements. The
variational method on the other hand enables us to solve the Schrödinger equation
much more efficiently in many cases. In the next few chapters, which deal with elec-
tronic structure calculations, we shall make frequent use of the variational method
described in this chapter.

In the variational method, the possible solutions are restricted to a subspace of
the Hilbert space, and in this subspace we seek the best possible solution (below
we shall define what is to be understood by the ‘best’ solution). To see how this
works, we first show that the stationary Schrödinger equation can be derived by a
stationarity condition of the functional:

E[ψ] =
∫

dXψ∗(X)Hψ(X)∫
dXψ∗(X)ψ(X)

= 〈ψ |H|ψ〉
〈ψ |ψ〉 (3.1)

which is recognised as the expectation value of the energy for a stationary state ψ
(to keep the analysis general, we are not specific about the form of the generalised
coordinate X – it may include the space and spin coordinates of a collection of
particles). The stationary states of this energy-functional are defined by postulating
that if such a state is changed by an arbitrary but small amount δψ , the corresponding

29

30 The variational method for the Schrödinger equation

change in E vanishes to first order:

δE ≡ 0. (3.2)

Defining

P = 〈ψ |H|ψ〉 and

Q = 〈ψ |ψ〉, (3.3)

we can write the change δE in the energy to first order in δψ as

δE = 〈ψ + δψ|H|ψ + δψ〉
〈ψ + δψ|ψ + δψ〉 − 〈ψ |H|ψ〉

〈ψ |ψ〉
≈ 〈δψ |H|ψ〉 − (P/Q)〈δψ |ψ〉

Q
+ 〈ψ |H|δψ〉 − (P/Q)〈ψ |δψ〉

Q
. (3.4)

As this should vanish for an arbitrary but small change in ψ , we find, using
E = P/Q:

Hψ = Eψ , (3.5)

together with the Hermitian conjugate of this equation, which is equivalent.
In variational calculus, stationary states of the energy-functional are found within

a subspace of the Hilbert space. An important example is linear variational calculus,
in which the subspace is spanned by a set of basis vectors |χp〉, p = 1, . . . , N . We
take these to be orthonormal at first, that is,

〈χp|χq〉 = δpq, (3.6)

where δpq is the Kronecker delta-function which is 0 unless p = q, and in that case,
it is 1.

For a state
|ψ〉 =

∑
p

Cp|χp〉, (3.7)

the energy-functional is given by

E =
∑N

p,q=1 C∗
p CqHpq∑N

p,q=1 C∗
p Cqδpq

(3.8)

with
Hpq = 〈χp|H|χq〉. (3.9)

The stationary states follow from the condition that the derivative of this functional
with respect to the Cp vanishes, which leads to

N∑
q=1

(Hpq − Eδpq)Cq = 0 for p = 1, . . . , N . (3.10)

3.1 Variational calculus 31

(5)

(5)

(5)

(5)

1

1

1

2

2

2

33

3

4

44

(4)

(4)

(4)

(4)

E

E

E

E

E

E

E

E

E

E

E

E

Figure 3.1. The behaviour of the spectrum of Eq. (3.11) with increasing basis set
size in linear variational calculus. The upper index is the number of states in the
basis set, and the lower index labels the spectral levels.

Equation (3.10) is an eigenvalue problem which can be written in matrix notation:

HC = EC. (3.11)

This is the Schrödinger equation, formulated for a finite, orthonormal basis.
Although in principle it is possible to use nonlinear parametrisations of the wave

function, linear parametrisations are used in the large majority of cases because of
the simplicity of the resulting method, allowing for numerical matrix diagonalisa-
tion techniques, discussed in Appendix A7.2, to be used. The lowest eigenvalue
of (3.11) is always higher than or equal to the ground state energy of Eq. (3.5), as
the ground state is the minimal value assumed by the energy-functional in the full
Hilbert space. If we restrict ourselves to a part of this space, then the minimum
value of the energy-functional must always be higher than or equal to the ground
state of the full Hilbert space. Including more basis functions into our set, the sub-
space becomes larger, and consequently the minimum of the energy-functional will
decrease (or stay the same). For the specific case of linear variational calculus, this
result can be generalised to higher stationary states: they are always higher than
the equivalent solution to the full problem, but approximate the latter better with
increasing basis set size (see Problem 3.1). The behaviour of the spectrum found
by solving (3.11) with increasing basis size is depicted in Figure 3.1.

We note here that it is possible to formulate the standard discretisation methods
such as the finite difference method of Appendix A7.2 as linear variational methods
with an additional nonvariational approximation caused by the discretised repres-
entation of the kinetic energy operator. These methods are usually considered as
separate: the term variational calculus implies continuous (and often analytic) basis

32 The variational method for the Schrödinger equation

functions. Because the computer time needed for matrix diagonalisation scales with
the third power of the linear matrix size (it is called a O(N3) process), the basis
should be kept as small as possible. Therefore, it must be chosen carefully: it should
be possible to approximate the solutions to the full problem with a small number
of basis states. The fact that the basis in (continuous) variational calculus can be
chosen to be so much smaller than the number of grid points in a finite differ-
ence approach implies that even though the latter can be solved using special O(N)
methods for sparse systems (see Appendix A8.2), they are still far less efficient than
variational methods with continuous basis functions in most cases. This is why, in
most electronic structure calculations, variational calculus with continuous basis
functions is used to solve the Schrödinger equation; see however Refs. [1] and [2].

An example of a variational calculation with orthonormal basis functions will be
considered in Problem 3.4. We now describe how to proceed when the basis consists
of nonorthonormal basis functions, as is often the case in practical calculations. In
that case, we must reformulate (3.11), taking care of the fact that the overlap matrix
S, whose elements Spq are given by

Spq = 〈χp|χq〉 (3.12)

is not the unit matrix. This means that in Eq. (3.8) the matrix elements δpq of the
unit matrix, occurring in the denominator, have to be replaced by Spq, and we obtain

HC = ESC. (3.13)

This looks like an ordinary eigenvalue equation, the only difference being the matrix
S in the right hand side. It is called a generalised eigenvalue equation and there
exist computer programs for solving such a problem. The numerical method used
in such programs is described in Section 3.3.

3.2 Examples of variational calculations

In this section, we describe two quantum mechanical problems and the computer
programs that can solve these problems numerically by a variational calculation.
In both cases, we must solve a generalised matrix eigenvalue problem (3.13).

You can find a description of the method for diagonalising a symmetric matrix
in Appendix A8.2, and the method for solving the generalised eigenvalue problem
is considered in Section 3.3; see also problem 3.3. It is not advisable to program
the matrix diagonalisation routine yourself; numerous routines can be found on the
internet. Solving the generalised eigenvalue problem is not so difficult if you have
a matrix diagonalisation routine at your disposal. It is easy to find such a routine
on the network (it is part of the LAPACK library, which is part of the ATLAS

3.2 Examples of variational calculations 33

numerical library; these can be found in the NETLIB repository). In the following
we shall assume that we have such programs available.

3.2.1 The infinitely deep potential well

The potential well with infinite barriers is given by:

V(x) =
{∞ for |x| > |a|

0 for |x| ≤ |a| (3.14)

and it forces the wave function to vanish at the boundaries of the well (x = ±a). The
exact solution for this problem is known and treated in every textbook on quantum
mechanics [3, 4]. Here we discuss a linear variational approach to be compared
with the exact solution. We take a = 1 and use natural units such that �

2/2m = 1.
As basis functions we take simple polynomials that vanish on the boundaries of

the well:
ψn(x) = xn(x − 1)(x + 1), n = 0, 1, 2, . . . (3.15)

The reason for choosing this particular form of basis functions is that the relevant
matrix elements can easily be calculated analytically. We start with the matrix
elements of the overlap matrix, defined by

Smn = 〈ψn|ψm〉 =
∫ 1

−1
ψn(x)ψm(x)dx. (3.16)

Working out the integral gives

Smn = 2

n + m + 5
− 4

n + m + 3
+ 2

n + m + 1
(3.17)

for n + m even; otherwise Smn = 0.
We can also calculate the Hamilton matrix elements, and you can check that they

are given by:

Hmn = 〈ψn|p2|ψm〉 =
∫ 1

−1
ψn(x)

(
− d2

dX2

)
ψm(x)dx

= −8

[
1 − m − n − 2mn

(m + n + 3)(m + n + 1)(m + n − 1)

]
(3.18)

for m + n even, otherwise Hmn = 0.

programming exercise

Write a computer program in which you fill the overlap and Hamilton matrix
for this problem. Use standard software to solve the generalised eigenvalue
problem.

34 The variational method for the Schrödinger equation

Table 3.1. Energy levels of the infinitely deep potential well.

N = 5 N = 8 N = 12 N = 16 Exact

2.4674 2.4674 2.4674 2.4674 2.4674
9.8754 9.8696 9.8696 9.8696 9.8696

22.2934 22.2074 22.2066 22.2066 22.2066
50.1246 39.4892 39.4784 39.4784 39.4784
87.7392 63.6045 61.6862 61.6850 61.6850

The first four columns show the variational energy levels for various
numbers of basis states N . The last column shows the exact values.
The exact levels are approached from above as in Figure 3.1.

Check Compare the results with the analytic solutions. These are given by

ψn(x) =
{

cos(knx) n odd
sin(knx) n even and positive

(3.19)

with kn = nπ/2, n = 1, 2, . . ., and the corresponding energies are given by

En = k2
n = n2π2

4
. (3.20)

For each eigenvector C, the function
∑N

p=1 Cpχp(x) should approximate an
eigenfunction (3.19). They can be compared by displaying both graphically.
Carry out the comparison for various numbers of basis states. The variational
levels are shown in Table 3.1, together with the analytical results.

3.2.2 Variational calculation for the hydrogen atom

As we shall see in the next two chapters, one of the main problems of electronic
structure calculations is the treatment of the electron–electron interactions. Here
we develop a program for solving the Schrödinger equation for an electron in a
hydrogen atom for which the many-electron problem does not arise, so that a direct
variational treatment of the problem is possible which can be compared with the
analytical solution [3, 4].

The program described here is the first in a series leading to a program for
calculating the electronic structure of the hydrogen molecule. The extension to the
H+

2 ion can be found in the next chapter in Problem 4.8 and a program for the
hydrogen molecule is considered in Problem 4.12.

The electronic Schrödinger equation for the hydrogen atom reads:[
− �

2

2m
∇2 − 1

4πε0

1

r

]
ψ(r) = Eψ(r) (3.21)

3.2 Examples of variational calculations 35

where the second term in the square brackets is the Coulomb attraction potential of
the nucleus. The mass m is the reduced mass of the proton–electron system which
is approximately equal to the electron mass. The ground state is found at energy

E = − m

�2

(
e2

4πε0

)2

≈ −13.6058 eV (3.22)

and the wave function is given by

ψ(r) = 2

a3/2
0

e−r/a0 (3.23)

in which a0 is the Bohr radius,

a0 = 4πε0�
2

me2
≈ 0.529 18 Å. (3.24)

In computer programming, it is convenient to use units such that equations take
on a simple form, involving only coefficients of order 1. Standard units in electronic
structure physics are so-called atomic units:the unit of distance is the Bohr radius
a0, masses are expressed in the electron mass me and the charge is measured in unit
charges (e). The energy is finally given in ‘hartrees’ (EH), given by mec2α2 (α is
the fine-structure constant and me is the electron mass) which is roughly equal to
27.212 eV. In these units, the Schrödinger equation for the hydrogen atom assumes
the following simple form:[

−1

2
∇2 − 1

r

]
ψ(r) = Eψ(r). (3.25)

We try to approximate the ground state energy and wave function of the hydrogen
atom in a linear variational procedure. We use Gaussian basis functions which will
be discussed extensively in the next chapter (Section 4.6.2). For the ground state,
we only need angular momentum l = 0 functions (s-functions), which have the
form:

χp(r) = e−αpr2
(3.26)

centred on the nucleus (which is thus placed at the origin). We have to specify the
values of the exponents α; these are kept fixed in our program. Optimal values for
these exponents have previously been found by solving the nonlinear variational
problem including the linear coefficients Cp and the exponents α [5]. We shall use
these values of the exponents in the program:

α1 = 13.007 73

α2 = 1.962 079

α3 = 0.444 529

α4 = 0.121 949 2.

(3.27)

36 The variational method for the Schrödinger equation

If the program works correctly, it should yield a value close to the exact ground
state energy −1/2 EH (which is equal to −13.6058 eV).

It remains to determine the linear coefficients Cp in a computer program which
solves the generalised eigenvalue problem, just as in Section 3.2.1:

HC = ESC. (3.28)

It is not so difficult to show that the elements of the overlap matrix S, the kinetic
energy matrix T and the Coulomb matrix A are given by:

Spq =
∫

d3r e−αpr2
e−αqr2 =

(
π

αp + αq

)3/2

;

Tpq = −1

2

∫
d3r e−αpr2∇2e−αqr2 = 3

αpαqπ
3/2

(αp + αq)5/2
; (3.29)

Apq = −
∫

d3r e−αpr2 1

r
e−αqr2 = − 2π

αp + αq
.

See also Section 4.8. Using these expressions, you can fill the overlap and the
Hamilton matrix. Since both matrices are symmetric, it is clear that only the upper
(or the lower) triangular part (including the diagonal) has to be calculated; the other
elements follow from the symmetry.

programming exercise

Write a program in which the relevant matrices are filled and which solves
the generalised eigenvalue problem for the variational calculation.

Check 1 Fortunately, we again have an exact answer for the ground state energy:
this should be equal to −0.5 hartree = 13.6058 eV, and, if your program contains
no errors, you should find −0.499 278 hartree, which is amazingly good if you
realise that only four functions have been taken into account.

Check 2 The solution of the eigenvalue problem not only yields the eigenvalues
(energies) but also the eigenvectors. Use these to draw the variational ground state
wave function and compare with the exact form (3.23). (See also Figure 4.3.)

*3.3 Solution of the generalised eigenvalue problem

It is possible to transform (3.13) into an ordinary eigenvalue equation by performing
a basis transformation which brings S to unit form. Suppose we have found a matrix
V which transforms S to the unit matrix:

V†SV = I. (3.30)

3.4 Perturbation theory and variational calculus 37

Then we can rewrite (3.13) as

V†HVV−1C = EV†SVV−1C (3.31)

and, defining
C′ = V−1C (3.32)

and
H′ = V†HV, (3.33)

we obtain
H′C′ = EC′. (3.34)

This is an ordinary eigenvalue problem which we can solve for C′ and E, and then
we can find the eigenvector C of the original problem as VC′.

The problem remains of finding a matrix V which brings S to unit form accord-
ing to (3.30). This matrix can be found if we have a unitary matrix U which
diagonalises S:

U†SU = s (3.35)

with s the diagonalised form of S. In fact, the matrix U is automatically gener-
ated when diagonalising S by a Givens–Householder QR procedure (see Appendix
A8.2). From the fact that S is an overlap matrix, defined by (3.12), it follows directly
that the eigenvalues of S are positive (see Problem 3.2). Therefore, it is possible
to define the inverse square root of s: it is the matrix containing the inverse of
the square root of the eigenvalues of S on the diagonal. Choosing the matrix V as
Us−1/2, we obtain

V†SV = s−1/2U†SUs−1/2 = I (3.36)

so the matrix V indeed has the desired property.

*3.4 Perturbation theory and variational calculus

In 1951, Löwdin [6] devised a method in which, in addition to a standard basis set
A, a number of extra basis states (B) is taken into account in a perturbative manner,
thus allowing for huge basis sets to be used without excessive demands on computer
time and memory. The size of the matrix to be diagonalised in this method is equal
to the number of basis states in the restricted set A; the remaining states are taken
into account in constructing this matrix. A disadvantage is that the latter depends
on the energy (which is obviously not known at the beginning), but, as we shall see,
this does not prevent the method from being useful in many cases.

We start with an orthonormal basis, which could be a set of plane waves. The
basis is partitioned into the two sets A and B, and for the plane wave example, A
will contain the slowly varying waves and B those with shorter wavelength. We

38 The variational method for the Schrödinger equation

shall use the following notation: n and m label the states in A, α and β label the
states in B, and p and q label the states in both sets. Furthermore we define

H ′
pq = Hpq(1 − δpq), (3.37)

that is, H ′ is H with the diagonal elements set to 0. Now we can write Eq. (3.11) as

(E − Hpp)Cp =
∑
nεA

H ′
pnCn +

∑
αεB

H ′
pαCα . (3.38)

If we define
h′

pn = H ′
pn/(E − Hpp), (3.39)

and similarly for h′
pα , then we can write Eq. (3.38) as

Cp =
∑
nεA

h′
pnCn +

∑
αεB

h′
pαCα . (3.40)

Using this expression to rewrite Cα in the second term of the right hand side, we
obtain

Cp =
∑
nεA

h′
pnCn +

∑
αεB

h′
pα


∑

nεA

h′
αnCn +

∑
βεB

h′
αβCβ




=
∑
nεA

(
h′

pn +
∑
αεB

h′
pαh′

αn

)
Cn +

∑
αεB

∑
βεB

h′
pαh′

αβCβ . (3.41)

After using (3.40) again to re-express Cβ and repeating this procedure over and
over, we arrive at

Cp =
∑
nεA

(
h′

pn +
∑
αεB

h′
pαh′

αn +
∑
α,βεB

h′
pαh′

αβh′
βn + · · ·

)
Cn. (3.42)

We now introduce the following notation:

UA
pn = Hpn +

∑
αεB

H ′
pαH ′

αn

E − Hαα
+
∑
αβεB

H ′
pαH ′

αβH ′
βn

(E − Hαα)(E − Hββ)
+ · · · (3.43)

Then (3.42) transforms into

Cp =
∑
nεA

UA
pn − Hpnδpn

E − Hpp
Cn. (3.44)

Choosing p in A (and calling it m), (3.44) becomes

(E − Hmm)Cm =
∑
nεA

UA
mnCn − HmmCm, (3.45)

Exercises 39

so
UC = EC. (3.46)

This equation is similar to (3.11), except that H is replaced by U. Notice that
U depends on the energy which remains to be calculated, which makes Eq. (3.46)
rather difficult to solve. In practice, a fixed value for E is chosen somewhere in the
region for which we want accurate results. For electrons in a solid, this might be
the region around the Fermi energy, since the states with these energies determine
many physical properties.

The convergence of the expansion for U, Eq. (3.44), depends on the matrix
elements h′

pα and h′
αβ , which should be small. Cutting off after the first term yields

UA
mn = Hmn +

∑
αεB

H ′
mαH ′

αn

E − Hαα
. (3.47)

Löwdin perturbation theory is used mostly in this form.
It is not a priori clear that the elements h′

pα and h′
αβ are small. However, keeping

in mind a plane wave basis set, if we have a potential that varies substantially slower
than the states in set B, these numbers will indeed be small as the H ′

pn are small, so
in that case the method will improve the efficiency of the diagonalisation process.
The Löwdin method is frequently used in pseudopotential methods for electrons in
solids which will be discussed in Chapter 6.

Exercises

3.1 MacDonald’s theorem states that, in linear variational calculus, not only the
variational ground state but also the higher variational eigenvectors have eigenvalues
that are higher than the corresponding eigenvalues of the full problem.

Consider an Hermitian operator H and its variational matrix representation H
defined by

Hpq = 〈χp|H|χq〉.
χp are the basis vectors of the linear variational calculus. They form a finite set.

We shall denote the eigenvectors of H by φk and the corresponding eigenvalues by
λk ;
k are the eigenvectors of H with eigenvalues �k . They are all ordered, i.e. φ0

corresponds to the lowest eigenvalue and so on, and similarly for the
k .

(a) Write
0 as an expansion in the complete set φk in order to show that

〈
0|H|
0〉
〈
0|
0〉 = �0 ≥ λ0.

(b) Suppose
′
1 is a vector perpendicular to φ0. Show that

〈
′
1|H|
′

1〉
〈
′

1|
′
1〉

≥ λ1.

40 The variational method for the Schrödinger equation

(Note that, in general, the lowest-but-one variational eigenstate
1 is not
perpendicular to φ0 so this result does not guarantee �1 ≥ λ1.)

(c) Consider a vector
′
1 = α
0 + β
1 which is perpendicular to φ0. From (b) it is

clear that 〈
′
1|H|
′

1〉/〈
′
1|
′

1〉 ≥ λ1. Show that

〈
′
1|H|
′

1〉
〈
′

1|
′
1〉

= |α|2�0 + |β|2�1

|α|2 + |β|2
and that from this it follows that �1 ≥ λ1. This result can be generalised for
higher states.

3.2 The overlap matrix S is defined as

Spq = 〈χp|χq〉.
Consider a vector ψ that can be expanded in the basis χp as:

ψ =
∑

p

Cpχp.

(a) Suppose ψ is normalised. Show that C then satisfies:∑
pq

C∗
p SpqCq = 1.

(b) Show that the eigenvalues of S are positive.

3.3 [C] In this problem, it is assumed that a routine for diagonalising a real, symmetric
matrix is available.

(a) [C] Using a library routine for diagonalising a real, symmetric matrix, write a
routine which, given the overlap matrix S, generates a matrix V which brings S
to unit form:

V†SV = I.

(b) [C] Write a routine which uses the matrix V to produce the solutions
(eigenvectors and eigenvalues) to the generalised eigenvalue problem:

HC = ESC.

The resulting routines can be used in the programs of Sections 3.2.1 and 3.2.2.

3.4 [C] The potential for a finite well is given by

V(x) =
{

0 for |x| > |a|
−V0 for |x| ≤ |a|

In this problem, we determine the bound solutions to the Schrödinger equation using
plane waves on the interval (−L, +L) as basis functions:

ψn(x) = 1/
√

2L eiknx

with
kn = ±nπ

L
, n = 0, 1, . . .

References 41

It is important to note that, apart from the approximation involved in having a finite
basis set, there is another one connected with the periodicity imposed by the specific
form of the basis functions on the finite interval (−L, L). In this problem, we use units
such that the factor �

2/2m assumes the value 1.

(a) Show that the relevant matrix elements are given by

Smn = δmn

〈ψn|p2|ψm〉 = −k2
nδnm and

〈ψn|V |ψm〉 = −V0

L

sin(km − kn)a

km − kn
for n �= m

〈ψn|V |ψn〉 = −V0

L
a

The stationary states in an even potential (i.e. V(x) = V(−x)) have either
positive or negative parity [3]. From this it follows that if we use a basis
1/

√
L cos knx (and 1/

√
2L for n = 0), we shall find the even stationary states, and

if we take the basis functions 1/
√

L sin knx, only the odd states. It is of course less
time-consuming to diagonalise two N × N matrices than a single 2N × 2N ,
knowing that matrix diagonalisation scales with N3.

(b) Show that the matrix elements with the cosine basis read

Smn = δmn

〈ψn|p2|ψm〉 = −k2
nδnm and

〈ψn|V |ψm〉 = −V0

L

[
sin(km − kn)a

km − kn
+ sin(km + kn)a

km + kn

]

for n �= m

〈ψn|V |ψn〉 = −V0

L

[
a + sin(2kna)

2kn

]
for n �= 0

〈ψ0|V |ψ0〉 = −V0

L
a for n = 0

In the sine-basis, the last terms in the third and fourth expressions occur with a
minus sign.

(c) [C] Write a computer program for determining the spectrum. Compare the results
with those of the direct calculation (which, for V0 = 1 and a = 1, yields a ground
state energy E ≈ −0.4538).

As you will note, for many values of A, V0, L and N , the variational ground state
energy lies below the exact ground state energy number. Explain why this happens.

References

[1] L.-W. Wang and A. Zunger, ‘Electronic-structure pseudopotential calculations of large
(approximate-to-1000 atoms) Si quantum dots,’ J. Phys. Chem., 98 (1994), 2158–65.

42 The variational method for the Schrödinger equation

[2] J. M. Thijssen and J. E. Inglesfield, ‘Embedding muffin tins into a finite difference grid,’ Europhys.
Lett., 27 (1994), 65–70.

[3] A. Messiah, Quantum Mechanics, vols. 1 and 2. Amsterdam, North-Holland, 1961.
[4] S. Gasiorowicz, Quantum Physics. New York, John Wiley, 1974.
[5] R. Ditchfield, W. J. Hehre, and J. A. Pople, ‘Self-consistent molecular orbital methods. VI. Energy

optimised Gaussian atomic orbitals,’ J. Chem. Phys., 52 (1970), 5001–7.
[6] P.-O. Löwdin, ‘A note on the quantum mechanical perturbation theory,’ J. Chem. Phys., 19 (1951),

1396–401.

4

The Hartree–Fock method

4.1 Introduction

Here and in the following chapter we treat two different approaches to the many-
electron problem: the Hartree–Fock theory and the density functional theory. Both
theories are simplifications of the full problem of many electrons moving in a poten-
tial field. In fact, the physical systems we want to study, such as atoms, molecules
and solids, consist not only of electrons but also of nuclei, and each of these particles
moves in the field generated by the others. A first approximation is to consider the
nuclei as being fixed, and to solve the Schrödinger equation for the electronic sys-
tem in the field of the static nuclei. This approach, called the Born–Oppenheimer
approximation, is justified by the nuclei being much heavier than the electrons so
that they move at much slower speeds. It remains then to solve for the electronic
structure.

The Hartree–Fock methodcan be viewed as a variational method in which the
wave functions of the many-electron system have the form of an antisymmetri-
sed product of one-electron wave functions (the antisymmetrisation is necessary
because of the fermion character of the electrons). This restriction leads to an effect-
ive Schrödinger equation for the individual one-electron wave functions (called
orbitals) with a potential determined by the orbitals occupied by the other elec-
trons. This coupling between the orbitals via the potentials causes the resulting
equations to become nonlinear in the orbitals, and the solution must be found iter-
atively in a self-consistency procedure. The Hartree–Fock (HF)procedure is close
in spirit to the mean-field aproach in statistical mechanics.

We shall see that in this variational approach, correlations between the electrons
are neglected to some extent. In particular, the Coulomb repulsion between the
electrons is represented in an averaged way. However, the effective interaction
caused by the fact that the electrons are fermions, obeying Pauli’s principle, and
hence avoid each other if they have the same spin, is accurately included in the HF

43

44 The Hartree–Fock method

approach. There exist several methods that improve on the approximations made
in the HF method.

The Hartree–Fock approach is very popular among chemists, and it has also
been applied to solids. In this chapter, we give an introduction to the Hartree–
Fock method and apply it to simple two-electron systems: the helium atom and the
hydrogen molecule. We describe the Born–Oppenheimer approach and independent
particle approaches (of which HF is an example) in a bit more detail in the next
section. In Section 4.3 we then derive the Hartree method for a two-electron system
(the helium atom). In Section 4.3.2, a program for calculating the ground state of
the helium atom is described.

In Sections 4.4 and 4.5 the HF method for systems containing more than two
electrons is described in detail, and in Section 4.6 the basis functions used for
molecular systems are described. In sections 4.7 and 4.8 some details concerning
the implementation of the HF method are considered. In Section 4.9, results of the
HF method are presented, and in Section 4.10 the configuration interaction (CI)
method, which improves on the HF method is described.

4.2 The Born–Oppenheimer approximation and the independent-particle
method

The Hamiltonian of a system consisting of N electrons and K nuclei with charges
Zn reads

H =
N∑

i=1

p2
i

2m
+

K∑
n=1

P2
n

2Mn
+ 1

4πε0

1

2

N∑
i,j=1;i �=j

e2

|ri − rj|

− 1

4πε0

K∑
n=1

N∑
i=1

Zne2

|ri − Rn| + 1

4πε0

1

2

K∑
n,n′=1;n �=n′

ZnZn′e2

|Rn − Rn′ | . (4.1)

The index i refers to the electrons and n to the nuclei, m is the electron mass,
and Mn are the masses of the different nuclei. The first two terms represent the
kinetic energies of the electrons and nuclei respectively; the third term represents
the Coulomb repulsion between the electrons and the fourth term the Coulomb
attraction between electrons and nuclei. Finally, the last term contains the Coulomb
repulsion between the nuclei. The wave function of this system depends on the
positions ri and Rn of the electrons and nuclei respectively. This Hamiltonian looks
quite complicated, and in fact it turns out that if the number of electrons and nuclei
is not extremely small (typically smaller than four), it is impossible to solve the
stationary Schrödinger equation for this Hamiltonian directly on even the largest
and fastest computer available.

4.2 The Born–Oppenheimer approximation and the IP method 45

Therefore, important approximations must be made, and a first step consists of
separating the degrees of freedom connected with the motion of the nuclei from
those of the electrons. This procedure is known as the Born–Oppenheimer approx-
imation [1] and its justification resides in the fact that the nuclei are much heavier
than the electrons (the mass of a proton or neutron is about 1835 times as large as the
electron mass) so it is intuitively clear that the nuclei move much more slowly than
the electrons. The latter will then be able to adapt themselves to the current config-
uration of nuclei. This approach results also from formal calculations (see Problem
4.9), and leads to a Hamiltonian for the electrons in the field generated by a static
configuration of nuclei, and a separate Schrödinger equation for the nuclei in which
the electronic energy enters as a potential. The Born–Oppenheimer Hamiltonian
for the electrons reads

HBO =
N∑

i=1

p2
i

2m
+ 1

2

1

4πε0

N∑
i,j=1;i �=j

e2

|ri − rj| − 1

4πε0

K∑
n=1

N∑
i=1

Zne2

|ri − Rn| . (4.2)

The total energy is the sum of the energy of the electrons and the energy resulting
from the Schrödinger equation satisfied by the nuclei. In a further approximation,
the motion of the nuclei is neglected and only the electrostatic energy of the nuclei
should be added to the energy of the electrons to arrive at the total energy. The pos-
itions of the nuclei can be varied in order to find the minimum of this energy, that
is, the ground state of the whole system (within the Born–Oppenheimer approx-
imation with static nuclei). In this procedure, the nuclei are treated on a classical
footing since their ground state is determined as the minimum of their potential
energy, neglecting quantum fluctuations.1

Even with the positions of the nuclei kept fixed, the problem of solving for the
electronic wave functions using the Hamiltonian (4.2) remains intractable, even on
a computer, since too many degrees of freedom are involved. It is the second term
containing the interactions between the electrons that makes the problem so difficult.
If this term were not present, we would be dealing with a sum of one-electron
Hamiltonians which can be solved relatively easily. There exist several ways of
approximating the eigenfunctions of the Hamiltonian (4.2). In these approaches, the
many-electron problem is reduced to an uncoupled problem in which the interaction
of one electron with the remaining ones is incorporated in an averaged way into a
potential felt by the electron.

1 Vibrational modes of the nuclei can, however, be treated after expanding the total energy in deviations of
the nuclear degrees of freedom from the ground state configuration. A transformation to normal modes then
gives us a system consisting of independent harmonic oscillators.

46 The Hartree–Fock method

The resulting uncoupled or independent-particle (IP) Hamiltonian has the form

HIP =
N∑

i=1

[
p2

i

2m
+ V(ri)

]
. (4.3)

V(r) is a potential depending on the positions Ri of the nuclei. As we shall see, its
form can be quite complicated; in particular, V depends on the wave function ψ on
which the IP Hamiltonian is acting. Moreover, V is often a nonlocal operator which
means that the value of Vψ , evaluated at position r, is determined by the values ofψ
at other positions r′ �= r, and V depends on the energy in some approaches. These
complications are the price we have to pay for an independent electron picture.

In the remaining sections of this chapter we shall study the Hartree–Fock approx-
imation and in the next chapter we shall discuss the density functional theory. We
start by considering the the helium atom to illustrate the general techniques which
will be developed in later sections.

4.3 The helium atom

4.3.1 Self-consistency

In this section, we find an approximate independent-particle Hamiltonian (4.3) for
the helium atom within the Born–Oppenheimer approximation by restricting the
electronic wave function to a simple form. The coordinates of the wave function
are x1 and x2, which are combined position and spin coordinates: xi = (ri, si).
As electrons are fermions, the wave function must be antisymmetric in the two
coordinates x1 and x2 (more details concerning antisymmetry and fermions will be
given in Section 4.4). We use the following antisymmetric trial wave function for
the ground state:

�(r1, s1; r2, s2) = φ(r1)φ(r2)
1√
2
[α(s1)β(s2)− α(s2)β(s1)], (4.4)

where α(s) denotes the spin-up and β(s) the spin-down wave function and φ is an
orbital – a function depending on a single spatial coordinate – which is shared by
the two electrons.

The Born–Oppenheimer Hamiltonian (4.2) for the helium atom reads

HBO = −1

2
∇2

1 − 1

2
∇2

2 + 1

|r1 − r2| − 2

r1
− 2

r2
, (4.5)

where we have used atomic units introduced in Section 3.2.2. We now let this
Hamiltonian act on the wave function (4.4). Since the Hamiltonian does not act on
the spin, the spin-dependent part drops out on the left and right hand side of the

4.3 The helium atom 47

Schrödinger equation and we are left with:2[
−1

2
∇1

2 − 1

2
∇2

2 − 2

r1
− 2

r2
+ 1

|r1 − r2|
]
φ(r1)φ(r2) = Eφ(r1)φ(r2). (4.6)

In order to arrive at a simpler equation we remove the r2-dependence by multiplying
both sides from the left by φ∗(r2) and by integrating over r2. We then arrive at[

−1

2
∇1

2 − 2

r1
+
∫

d3r2 |φ(r2)|2 1

|r1 − r2|
]
φ(r1) = E′φ(r1), (4.7)

where several integrals yielding a constant (i.e. not dependent on r1) are absorbed
in E′. The third term on the left hand side is recognised as the Coulomb energy
of particle 1 in the electric field generated by the charge density of particle 2. To
obtain this equation we have used the fact that φ is normalised to unity and this
normalisation is from now on implicitly assumed for φ as occurring in the integral
on the left hand side of (4.7). The effective Hamiltonian acting on the orbital of
particle 1 has the independent particle form of Eq. (4.3). A remarkable feature is
the dependence of the potential on the wave function we are searching for.

Equation (4.7) has the form of a self-consistency problem: φ is the solution to the
Schrödinger equation but the latter is determined by φ itself. To solve an equation
of this type, one starts with some trial ground state solution φ(0) which is used in
constructing the potential. Solving the Schrödinger equation with this potential,
we obtain a new ground state φ(1) which is used in turn to build a new potential.
This procedure is repeated until the ground state φ(i) and the corresponding energy
E(i) of the Schrödinger equation at step i do not deviate appreciably from those in
the previous step (if convergence does not occur, we must use some tricks to be
discussed in Section 4.7).

The wave function we have used is called uncorrelated because of the fact that
the probability P(r1, r2) for finding an electron at r1 and another one at r2 is
uncorrelated, i.e. it can be written as a product of two one-electron probabilities:

P(r1, r2) = p(r1)p(r2). (4.8)

This does not mean that the electrons do not feel each other: in the determination of
the spatial function φ, the interaction term 1/|r1 − r2| has been taken into account.
But this interaction has been taken into account in an averaged way: it is not the
actual position of r2 that determines the wave function for electron 1, but the
average charge distribution of electron 2. This approach bears much relation to
the mean field theory approach in statistical mechanics.

2 This equation cannot be satisfied exactly with the form of trial function chosen, as the left hand side
depends on r1 − r2 whereas the right hand side does not. We are, however, after the optimal wave function
within the set of functions of the form (4.4) in a variational sense, along the lines of the previous chapter, but we
want to avoid the complications of carrying out the variational procedure formally. This will be done in
Section 4.5.2 for arbitrary numbers of electrons.

48 The Hartree–Fock method

The neglect of correlations sometimes leads to unphysical results. An example is
found in the dissociation of the hydrogen molecule. Suppose the nuclei are placed
at positions RA and RB and we approximate the one-electron orbitals by spherically
symmetric (1s) basis orbitals centred on the two nuclei: u(r − RA) and u(r − RB).
Because of the symmetry of the hydrogen molecule, the ground state orbital solution
of the independent particle Hamiltonian is given by the symmetric combination of
these two basis orbitals:

φ(r) = u(r − RA)+ u(r − RB). (4.9)

The total wave function, which contains the product φ(r1)φ(r2) therefore contains
ionic terms in which both electrons sit on the same nucleus. This is not so disastrous
if the two nuclei are close, but if we separate them, these terms should not be
present: they contain the wrong physics and they result in a serious over-estimation
of the energy. Physically, this is caused by the fact that electron 1 in our present
approximation feels the potential resulting from the average charge distribution of
electron 2, which is symmetrically distributed over the two nuclei, and thus it ends
up on A or B with equal probability. If electron 1 was to feel the actual potential
caused by electron 2, it would end up on a different nucleus from electron 2. A
better description of the state would therefore be

ψ(r1; r2) = 1
2 [u(r1 − RA)u(r2 − RB)+ u(r2 − RA)u(r1 − RB)], (4.10)

which must then be multiplied by an antisymmetric spin wave function. This wave
function is however not of the form (4.4).

The fact that the spatial part of the wave function is equal for the two electrons
is specific for the case of two electrons: the antisymmetry is taken care of by the
spin part of the wave function. If there are more than two electrons, the situation
becomes more complicated and requires much more bookkeeping; this case will be
treated in Section 4.5. Neglecting the antisymmetry requirement, one can, however,
generalise the results obtained for two electrons to systems with more electrons.
Writing the wave function as a product of spin-orbitalsψk(x) (spin-orbitals are func-
tions depending on the spatial and spin coordinates of one electron), the following
equation for these spin-orbitals is obtained:[

−1

2
∇2 −

∑
n

Zn

|r − Rn| +
N∑

l=1

∫
dx′|ψl(x′)|2 1

|r − r′|

]
ψk(x) = E′ψk(x).

(4.11)
Here k and l label the spin-orbitals;

∫
dx′ denotes a sum over the spin s′ and an

integral over the spatial coordinate r′:
∫

dx′ = ∑
s′
∫

d3r′. As the Hamiltonian
does not act on the spin-dependent part of the spin-orbitals, ψk can be written as a
product of a spatial orbital with a one-electron spin wave function. In the last term

4.3 The helium atom 49

on the left hand side we recognise the potential resulting from a charge distribution
caused by all the electrons; it is called the Hartree potential. There is something
unphysical about this term: it contains a coupling between orbital k and itself, since
this orbital is included in the electron density, even though an electron clearly does
not interact with itself. This can be remedied by excluding k from the sum over
l in the Hartree term, but then every orbital feels a different potential. In the next
subsection, we shall see that this problem is automatically solved in the Hartree–
Fock theory which takes the antisymmetry of the many-electron wave function
fully into account. Note that in our discussion of the helium case, we have already
taken the self-interaction into account because the electron–electron interaction
is half the size of that in (4.11) (after summation over the spin in this equation).
Equation (4.11) was derived in 1927 by Hartree [2]; it neglects exchange as well
as other correlations.

Before studying the problem of more electrons with an antisymmetric wave func-
tion, we shall now describe the construction of a program for actually calculating
the solution of Eq. (4.7).

4.3.2 A program for calculating the helium ground state

In this section we construct a program for calculating the ground state energy and
wave function for the helium atom. In the previous section we have restricted the
form of the wave function to be uncorrelated; here we restrict it even further by
writing it as a linear combination of four fixed, real basis functions in the same
way as in Section 3.2.2. Let us first consider the form assumed by the Schrödinger
equation for the independent particle formulation, Eq. (4.7). The parametrisation

φ(r) =
4∑

p=1

Cpχp(r) (4.12)

leads directly to
−1

2
∇2

1 − 2

r1
+

4∑
r,s=1

CrCs

∫
d3r2 χr(r2)χs(r2)

1

|r1 − r2|


 4∑

q=1

Cqχq(r1)

= E′
4∑

q=1

Cqχq(r1). (4.13)

Note that the Cp are real as the functions χp(r) are real. From now on we implicitly
assume sums over indices p, q, … to run from 1 to the number of basis functions N ,
which is 4 in our case. Multiplying Eq. (4.13) from the left byχp(r1) and integrating

50 The Hartree–Fock method

over r1 leads to ∑
pq

(
hpq +

∑
rs

CrCsQprqs

)
Cq = E′∑

pq

SpqCq (4.14)

with

hpq =
〈
χp

∣∣∣∣−1

2
∇2 − 2

r

∣∣∣∣χq

〉
; (4.15a)

Qprqs =
∫

d3r1d3r2χp(r1)χr(r2)
1

|r1 − r2|χq(r1)χs(r2) and (4.15b)

Spq = 〈χp|χq〉. (4.15c)

Unfortunately, (4.14) is not a generalised eigenvalue equation because of the pres-
ence of the variables Cr and Cs between the brackets on the left hand side. However,
if we carry out the self-consistency iteration process as indicated in the previous
section, the Cr and Cs are kept fixed, and finding the Cq in (4.14) reduces to solving
a generalised eigenvalue equation. We then replace Cr , Cs by the solution found
and start the same procedure again.

The matrix elements from (4.15) remain to be found. We shall use Gaussian
l = 0 basis functions (s-functions), just as in the case of the hydrogen atom (see
Section 3.2.2). Of course, the optimal exponents αp occurring in the Gaussian
s-basis functions χp,

χp(r) = e−αpr2
, (4.16)

are different from those of the hydrogen atom. Again, rather than solve the non-
linear variational problem, which involves not only the prefactors Cp but also the
exponents αp as parameters of the wave function, we shall take the optimal values
calculated from a different program which we do not go into here. They are

α1 = 0.298 073

α2 = 1.242 567

α2 = 5.782 948,

α4 = 38.474 970.

The matrix elements of the kinetic and the Coulomb energy are similar to those
calculated for the hydrogen atom (see Eq. (3.29)), except for an extra factor of 2 in
the nuclear attraction (due to the nuclear charge). In Section 4.8, the matrix element
Qprqs will be calculated; the result is given by

Qprqs = 2π5/2

(αp + αq)(αr + αs)
√
αp + αq + αr + αs

. (4.17)

4.3 The helium atom 51

The program is constructed as follows.

• First, the 4 × 4 matrices hpq, Spq and the 4 × 4 × 4 × 4 array Qprqs are calculated.
• Then initial values for Cp are chosen; they can, for example, all be taken to be

equal (of course, you are free to choose other initial values – for this simple
system most initial values will converge to the correct answer).

• These C-values are used for constructing the matrix Fpq given by

Fpq = hpq +
∑

rs

QprqsCrCs. (4.18)

It should be kept in mind that the vector C should always be normalised to unity
via the overlap matrix before inserting it into Eq. (4.18):

4∑
p,q=1

CpSpqCq = 1 (4.19)

(see Problem 3.2).
• Now the generalised eigenvalue problem

FC = E′SC (4.20)

is solved. For the ground state, the vector C is the one corresponding to the
lowest eigenvalue.

• The energy for the state found is not simply given by E′ as follows from the
derivation of the self-consistent Schrödinger equation, Eq. (4.7). The ground
state energy can be found by evaluating the expectation value of the
Hamiltonian for the ground state just obtained:

EG = 2
∑
pq

CpCqhpq +
∑
pqrs

QprqsCpCqCrCs, (4.21)

where the (normalised) eigenvector C results from the last diagonalisation of F.
• The solution C of the generalised eigenvalue problem (4.20) is then used to

build the matrix F again and so on.

programming exercise

Write a program for calculating the ground state wave function of the helium
atom.

Check 1 If your program is correct, the resulting ground state energy should
be equal to −2.855 160 38 a.u. (remember that the atomic energy unit is the
Hartree, see Section 3.2.2). The effect of using a small basis set can be judged
by comparing with the value −2.8616 a.u. resulting from calculations using con-
tinuum integration techniques within the framework of the present calculation as
described in Chapter 5. The effect of neglecting correlations in our approach res-
ults in the deviation from the exact value −2.903 a.u. (very accurate calculations
can be performed for systems containing small numbers of electrons [3]).

52 The Hartree–Fock method

4.4 Many-electron systems and the Slater determinant

In the helium problem, we could make use of the fact that in the ground state the
required antisymmetry is taken care of by the spin part of the wave function, which
drops out of the Schrödinger equation. If it is not the ground state we are after, or if
more than two electrons are involved, antisymmetry requirements affect the orbital
part of the wave function, and in the next two sections we shall consider a more
general approach to an independent electron Hamiltonian, taking this antisymmetry
into account. In the present section we consider a particular class of antisymmetric
many-electron wave functions and in the next section we shall derive the equations
obeyed by them.

When considering a many-electron problem, it must be remembered that elec-
trons are identical particles. This is reflected in the form of the Hamiltonian: for
example in (4.2), interchanging electrons i and j does not change the Hamiltonian
and the same holds for the independent particle Hamiltonian (4.3). We say that the
Hamiltonian commutes with the particle-exchange operator, Pij. This operator acts
on a many-electron state and it has the effect of interchanging the coordinates of
particles i and j. For an N-particle state3 �

Pij�(x1, x2, . . . , xi, . . . , xj, . . . , xN) = �(x1, x2, . . . , xj, . . . , xi, . . . , xN). (4.22)

In this equation, xi is again the combined spin and orbital coordinate:

xi = (ri, si). (4.23)

As Pij is an Hermitian operator which commutes with the Hamiltonian, the eigen-
states of the Hamiltonian are simultaneous eigenstates of Pij with real eigenvalues.
Furthermore, as P2

ij = 1 (interchanging a pair twice in a state brings the state back
to its original form), its eigenvalue is either +1 or −1. It is an experimental fact
that for particles with half-integer spin (fermions) the eigenvalue of the permutation
operator is always −1, and for particles with integer spin (bosons) it is always +1. In
the first case, the wave function is antisymmetric with respect to particle exchange
and in the second case it is symmetric with respect to this operation. As electrons
have spin-1/2, the wave function of a many-electron system is antisymmetric with
respect to particle exchange.

Let us forget about antisymmetry for a moment. For the case of an independent-
particle Hamiltonian, which is a sum of one-electron Hamiltonians as in (4.3), we
can write the solution of the Schrödinger equation as a product of one-electron

3 In order to clarify the role of the coordinate si, we note that for a single electron the wave function can be
written as a two-spinor, that is, a two-dimensional vector, and s, which is a two-valued coordinate, selects one
component of this spinor. When dealing with more particles (N), the two-spinors combine into a 2N -dimensional
one and the combined coordinates s1, . . . , sN select a component of this large spinor (which depends on the
positions ri).

4.4 Many-electron systems and the Slater determinant 53

states:
�(x1, . . . , xN) = ψ1(x1) · · ·ψN (xN). (4.24)

The one-electron states ψk are eigenstates of the one-particle Hamiltonian, so they
are orthogonal. The probability density for finding the particles with specific values
x1, . . . , xN of their coordinates is given by

ρ(x1, x2, . . . , xN) = |ψ1(x1)|2|ψ2(x2)|2 · · · |ψN (xN)|2, (4.25)

which is just the product of the one-electron probability densities. Such a probability
distribution is called uncorrelated, and therefore we will use the term ‘uncorrelated’
for the wave function in (4.24) too.

Of course, the same state as (4.24) but with the spin-orbitals permuted, is a
solution too, as are linear combinations of several such states. But we require
antisymmetric states, and an antisymmetric linear combination of a minimal number
of terms of the form (4.24) is given by

�AS(x1, . . . , xN) = 1√
N !
∑

P

εPPψ1(x1) · · ·ψN (xN). (4.26)

P is a permutation operator which permutes the coordinates of the spin-orbitals
only, and not their labels (if P acted on the latter too, it would have no effect at
all!); alternatively, one could have P acting on the labels only, the choice is merely
a matter of convention. The above-mentioned exchange operator is an example of
this type of operator. In (4.26), all permutations are summed over and the states
are multiplied by the sign εP of the permutation (the sign is +1 or −1 according to
whether the permutation can be written as product of an even or an odd number of
pair interchanges respectively).

We can write (4.26) in the form of a Slater determinant:

�AS(x1, . . . , xN) = 1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
...

ψ1(xN) ψ2(xN) · · · ψN (xN)

∣∣∣∣∣∣∣∣∣
. (4.27)

It is important to note that after this antisymmetrisation procedure the electrons are
correlated. To see this, consider the probability density of finding one electron with
coordinates x1 and another with x2:

ρ(x1, x2) =
∫

dx3 · · · dxN |�AS(x1, . . . , xN)|2

= 1

N(N − 1)

∑
k,l

[|ψk(x1)|2|ψl(x2)|2 − ψ∗
k (x1)ψk(x2)ψ

∗
l (x2)ψl(x1)].

(4.28)

54 The Hartree–Fock method

To find the probability of finding two electrons at positions r1 and r2,we must sum
over the spin variables:

ρ(r1, r2) =
∑
s1,s2

ρ(x1, x2). (4.29)

For spin-orbitals that can be written as a product of a spatial orbital and a one-particle
spin wave function, it is seen that for ψk and ψl having opposite spin, the second
term vanishes and therefore opposite spin-orbitals are still uncorrelated (the first
term of (4.28) obviously describes uncorrelated probabilities) but for equal spins,
the two terms cancel when r1 = r2, so we see that electron pairs with parallel spin
are kept apart. Every electron is surrounded by an ‘exchange hole’ [4] in which
other electrons having the same spin are hardly found. Comparing (4.28) with
the uncorrelated form (4.25), we see that exchange introduces correlation effects.
However, the term ‘correlation effects’ is usually reserved for all correlations apart
from exchange.

It is possible to construct Slater determinants from general spin-orbitals, i.e. not
necessarily eigenstates of the one-electron Hamiltonian. It is even possible to take
these spin-orbitals to be nonorthogonal. However, if there is overlap between two
such spin-orbitals, this drops out in constructing the Slater determinant. Therefore
we shall take the spin-orbitals from which the Slater determinant is constructed to
be orthonormal.

Single Slater determinants form a basis in the space of all antisymmetric wave
functions. In Section 4.10, we shall describe a method in which this fact is used to
take correlations into account.

4.5 Self-consistency and exchange: Hartree–Fock theory

4.5.1 The Hartree–Fock equations – physical picture

Fock extended the Hartree equation (4.11) by taking antisymmetry into account. We
first give the result which is known as the Hartree–Fock equation; the full derivation
is given in Section 4.5.2 [5, 6]:

Fψk = εkψk with (4.30)

Fψk =
[
−1

2
∇2 −

∑
n

Zn

|r − Rn|

]
ψk(x)+

N∑
l=1

∫
dx′|ψl(x′)|2 1

|r − r′|ψk(x)

−
N∑

l=1

∫
dx′ψ∗

l (x
′) 1

|r − r′|ψk(x′)ψl(x). (4.31)

The operator F is called the Fock operator. The first three terms on the right hand
side are the same as in those appearing in the Hartree equation. The fourth term is

4.5 Self-consistency and exchange: Hartree–Fock theory 55

.

.

.. .
.
...

.

..

(a) (b) (c)

Figure 4.1. The Hartree–Fock spectrum. The figure shows how the levels are filled
for (a) the ground state of an even number of electrons, (b) the ground state of an
odd number of electrons and (c) an excited state in the spectrum of (a). Note that
the spectrum in (c) does not correspond to the ground state; see Section 4.5.3.
Instead it corresponds to the restricted approximation, in which the same set of
energy levels is available for electrons with both spins.

the same as the third, with two spin-orbital labels k and l interchanged and a minus
sign in front resulting from the antisymmetry of the wave function – it is called the
exchange term. Note that this term is nonlocal: it is an operator acting on ψk , but
its value at r is determined by the value assumed by ψk at all possible positions r′.

A subtlety is that the eigenvalues εk of the Fock operator are not the energies of
single electron orbitals, although they are related to the total energy by

E = 1

2

∑
k

[εk + 〈ψk|h|ψk〉]. (4.32)

In Section 4.5.3 we shall see that the individual levels εk can be related to excitation
energies within some approximation.

It is clear that (4.31) is a nonlinear equation, which must be solved by a self-
consistency iterative procedure analogously to the previous section. Sometimes the
name ‘self-consistent field theory’ (SCF) is used for this type of approach. The self-
consistency procedure is carried out as follows. Solving (4.31) yields an infinite
spectrum. To find the ground state, we must take the lowest N eigenstates of this
spectrum as the spin-orbitals of the electrons. These are the ψl which are then used
to build the new Fock operator which is diagonalised again and the procedure is
repeated over and over until convergence is achieved. Figure 4.1(a) and (b) gives a
schematic representation of the Hartree–Fock spectrum and shows how the levels

56 The Hartree–Fock method

are filled. Of course, it is not clear a priori that the lowest energy of the system is
found by filling the lowest states of the Fock spectrum because the energy is not
simply a sum over the Fock eigenvalues. However, in practical applications this
turns out to be the case.

The Hartree–Fock theory is the cornerstone of electronic structure calculations
for atoms and molecules. There exists a method, configuration interaction, which
provides a systematic way of improving upon Hartree–Fock theory; it will be
described briefly in Section 4.10. In solid state physics, density functional theory
is used mostly instead of Hartree–Fock theory (see Chapter 5).

The exchange term in (4.31) is a direct consequence of the particle exchange-
antisymmetry of the wave function. It vanishes for orthogonal states k and l, so
pairs with opposite spin do not feel this term. The self-energy problem with the
Hartree potential mentioned at the end of Section 4.3.1 appears to be solved in the
Hartree–Fock equations: the self-energy term in the Hartree energy is cancelled by
the exchange contribution as a result of the antisymmetry.

The exchange contribution lowers the Coulomb interaction between the elec-
trons, which can be viewed as a consequence of the fact that exchange keeps
electrons with the same spin apart; see the discussion below Eq. (4.28). The depend-
ence of this change in Coulomb energy on the electron density can be estimated
using a simple classical argument. Suppose that in an electron gas with average
density n, each electron occupies a volume which is not accessible to other elec-
trons with like spin. This volume can be approximated by a sphere with radius
rc ∝ n−1/3. Comparing the Coulomb interaction per volume for such a system with
one in which the electrons are distributed homogeneously throughout space, we
obtain

EC ≈ n2
[∫ ∞

rc

r2dr
1

r
−
∫ ∞

0
r2dr

1

r

]
= −n2

∫ rc

0
r2dr

1

r
∝ −n2r2

c ∝ n4/3.

(4.33)

One of the two factors n in front of the integral comes from the average density
seen by one electron, and the second factor counts how many electrons per volume
experience this change in electrostatic energy. The n4/3 dependence of the exchange
contribution is also found in more sophisticated derivations [7] and we shall meet
it again when discussing the local density approximation in the next chapter.

*4.5.2 Derivation of the Hartree–Fock equations

The derivation of the Fock equation consists of performing a variational calcula-
tion for the Schrödinger equation, where the subspace to which we shall confine
ourselves is the space of all single Slater determinants like Eq. (4.27). We must

4.5 Self-consistency and exchange: Hartree–Fock theory 57

therefore calculate the expectation value of the energy for an arbitrary Slater determ-
inant using the Born–Oppenheimer Hamiltonian and then minimise the result with
respect to the spin-orbitals in the determinant.

We write the Hamiltonian as follows:

H =
∑

i

h(i)+ 1

2

∑
i,j; i �=j

g(i, j) with

g(i, j) = 1

|ri − rj| and

h(i) = −1

2
∇i

2 −
∑

n

Zn

|ri − Rn| .

(4.34)

h(i) depends on ri only and g(i, j) on ri and rj. Writing the Slater determinant ψ as
a sum of products of spin-orbitals and using the orthonormality of the latter, it can
easily be verified that this determinant is normalised, and for the matrix element of
the one-electron part of the Hamiltonian, we find (see Problem 4.3)〈

�AS

∣∣∣∣∣
∑

i

h(i)

∣∣∣∣∣�AS

〉
= N · (N − 1)!

N !
∑

k

〈ψk|h|ψk〉

=
∑

k

〈ψk|h|ψk〉 =
∑

k

∫
dx ψ∗

k (x)h(r)ψk(x). (4.35)

By
∫

dx we denote an integral over the spatial coordinates and a sum over the
spin-degrees of freedom as usual.

The matrix element of the two-electron term g(i, j) for a Slater determinant not
only gives a nonzero contribution when the spin-orbitals in the left and right hand
sides of the inner product occur in the same order, but also for k and l interchanged
on one side (the derivation is treated in Problem 4.3):〈

�AS

∣∣∣∣∣∣
∑

i,j

g(i, j)

∣∣∣∣∣∣�AS

〉
=
∑
k,l

〈ψkψl|g|ψkψl〉 −
∑
k,l

〈ψkψl|g|ψlψk〉. (4.36)

In this equation, the following notation is used:

〈ψkψl|g|ψmψn〉 =
∫

dx1dx2ψ
∗
k (x1)ψ

∗
l (x2)

1

|r1 − r2|ψm(x1)ψn(x2). (4.37)

In summary, we obtain for the expectation value of the energy:

E =
∑

k

〈ψk|h|ψk〉 + 1

2

∑
kl

[〈ψkψl|g|ψkψl〉 − 〈ψkψl|g|ψlψk〉]. (4.38)

58 The Hartree–Fock method

We now define the operators

Jk(x)ψ(x) =
∫
ψ∗

k (x
′) 1

r12
ψk(x′)ψ(x) dx′ and (4.39a)

Kk(x)ψ(x) =
∫
ψ∗

k (x
′) 1

r12
ψ(x′)ψk(x) dx′ (4.39b)

and furthermore
J =

∑
k

Jk; K =
∑

k

Kk . (4.40)

J is called the Coulomb operator and K the exchange operator as it can be obtained
from the Coulomb operator by interchanging the two rightmost spin-orbitals. In
terms of these operators, we can write the energy as

E =
∑

k

〈
ψk

∣∣∣∣h + 1

2
(J − K)

∣∣∣∣ψk

〉
. (4.41)

This is the energy-functional for a Slater determinant. We determine the minimum
of this functional as a function of the spin-orbitals ψk, and the spin-orbitals for
which this minimum is assumed give us the many-electron ground state. Notice
however that the variation in the spin-orbitals ψk is not completely arbitrary, but
should respect the orthonormality relation:

〈ψk|ψl〉 = δkl. (4.42)

This implies that we have a minimisation problem with constraints, which can be
solved using the Lagrange multiplier theorem. Note that there are only N(N +1)/2
independent constraints as 〈ψk|ψl〉 = 〈ψl|ψk〉∗. Using the Lagrange multipliers
�kl for the constraints (4.42), we have

δE −
∑

kl

�kl[〈δψk|ψl〉 − 〈ψk|δψl〉] = 0 (4.43)

with

δE =
∑

k

〈δψk|h|ψk〉 + complex conj.

+ 1

2

∑
kl

(〈δψkψl|g|ψkψl〉 + 〈ψlδψk|g|ψlψk〉

− 〈δψkψl|g|ψlψk〉 − 〈ψlδψk|g|ψkψl〉)+ complex conj.

=
∑

k

〈δψk|h|ψk〉 + complex conj.

+
∑

kl

(〈δψkψl|g|ψkψl〉 − 〈δψkψl|g|ψlψk〉)+ complex conj. (4.44)

4.5 Self-consistency and exchange: Hartree–Fock theory 59

where in the second step the following symmetry property of the two-electron
matrix elements is used:

〈ψkψl|g|ψmψn〉 = 〈ψlψk|g|ψnψm〉. (4.45)

Note furthermore that because of the symmetry of the constraint equations, we must
have �kl = �∗

lk . Eq. (4.44) can be rewritten as

δE =
∑

k

〈δψk|F |ψk〉 + 〈ψk|F |δψk〉 (4.46)

with
F = h + J − K . (4.47)

The Hermitian operator F is the Fock operator, now formulated in terms of the
operators J and K . It is important to note that in this equation, J and K occur with
the same prefactor as h, in contrast to Eq. (4.41) in which both J and K have a factor
1/2 compared with h. This extra factor is caused by the presence of two spin-orbitals
in the expressions for J and K which yield extra terms in the derivative of the energy.
The matrix elements of the Fock operator with respect to the spin-orbitals ψk are

〈ψk|F |ψl〉 = hkl +
∑

k′
[〈ψkψk′ |g|ψlψk′ 〉 − 〈ψkψk′ |g|ψk′ψl〉]. (4.48)

We finally arrive at the equation

〈δψk|F |ψk〉 + 〈ψk|F |δψk〉 +
∑

l

�kl(〈δψk|ψl〉 − 〈ψl|δψk〉) = 0 (4.49)

and since δψ is small but arbitrary, this, with �kl = �∗
lk , leads to

Fψk =
∑

l

�klψl. (4.50)

The Lagrange parameters �kl in this equation cannot be chosen freely: they must
be such that the solutions ψk form an orthonormal set. An obvious solution of the
above equation is found by taking the ψk as the eigenvectors of the Fock operators
with eigenvalues εk , and �kl = εkδkl:

Fψk = εkψk . (4.51)

This equation is the same as (4.31), presented at the beginning of the previous
subsection. We can find other solutions to the general Fock equation (4.50) by
transforming the set of eigenstates {ψk} according to a unitary transformation,
defined by a (unitary) matrix U:

ψ ′
k =

∑
l

Uklψl. (4.52)

60 The Hartree–Fock method

The resulting states ψ ′
k then form an orthonormal set, satisfying (4.50) with

�kl =
∑
lm

UkmεmU†
ml. (4.53)

In fact, a unitary transformation of the set {ψk} leaves the Slater determinant
unchanged (see Problem 4.7).

Equation (4.51) has the form of an ordinary Schrödinger equation although the
eigenvalues εk are identified as Lagrange multipliers rather than as energies; nev-
ertheless they are often called ‘orbital energies’. From (4.51) and (4.38) it can be
seen that the energy is related to the parameters εk by

E = 1

2

∑
k

[εk + 〈ψk|h|ψk〉] =
∑

k

[
εk − 1

2
〈k|J − K |k〉

]
. (4.54)

The second form shows how the Coulomb and exchange contribution must be
subtracted from the sum of the Fock levels to avoid counting the two-electron
integrals twice.

In the previous section we have already seen how the self-consistency procedure
for solving the resulting equations is carried out.

4.5.3 Koopman’s theorem

If we were to calculate an excited state, we would have to take the lowest N − 1
spin-orbitals from the Fock spectrum and one excited spin-orbital for example (see
Fig. 4.1c), and carry out the self-consistency procedure for this configuration. The
resulting eigenstates will differ from the corresponding eigenstates in the ground
state. If we assume that the states do not vary appreciably when constructing the
Slater determinant from excited spin-orbitals instead of the ground state ones, we
can predict excitation energies from a ground state calculation. It turns out that –
within the approximation that the spin-orbitals are those of the ground state –
the difference between the sums of the eigenvalues, εk , of the ground state and
excited state configuration, is equal to the real energy difference; see Problem 4.6.
This is known as Koopman’s theorem. This is not really a theorem but a way of
approximating excitation energies which turns out to work well for many systems.
For further reading, see Refs. [5, 6, 8].

4.6 Basis functions

In the derivation leading to (4.51) (or (4.31)), the possible solutions of the
Schrödinger equation were restricted to the space of single Slater determinants. To
solve the resulting eigenvalue equation, another variational principle in the same

4.6 Basis functions 61

spirit as in the previous chapter and in Section 4.3.2 can be used, that is, expanding
the spin-orbitals ψk as linear combinations of a finite number of basis states χp:

ψk(x) =
M∑

p=1

Cpkχp(x). (4.55)

Then (4.51) assumes a matrix form

FCk = εkSCk (4.56)

where S is the overlap matrix for the basis used.
In the next subsection we shall consider how spin and orbital parts are combined

in the basis sets and in Section 4.6.2 we shall discuss the form of the orbital basis
functions.

4.6.1 Closed- and open-shell systems

In a closed-shell system, the levels are occupied by two electrons with opposite spin
whereas in an open-shell system there are partially filled levels containing only one
electron. If the number of electrons is even, the system does not necessarily have to
be closed-shell since there may be degenerate levels (apart from spin-degeneracy)
each containing one electron – or we might be considering an excited state in which
an electron is pushed up to a higher level. If the number of electrons is odd, the
system will always be open-shell.

Consider the addition of an electron to a closed-shell system. The new electron
will interact differently with the spin-up and -down electrons present in the system,
as exchange is felt by parallel spin pairs only. Therefore, if the levels of the system
without the extra electron are spin-up and -down degenerate, they will now split
into two sublevels with different orbital dependence, the lower sublevel having the
same spin as the new electron.4 We see that the spin-up and -down degeneracy of
the levels of a closed-shell system is lifted in the open-shell case.

It is important to note that even when the number of electrons is even, the unres-
tricted solution may be different from the restricted one. To see this, consider again
the discussion of the hydrogen molecule in Section 4.3.1. A possible description of
the state within the unrestricted scheme is

ψ(x1, x2) = 1√
2
[u(r1 − RA)α(s1)u(r2 − RB)β(s2)

− u(r2 − RA)α(s2)u(r1 − RB)β(s1)]. (4.57)

4 An exception to this rule occurs when the Coulomb interaction between the degenerate levels and the new
electron vanishes as a result of symmetry.

62 The Hartree–Fock method

This describes two electrons located at different nuclei, which is correct for large
nuclear separation, but this is not an eigenstate of the total spin operator. When the
nuclei are separated, the state crosses over from a restricted to an unrestricted one.
The distance at which this happens is the Coulson–Fisher point [9].

In a closed-shell system the 2N orbitals can be grouped in pairs with the same
orbital dependence but with opposite spin, thus reflecting the spin-degeneracy:

{ψ2k−1(x),ψ2k(x)} = {φk(r)α(s),φk(r)β(s)}, k = 1, . . . , N . (4.58)

The φk(r) are the spatial orbitals and α(s), β(s) are the up and down spin-states
respectively. For an open-shell system, such pairing does not occur for all levels, and
to obtain accurate results, it is necessary to allow for a different orbital dependence
for each spin-orbital in most cases. Even for an open-shell system it is possible
to impose the restriction (4.58) on the spin-orbitals, neglecting the splitting of the
latter, but the results will be less accurate in that case. Calculations with the spin-
orbitals paired as in (4.58) are called restricted Hartree–Fock (RHF) and those
in which all spin-orbitals are allowed to have a different spatial dependence are
called unrestricted Hartree–Fock (UHF). UHF eigenstates are usually inconvenient
because they are not eigenstates of the total spin-operator, as can easily be verified
by combining two different orbitals with a spin-up and -down function respectively.
On the other hand, the energy is more accurate.

We shall now rewrite the Hartree–Fock equations for RHF using the special
structure of the set of spin-orbitals given in (4.58). As we have seen in the previous
section, the general form of the Fock operator is

F = h + J − K (4.59)

with

J(x)ψ(x) =
∑

l

∫
dx′ ψ∗

l (x
′)ψl(x′) 1

r12
ψ(x);

K(x)ψ(x) =
∑

l

∫
dx′ ψ∗

l (x
′)ψ(x′) 1

r12
ψl(x).

(4.60)

The sum over l is over all occupied Fock levels. As the Fock operator depends
explicitly on the spatial coordinate only (there is an implicit spin-dependence via
the spin-orbitals occurring in the Coulomb and exchange operators), it is possible to
eliminate the spin degrees of freedom by summing over them and find an operator
acting only on the spatial orbitals φ(r). The uncoupled single-particle Hamiltonian
h remains the same since it contains neither explicit nor implicit spin-dependence,
and from (4.60) it is seen that the Coulomb and exchange operators, written in terms

4.6 Basis functions 63

of the orbital parts only, read

J̃(r)φ(r) = 2
∑

l

∫
d3r′φ∗

l (r
′)φl(r′) 1

|r′ − r|φ(r) and

K̃(r)φ(r) =
∑

l

∫
d3r′φ∗

l (r
′)φ(r′) 1

|r′ − r|φl(r).
(4.61)

In contrast with Eq. (4.60), the sums over l run over half the number of electrons
because the spin degrees of freedom have been summed over. The Fock operator
now becomes

F̃(r) = h(r)+ 2J̃(r)− K̃(r). (4.62)

From now on, we shall only use this spatial form of the Fock operator and drop the
tilde from the operators in (4.61) and (4.62). The corresponding expression for the
energy is found analogously and is given by

Eg = 2
∑

k

〈φk|h|φk〉 +
∑

k

(2〈φk|J|φk〉 − 〈φk|K|φk〉). (4.63)

It is possible to solve the Fock equation using a finite basis set, in the same spirit
as the helium calculation of Section 4.3.2. The spin part of the basis functions is
simply α(s) or β(s) (spin-up and -down respectively) and the orbital part χp(r)
needs to be specified – this will be done in the next section. For a given basis χp(r),
we obtain the following matrix equation, which is known as the Roothaan equation:

FCk = εSCk , (4.64)

similar to (4.51), but now S is the overlap matrix for the orbital basis χp(r) and the
matrix F is given by

Fpq = hpq +
∑

k

∑
rs

C∗
rkCsk(2〈pr|g|qs〉 − 〈pr|g|sq〉) (4.65)

where

hpq = 〈p|h|q〉 =
∫

d3r χ∗
p (r)

[
−1

2
∇2 −

∑
n

Zn

|Rn − r|

]
χq(r), (4.66)

and

〈pr|g|qs〉 =
∫

d3r1d3r2χ
∗
p (r1)χ

∗
r (r2)

1

|r1 − r2|χq(r1)χs(r2). (4.67)

k labels the orbitals φk and p, q, r and s label the basis functions. Generally, sums
over labels k and l run over the occupied orbitals, and sums over p, q, r, s run over
the functions in the basis set.

64 The Hartree–Fock method

It is convenient to introduce the density matrix which (for RHF) is defined as

Ppq = 2
∑

k

CpkC∗
qk . (4.68)

This is the matrix representation of the operator

ρ = 2
∑

k

|φk〉〈φk| (4.69)

which is recognised as the usual definition of the density matrix in quantum theory
(the factor 2 is due to the spin). Using (4.68), the Fock matrix can be written as

Fpq = hpq + 1

2

∑
rs

Psr[2〈pr|g|qs〉 − 〈pr|g|sq〉], (4.70)

and the energy is given by

E =
∑
pq

Ppqhpq + 1

2

∑
pqrs

PpqPsr

[
〈pr|g|qs〉 − 1

2
〈pr|g|sq〉

]
. (4.71)

For the UHF case, it is convenient to define an orbital basis χp(r) and the spin-
up orbitals are now represented by the vector C+ and the spin-down ones by C−.
Using these vectors to reformulate the Hartree–Fock equations, the so-called Pople–
Nesbet equations are obtained:

F+C+ = ε+SC+

F−C− = ε−SC− (4.72)

with

F±
pq = hpq +

∑
k±

∑
rs

C±∗
rk±C±

sk±[〈pr|g|qs〉 − 〈pr|g|sq〉]

+
∑
k∓

∑
rs

C∓∗
rk∓C∓

sk∓〈pr|g|qs〉.
(4.73)

In practice, real orbital basis functions are used, so that complex conjugates can be
removed from the Cpk in Eqs. (4.65), (4.68) and (4.73). In the following, we shall
restrict ourselves to RHF.

4.6.2 Basis functions: STO and GTO

In this subsection, we discuss the basis functions used in the atomic and molecular
Hartree–Fock programs. As already noted in Chapter 3, the basis must be chosen
carefully: the matrix diagonalisation we must perform scales with the third power
of the number of basis functions, so a small basis set is desirable which is able to

4.6 Basis functions 65

model the exact solutions to the Fock equations accurately. A molecule consists
of atoms which, in isolation, have a number of atomic orbitals occupied by the
electrons. If we put the atoms together in a molecule, the orbitals with low energies
will be slightly perturbed by the new environment and the valence electrons will
now orbit around more than one nucleus, thus binding the molecule together. In
the molecule, the electrons now occupy molecular orbitals (MO). In constructing a
basis, it turns out to be efficient to start from the atomic orbitals. The one-electron
wave functions that can be constructed from these orbitals are linear combinations
of atomic orbitals (LCAO). The solutions to the HF equations, which have the form

φk(r) =
∑

p

Cpkχp(r), (4.74)

are the molecular orbitals, written in LCAO form.
Analytic forms of the atomic orbitals are only known for the hydrogen atom but

they can be used for more general systems. The orbitals of the hydrogen atom have
the following form:

χ(r) = fn−1(r)r
−lPl(x, y, z)e−r/n, (4.75)

where l is the angular momentum quantum number, Pl is a polynomial in x, y and
z of degree l containing the angular dependence; fn−1(r) is a polynomial in r of
degree n − 1; n is an integer (r is expressed in atomic units a0). This leads to the
following general form of atomic orbital basis functions:

χζ (r) = rmPl(x, y, z)e−ζ |r−RA| (4.76)

which is centred around a nucleus located at RA. Functions of this form are called
Slater type orbitals (STO). The parameter ζ , defining the range of the orbital,
remains to be determined; Pl is taken the same as for the hydrogen atom. For atomic
Hartree–Fock calculations, this basis yields accurate results with a restricted basis
set size. However, in molecular calculations, integrals involving products of two
and four basis functions centred at different nuclei are needed, and these are hard
to calculate since the product of the two exponentials,

e−ζ1|r−RA|e−ζ2|r−RB|, (4.77)

is a complicated expression in r. A solution might be to evaluate these integrals
numerically, but for a large basis set this is impractical.

Another basis set which avoids this problem, was proposed in 1950 by Boys [10],
who replaced the simple exponential in (4.76) by a Gaussian function:

χα(r) = PM(x, y, z)e−α(r−RA)
2
. (4.78)

66 The Hartree–Fock method

Figure 4.2. Positions in the Gaussian product theorem (4.79).

These functions are called primitive basis functions for reasons which will be
explained below. These Gaussian type orbitals (GTO) have the nice property that
the product of two such functions centred on different nuclei again has a Gaussian
form as in (4.78):

PM(x, y, z)e−α(r−RA)
2
QN (x, y, z)e−β(r−RB)

2 = RN+M(x, y, z)e−(α+β)(r−RP)
2
.

(4.79)
Here, RP is the ‘centre of mass’ of the two points RA and RB with masses α and β:

RP = αRA + βRB

α + β
(4.80)

(see also Figure 4.2), and RM+N is a polynomial of degree M+N . Equation (4.79) is
easy to prove; it is known as the ‘Gaussian product theorem’. This theorem makes
it possible for the integrals involved in the Hartree–Fock equations to be either
calculated analytically or reduced to an expression suitable for fast evaluation on a
computer. In Section 4.8 we shall derive some of these integrals.

The polynomials PM in Eq. (4.78) contain the angular-dependent part of the
orbitals, which is given by the spherical harmonics Y l

m(θ ,φ). For l = 0, these
functions are spherically symmetric (no angular dependence) – hence a 1s-orbital
(having no nodes) is given as

χ(s)α (r) = e−α(r−RA)
2
. (4.81)

Note that we need not normalise our basis functions: the overlap matrix will ensure
proper normalisation of the final molecular orbitals. For l = 1, the Lz-quantum
number m can take on the three different values 1, 0 and −1, so there are three
p-orbitals, and an explicit GTO representation is

χ
(px)
α (r) = xe−α(r−RA)

2
, (4.82)

and similarly for py and pz. Proceeding in the same fashion for l = 2, we find six
quadratic factors x2, y2, z2, xy, yz and xz before the Gaussian exponential, but there

4.6 Basis functions 67

are only five d-states! This paradox is solved by noticing that the linear combination

(x2 + y2 + z2)e−α(r−RA)
2

(4.83)

has the symmetry of an s-orbital, and therefore, instead of x2, y2 and z2, only the
orbitals x2 − y2 and 3z2 − r2 are used (any independent combination is allowed),
thus arriving at five d-states.

GTOs are widely used for molecular calculations, and from now on we shall
restrict ourselves to basis functions of this form. The simplest basis consists of
one GTO per atomic orbital; it is called a minimal basis. The parameter α in the
exponent must somehow be chosen such that the GTO fits the atomic orbital in an
optimal way. However, since there is only one parameter to be fitted in the minimal
basis, this will give poor results, and in general more GTOs per atomic orbital are
used. This means that a 1s basis orbital is now given as a linear combination of
Gaussian functions: ∑

p

Dpe−αpr2
. (4.84)

As the parameters αp occur in the exponent, determination of the best combination
(Dp,αp) is a nonlinear optimisation problem. We shall not go into details of solving
such a problem (see Ref. [11]), but discuss the criterion according to which the best
values for (Dp,αp) are selected. A first approach is to take Hartree–Fock orbitals
resulting from an atomic calculation, perhaps determined using Slater type orbitals,
and to fit the form (4.84) to these orbitals. A second way is to perform the atomic
Hartree–Fock calculation using Gaussian primitive basis functions and determine
the optimal set as a solution to the nonlinear variational problem in the space given
by (4.84).

Suppose we have determined the optimal set (Dp,αp), then there are in principle
two options for constructing the basis set. The first option is to incorporate for each
exponential parameter αp, the Gaussian function

e−αp(r−RA)
2

(4.85)

into the basis, that is, the values of the Dp-parameters are relaxed since the prefactors
of the Gaussian primitive functions can vary at will with this basis. A second
approach is to take the linear combination (4.84) with the optimal set of (Dp,αp) as
a single basis function and add it to the basis set, i.e. keeping the Dp fixed as well as
the αp. If we have optimised the solution (4.84) using four primitive functions, the
second option yields a basis four times smaller than the first but, because of its lack
of flexibility (remember the Dp are kept fixed), it will result in lower accuracy. The
procedure of taking fixed linear combinations of Gaussian primitive functions as a
single basis function is called contraction; the basis set is called a contracted set.
The difference between the GTOs from which the basis functions are constructed

68 The Hartree–Fock method

φ 1
s

0.25

0.5

0 0.5 1 1.5 2
r

STO-2G
STO-3G
STO-4G

STO

Figure 4.3. Approximation of a 1s Slater orbital (STO) by STO-2G up to STO-4G
basis functions.

and the basis functions themselves is the reason why the GTOs were called primitive
basis functions above: they are used to build contracted basis functions. If all N
primitive basis functions are contracted into one normal basis function, the basis set
is called a STO-NG basis, denoting that N GTOs have been used to fit a Slater type
orbital. Figure 4.3 shows how a Slater orbital is approximated by STO-NG basis
functions for N = 2, 3, 4. Note that deviations from the exact Slater orbital are only
noticeable for small r, and these are usually suppressed, as in volume integrals the
integrands are weighted with a factor r2.

In most basis sets, an intermediate approach is taken, in which the set of primitive
Gaussians is split into two (or more) parts. The primitive Gaussian functions in
each such part are contracted into one basis function. A common example is the
STO-31 basis set, in which the three basis functions with shortest range (i.e. highest
αp) are contracted (using the corresponding Dps) into one basis function and the
remaining one (with the longest range) is taken as a second basis function. The
reason for splitting the basis in this way is that the perturbation of the orbitals by
the environment will affect primarily the long-range tails, and leave the short-range
part essentially unchanged.

There exist many other basis sets, like split-basis sets, in which from every
primitive Gaussian two new ones are constructed, one with a range slightly shorter
than in the original function (α slightly larger) and another with a slightly longer
range (α slightly smaller), so that it is possible for an orbital in a molecule to assume
a slightly contracted or expanded form with respect to the atomic orbital. For more
details concerning the various basis sets, see Ref. [12].

An important consideration is the symmetry of the orbitals which should be
taken into account. As an example, consider a HF calculation for H2. The starting

4.7 The structure of a Hartree–Fock computer program 69

point for this calculation is the atomic orbitals of the ground state of the isolated
H-atom. In the latter, only the (spherically symmetric) 1s orbitals are filled, and in
the H2 molecule, these orbitals will merge into a single molecular orbital which is
given by the sum of the two atomic orbitals plus a correction containing a substantial
contribution from the atomic pz-orbitals (the axis connecting the two nuclei is taken
to be the z-axis). This shows that it is sensible to include these pz-orbitals in the
basis, even though they are not occupied in the ground state of the isolated atom.
Such basis states, which are included in the basis set to make it possible for the
basis to represent the polarisation of the atom by its anisotropic environment, are
called polarisation orbitals. When calculating (dipole, quadrupole, …) moments by
switching on an electric or magnetic field and studying the response of the orbitals
to this field, it is essential to include such states into the basis.

4.7 The structure of a Hartree–Fock computer program

In this section we describe the structure of a typical computer program for solv-
ing the Roothaan equations. The program for the helium atom as described in
Section 4.3.2 contained most of the features present in Hartree–Fock programs
already – the treatment given here is a generalisation for arbitrary molecules.

As the most time-consuming steps in this program involve the two-electron integ-
rals, we consider these in some detail in the next subsection. The general scheme
of the HF program is then given in Section 4.7.2.

4.7.1 The two-electron integrals

The two-electron integrals are the quantities

〈pr|g|qs〉 =
∫

d3rd3r′χp(r)χr(r′) 1

|r − r′|χq(r)χs(r′). (4.86)

(Do not confuse the label r with the orbital coordinate r!) The two-electron matrix
elements obey the following symmetry relations:

p ↔ q r ↔ s p, q ↔ r, s. (4.87)

This implies that, starting with K basis functions, there are roughly K4/8 two-
electron matrix elements, since each of the symmetries in (4.87) allows the reduction
of the number of different matrix elements to be stored by a factor of about 2.

The subset of two-electron matrix elements to be calculated can be selected in
the following way. Because p and q can be interchanged, we can take p ≥ q. As the
pair p, q can be interchanged with the pair r, s, we may also take p ≥ r. The range
of s depends on whether p = r or not. If p �= r, we have s ≤ r, but for p = r, the

70 The Hartree–Fock method

fact that p, q can be interchanged with r, s means that the range of s can be restricted
to s ≤ q. All in all, a loop over the different two-electron matrix elements, using K
basis vectors and taking into account all symmetries, reads:

FOR p = 1 TO K DO
FOR q = 1 TO p DO

FOR r = 1 TO p − 1 DO
FOR s = 1 TO r DO

……
……

END FOR
END FOR
r = p
FOR s = 1 TO q DO

……
……

END FOR
END FOR

END FOR

Suppose we are dealing with a molecule consisting of 6 atoms, each having 12
basis functions, then K4/8 is about 3.4 million. It is not always possible to keep all
these numbers in core-memory, in which case they must be stored on disk. In earlier
days (before about 1975) this was done by storing them in a prescribed order in a
one-dimensional array whose index could be converted into the numbers p, q, r and
s. This was inefficient, however, since because of symmetry, many matrix elements
may vanish or be equal, or matrix elements may vanish because they involve basis
orbitals lying far apart, i.e. having negligible overlap, so nowadays only the non-
negligible matrix elements are stored together with the values of the corresponding
indices p, q, r and s.

4.7.2 General scheme of the HF program

First, we give an outline and then fill in the details [6, 13].

• Input data;
• Determine matrices;
• Bring overlap matrix to unit form;
• Make a first guess for the density matrix;
• REPEAT

– Calculate Coulomb and exchange contributions to the Fock matrix;
– Add these terms to the uncoupled one-electron Hamiltonian hpq;

4.7 The structure of a Hartree–Fock computer program 71

– Diagonalise the Fock matrix;
– Construct a new density matrix P from the eigenvectors found;

• UNTIL converged;
• Output.

Input data: The user provides the coordinates of the positions of the nuclei Rn,
the atomic numbers Zn, the total number of electrons N and a basis set to be used
(most programs have several basis sets built into them).

Determine matrices: All matrices that do not depend on the eigenvectors Ck can
be determined here: the overlap matrix Spq, the uncoupled one-electron Hamiltonian
hpq, and the two-electron integrals 〈pr|g|qs〉.

Bring overlap matrix to unit form: This is the procedure described in
Section 3.3. It results in a matrix V defining the basis transformation which brings
S to unit form.

Make a first guess for the density matrix: It is possible to take Ppq = 0 as a
first guess: this implies that the electrons feel the nuclei but not each other. It is then
expected that the HF self-consistency procedure will converge with this choice.
More elaborate guesses for P can be used in order to increase the probability of
convergence, but we shall not go into this here.

Calculate Coulomb and exchange contributions to the Fock matrix: This is
the most time-consuming step in the program!
The exchange and Coulomb contributions are stored in a matrix G according to the
following formula (see also (4.70)):

Gpq =
∑

rs

Prs

[
〈pr|g|qs〉 − 1

2
〈pr|g|sq〉

]
. (4.88)

This is done in a loop of the type displayed in the previous subsection. For each
combination of the indices p, q, r and s occuring in this loop it must be checked to
which elements of G the corresponding two-electron matrix element contributes.
This, however, depends on which of the indices coincide. When all four indices are
different for example, one obtains the following contributions to the matrix G:

Gpq = Gpq + 2〈pr|g|qs〉Prs

Grs = Grs + 2〈pr|g|qs〉Ppq

Gps = Gps − 1/2〈pr|g|qs〉Pqr

Gqr = Gqr − 1/2〈pr|g|qs〉Pps (4.89)

Gpr = Gpr − 1/2〈pr|g|qs〉Pqs

Gqs = Gqs − 1/2〈pr|g|qs〉Ppr .

72 The Hartree–Fock method

Counting all different configurations of the indices, like p = r �= q, s and q �= s,
and so on, 14 different cases are found, and for each of these, the analogue of (4.89)
has to be worked out. We shall not do this here but leave it as an exercise to the
reader.

Add G and h: The Fock matrix is simply the sum of the matrix G which was
discussed above, and the uncoupled one-electron matrix h:

Fpq = hpq + Gpq. (4.90)

Diagonalise the Fock matrix: To diagonalise F, we transform the Roothaan
equation (4.64) with the help of the matrix V to an ordinary eigenvalue as in
Section 3.3:

F′ = V†FV, (4.91)

and then we must solve

F′C′ = εC′ (4.92)

and transform the eigenvectors C′ back to the original ones:

C = VC′. (4.93)

For diagonalising the Fock matrix, we may use the Givens–Householder QR method
discussed in Section 7.2.1 of Appendix A, which can be found in the Lapack/Atlas
library.

Construct a new density matrix P: From the eigenvectors C found in diag-
onalising the Fock matrix, a new density matrix can be constructed which is
the ingredient of the Fock matrix in the next iteration. It is important to realise
that the vectors Ck used in constructing the density matrix should be normalised
according to

1 = 〈ψk|ψk〉 =
∑
pq

Cpk〈p|q〉Cqk = CkSCk . (4.94)

Converged: The criterion for convergence of the iterative process is the amount
by which the Fock levels and/or the basis functions change from one iteration to
the next. A typical criterion is that the Fock levels have converged to within a small
margin, such as 10−6 a.u. Sometimes, however, the process does not converge but
ends up oscillating between two or more configurations, or it diverges. This is often
because that the initial guess for P was too far off the converged value. It might
then help to use mixing: if the changes in the density matrix from one iteration
to another are too large, one takes for the density matrix in the next iteration a
weighted average of the last and the previous density matrix:

Pnew
pq = αPlast

pq + (1 − α)Pprevious
pq , 0 < α < 1. (4.95)

4.8 Integrals involving Gaussian functions 73

The convergence can finally be enhanced by extrapolating the values of the density
matrix. Various extrapolation schemes are used, one of the most popular being
Pulay’s DIIS scheme (see Section 9.4) [14].

Output: Output of the program are the Fock levels and corresponding eigen-
states. From these data, the total energy can be determined:

E = 1

2

[∑
rs

hrsPrs +
∑

k

εk

]
+ Enucl. (4.96)

εk are the Fock levels and Enucl represents the electrostatic nuclear repulsion
energy which is determined by the nuclear charges Zn and positions Rn. Invoking
Koopman’s theorem (see Section 4.5.3), the Fock levels may be interpreted as
electron removal or addition energies.

In Problem 4.12, the hydrogen molecule is treated again in Hartree–Fock rather
than in Hartree theory, as is done in Problem 4.9.

*4.8 Integrals involving Gaussian functions

In this section, we describe some simple calculations of integrals involving two or
four GTOs. We restrict ourselves to 1s-functions; for matrix elements involving
higher l-values, see Refs. [15, 16]. As noticed already in Section 4.6.2, the central
result which is used in these calculations is the Gaussian product theorem: denoting
the Gaussian function exp(−α|r − RA|2) by g1s,α(r − RA), we have:

g1s,α(r − RA)g1s,β(r − RB) = Kg1s,γ (r − RP), (4.97)

with

K = exp

[
− αβ

α + β
|RA − RB|2

]

γ = α + β

RP = αRA + βRB

α + β
. (4.98)

From now on, we shall use the Dirac notation:

g1s,α(r − RA) = |1s,α, A〉. (4.99)

The overlap integral: The overlap matrix for two 1s-functions can be calculated
directly using (4.97):

〈1s,α, A|1s,β, B〉 = 4π
∫

dr r2Ke−γ r2

=
(

π

α + β

)3/2

exp

[
− αβ

α + β
|RA − RB|2

]
. (4.100)

74 The Hartree–Fock method

The kinetic integral: This is given by

〈1s,α, A| − ∇2|1s,β, B〉 =
∫

d3r ∇e−α(r−RA)
2∇e−β(r−RB)

2
(4.101)

where we have used Green’s theorem. Working out the gradients and using the
Gaussian product theorem, we arrive at

〈1s,α, A| − ∇2|1s,β, B〉 = 4αβ
∫

d3r(r − RA)(r − RB)Ke−γ (r−RP)
2

(4.102)

with γ , K and RP given above. Substituting u = r − RP and using the fact that
integrals antisymmetric in u vanish, we arrive at:

〈1s,α, A| − ∇2|1s, β, B〉

= 16αβKπ

[∫ ∞

0
du u4e−γ u + (RP − RA) · (RP − RB)

∫ ∞

0
du u2e−γ u

]

= αβ

α + β

[
6 − 4

αβ

α + β
|RA − RB|2

]

×
(

π

α + β

)3/2

exp[−αβ/(α + β)|RA − RB|2]. (4.103)

The nuclear attraction integral: This integral is more difficult than the previous
ones, because after applying the Gaussian product theorem we are still left with the
1/r Coulomb term of the nucleus (whose position does in general not coincide with
the centre of the orbital). To reduce the integral to a simpler form, we use Fourier
transforms:

f̂ (k) =
∫

d3r f (r)e−ik·r. (4.104)

The inverse transformation is given by

f (r) = (2π)−3
∫

d3k f̂ (k)eik·r. (4.105)

The Dirac delta-function can be written as

δ(r) = (2π)−3
∫

d3k eik·r. (4.106)

The Coulomb integral is given by

〈1s,α, A| − Z/rC |1s, β, B〉 = −Z
∫

d3r Ke−γ |r−RP|2 |r − RC |−1. (4.107)

The Fourier transform of 1/r is 4π/k2, as can be seen for example by Fourier
transforming the Poisson equation

−∇2 1

r
= 4πδ(r). (4.108)

4.8 Integrals involving Gaussian functions 75

Furthermore, the Fourier transform of exp(−γ r2) is (π/γ)3/2 exp(−k2/4γ), so
substituting these transforms into (4.107), we obtain

〈1s,α, A| − Z/rC |1s,β, B〉

= −Z(2π)−6
(
π

γ

)3/2 ∫
d3r d3k1 d3k2 Ke−k2

1/(4γ)eik1·(r−RP)

× 4πk−2
2 eik2·(r−RC). (4.109)

In this equation, the expression (4.106) for the delta-function for k1 + k2 is
recognised, and this transforms the integral into

〈1s,α, A| − Z/rC |1s,β, B〉

= −ZK(2π2)−1
(
π

γ

)3/2 ∫
d3k e−k2/(4γ)k−2e−ik·(RP−RC). (4.110)

Integrating over the angular variables leads to

〈1s,α, A| − Z/rC |1s,β, B〉 = N
∫ ∞

0
dk e−k2/(4γ)1/k sin(k|RP − RC |);

N = −2ZK(π |RP − RC|)−1(π/γ)3/2. (4.111)

The integral (without N) can be rewritten as

I(x) ≡ 1

2

∫ x

0
dy

∫ ∞

−∞
dk e−k2/(4γ) cos(ky) (4.112)

with x = |RP − RC|. The integral over k is easy, and the result is

I(x) = 1

2

√
π/γ

∫ x

0
dy e−γ y2

. (4.113)

So, finally, we have

〈1s, α, A| − Z/rC |1s,β, B〉

= −2πKZγ−1(γ 1/2|RP − RC |)−1
∫ γ 1/2|RP−RC |

0
dy e−y2

,

and, using the definition

F0(t) = t−1/2
∫ t1/2

0
dy e−y2

, (4.114)

the final result can be rewritten as

〈1s,α, A| − Z/rC |1s,β, B〉
= −2πZ(α + β)−1 exp[−αβ/(α + β)|RA − RB|2]

× F0[(α + β)|RP − RC |2]. (4.115)

76 The Hartree–Fock method

The function F0(t) can be evaluated using the error function erf, which is avail-
able in most high-level programming languages as an intrinsic funtion. The error
function is defined by

erf(x) = 2√
π

∫ x

0
dx′e−x′2

. (4.116)

If your compiler does not have the error function as an intrinsic, you can calculate
it using a recursive procedure. The function F0(t) is then considered as one in a
series of functions defined as

Fm(t) =
∫ 1

0
exp(−ts2)s2mds. (4.117)

The following recursion relation for Fm(t) can easily be derived via partial
integration:

Fm(x) = e−x + 2xFm+1(x)

2m + 1
. (4.118)

This recursion is stable only if performed downward (see Appendix A2).
The two-electron integral: This has the form:

〈1s,α, A; 1s,β, B|g|1s, γ , C; 1s, δ, D〉
=
∫

d3r1d3r2 e−α|r1−RA|2 e−β|r2−RB|2 1

r12
e−γ |r1−RC |2e−δ|r2−RD|2 . (4.119)

Using the Gaussian product theorem, we can write the Gaussian functions depend-
ing on r1 and r2 as new 1s-functions with exponential parameters ρ and σ and
centres RP (of RA and RC) and RQ (of RB and RD):

〈1s,α, A; 1s,β, B|g|1s, γ , C; 1s, δ, D〉
= exp[−αγ/(α + γ)|RA − RC |2 − βδ/(β + δ)|RB − RD|2]

×
∫

d3r1d3r2e−ρ|r1−RP|2 1

r12
e−σ |r2−RQ|2 . (4.120)

CallingM the factor in front of the integral, and replacing the Gaussian exponentials
in the integrand by their Fourier transforms, and similarly for the 1/r12 term, we
obtain

〈1s,α, A; 1s,β, B|g|1s, γ , C; 1s, δ, D〉
= M(2π)−9

∫
d3r1 d3r2 d3k1 d3k2 d3k3 (π/ρ)

3/2e−k2
1/4ρeik1·(r1−RP)

× 4πk−2
2 eik2·(r1−r2)(π/σ)3/2e−k2

3/4σ eik3·(r2−RQ). (4.121)

4.9 Applications and results 77

Table 4.1. Bond lengths in atomic units for three
different molecules. Hartree–Fock (HF) and
experimental results are shown.

Molecule HF Expt.

H2 1.385 1.401
N2 2.013 2.074
CO 1.914 1.943

Data taken from Ref. [6].

The integrals over r1 and r2 yield two delta-functions in k1 and k2, and Eq. (4.121)
transforms into

〈1s,α, A; 1s,β, B|g|1s, γ , C; 1s, δ, D〉
= 4πM(2π)−3(π2/ρσ)3/2

∫
d3k k−2e−k2(ρ+σ)/(4ρσ)eik(RP−RQ). (4.122)

We have already encountered this integral in the previous subsection. The final
result is now

〈1s,α, A; 1s,β, B|g|1s, γ , C; 1s, δ, D〉

= 2π(5/2)

(α + γ)(β + δ)(α + β + γ + δ)1/2

× exp[−αγ/(α + γ)|RA − RC |2 − βδ/(β + δ)|RB − RD|2]

× F0

[
(α + γ)(β + δ)

(α + β + γ + δ)
|RP − RQ|2

]
. (4.123)

4.9 Applications and results

After having considered the implementation of the Hartree–Fock in a computer
program, we now present some results of HF calculations for simple molecules
[6, 17]. As the HF calculations yield an energy for a static configuration of nuclei,
it is possible to find the stable configuration by varying the positions of the nuclei and
calculating the corresponding energies – the lowest energy corresponds to the stable
configuration. In this way, the equilibrium bond lengths of diatomic molecules can
be determined. In Table 4.1, HF results are shown for these bond lengths, together
with experimental results. The table shows good agreement between the two. The
same holds for bond angles, given in Table 4.2. It is also possible to calculate the

78 The Hartree–Fock method

Table 4.2. Bond angles in degrees for H2O and NH3.
The angles are those of the H–O–H and H–N–H
chains respectively. Hartree–Fock (HF) and
experimental results are shown.

Molecule HF Expt.

H2O 107.1 104.5
NH3 108.9 106.7

Data taken from Ref. [17].

Table 4.3. Dissociation energies in atomic units for
LiF and NaBr. Hartree–Fock (HF) and experimental
results are shown.

Molecule HF Expt

LiF 0.2938 0.2934
NaBr 0.1978 0.2069

Data taken from Ref. [17].

energies needed to dissociate diatomic molecules (see Table 4.3) and again good
agreement is found with experiment.

Koopman’s theorem can be used to calculate ionisation potentials, that is, the
minimum energy needed to remove an electron from the molecule. Comparing the
results in Table 4.4 for the ionisation potentials calculated via Koopman’s theorem
with those of the previous tables, it is seen that the approximations involved in
this ‘theorem’ are more severe than those of the Hartree–Fock theory, although
agreement with experiment is still reasonable.

*4.10 Improving upon the Hartree–Fock approximation

The Hartree–Fock approximation sometimes yields unsatisfactory results. This is
of course due to Coulomb correlations not taken into account in the Hartree–Fock
formalism. There exists a systematic way to improve on Hartree–Fock by construct-
ing a many-electron state as a linear combination of Slater determinants (remember
the Slater determinants span the N-electron Hilbert space of many-electron wave

4.10 Improving upon the Hartree–Fock approximation 79

Table 4.4. Ionisation potentials in atomic units for
various molecules. Results obtained via Koopman’s
theorem and experimental results are shown.

Molecule Koopman Expt

H2 0.595 0.584
CO 0.550 0.510
H2O 0.507 0.463

Data taken from Ref. [6].

functions as mentioned at the end of Section 4.4). These determinants are construc-
ted from the ground state by excitation: the first determinant is the Hartree–Fock
ground state and the second one is the first excited state (within the spectrum
determined self-consistently for the ground state) and so on. The matrix elements of
the Hamiltonian between these Slater determinants are calculated and the resulting
Hamilton matrix (which has a dimension equal to the number of Slater determinants
taken into account) is diagonalised. The resulting state is then a linear combination
of Slater determinants

�(x1, . . . , xN) =
∑

n

αn�
(n)
AS(x1, . . . , xN) (4.124)

and its energy will be lower than the Hartree–Fock ground state energy. This is a
time-consuming procedure so that for systems containing many electrons, only a
limited number of determinants can be taken into account. This is the configuration
interaction (CI) method. In simple systems, for which this method allows very
high accuracy to be achieved, excellent agreement with experimental results can
be obtained. The CI method is in principle exact (within the Born–Oppenheimer
approximation), but since for a finite basis set the Fock spectrum is finite, only a
finite (though large) number of Slater determinants is possible within that basis
set. A CI procedure in which all possible Slater determinants possible within a
chosen basis set are taken into account is called ‘full CI’. For most systems, full
CI is impossible because of the large number of Slater determinants needed, but it
is sometimes possible to obtain an estimate for the full CI result by extrapolating
results for larger and larger numbers of Slater determinants.

As an illustration, we show bond lengths and correlation energies for H2 and H2O
in Tables 4.5 and 4.6. The correlation energy is defined as the difference between
the Hartree–Fock and the exact energy. For small systems such as H2, the electronic
structure can be calculated taking the electron correlation fully into account (but

80 The Hartree–Fock method

Table 4.5. Correlation energies in atomic
units for H2 and H2O.

Molecule CI Exact

H2 −0.039 69 −0.0409
H2O −0.298 −0.37

Data taken from Ref. [6].

Table 4.6. Bond lengths in atomic units for
H2 and H2O.

Molecule HF CI Exact Experiment

H2 1.385 1.396 1.401
H2O 1.776 1.800 1.809

Data taken from Ref. [6]. Exact results were
obtained by variational calculus [18]. Experi-
mental results are from Ref. [19].

within the Born–Oppenheimer approximation) by a variational method using basis
functions depending on the positions of both electrons [18]. The CI results are
excellent for both cases.

In CI, the spin-orbitals from which the Slater determinants are built are the
eigenstates of the Fock operator as determined self-consistently for the ground state.
As only a restricted number of determinants can be taken into account, the dimension
of the subspace spanned by the Slater determinants is quite limited. If, within these
Slater determinants, the orbitals are allowed to vary by relaxing the ground state
coefficients of the basis functions, this subspace can be increased considerably. In
the so-called multi-configuration self-consistent field theory (MCSCF), this process
is carried out, but because of the large amount of variation possible this leads to
a huge numerical problem. Finally, perturbative analysis allows correlation effects
to be taken into account [5, 6].

Exercises

4.1 In this problem we show that the large masses of the nuclei compared with those of
the electrons lead to the Born–Oppenheimer approximation.

The wave function � of a collection of electrons and nuclei depends on the
positions Rn of the nuclei and ri of the electrons (we neglect the spin-degrees of

Exercises 81

freedom). For this function we make the following Ansatz:

�(Rn, ri) = χ(Rn)�(ri)

with �(ri) an eigenstate with eigenvalue Eel of the N-electron ‘Born–Oppenheimer
Hamiltonian’ Eq. (4.2), which in atomic units reads:

HBO =
N∑

i=1

−1

2
∇2

i + 1

2

N∑
i,j=1;i �=j

1

|ri − rj| −
K∑

n=1

N∑
i=1

Zn

|ri − Rn| .

It is clear that � and Eel depend on the nuclear positions Rn, since the
Born–Oppenheimer Hamiltonian does.

Show that substitution of this Ansatz into the full Hamiltonian, Eq. (4.1), leads to:

�(r)


 K∑

n=1

− 1

2Mn
∇2

n + Eel +
K∑

n,n′=1;n �=n′

ZnZn′

|Rn − Rn′ |


χ(Rn)

− χ(Rn)

K∑
n=1

1

2Mn
∇2

n�(ri)−
K∑

n=1

1

Mn
∇nχ(Rn) · ∇n�(ri) = Eχ(Rn)�(ri),

so that neglecting the last two terms on the left hand side of this equation, we arrive
at a Schrödinger equation for the nuclei which contains the electronic degrees of
freedom via the electronic energy Eel only:

 K∑
n=1

− 1

2Mn
∇2

n + Eel +
K∑

n,n′=1;n �=n′

ZnZn′

|Rn − Rn′ |


χ(Rn) = Enucχ(Rn).

The fact that the term (1/2Mn)∇2
n�(ri) can be neglected can be understood by

realising that it is 1/Mn times the variation of the kinetic energy of the electrons with
the positions of the nuclei. Of course, the core electrons have large kinetic energy,
but they feel almost exclusively their own nucleus, hence their kinetic energy is
insensitive to variations in the relative nuclear positions. The valence electrons have
smaller kinetic energies, so the variation of this energy with nuclear positions will be
small too. In a solid, deleting the term (1/Mn)∇nχ(Rn) · ∇n�(ri) means that
electron–phonon couplings are neglected, so that some physical phenomena cannot
be treated in calculations involving the Born–Oppenheimer approach, although these
effects can often be studied perturbatively.

4.2 For a two-electron system, the wave function can be written as

�(x1, x2) = �(r1, r2) · χ(s1, s2).

Because the wave function � is antisymmetric under particle exchange, we may
take � symmetric in 1 and 2 and χ antisymmetric, or vice versa.

82 The Hartree–Fock method

We construct the functions � and χ from the orthonormal spatial orbitals φ1(r),
φ2(r) and the spin-up and -down functions α(s) and β(s) respectively.

(a) Write down the antisymmetric wave functions that can be constructed in this
way (there are six of them).

(b) Write down all possible Slater determinants that can be built from the
one-electron spin-orbitals consisting of a product of one of the orbitals φ1 and
φ2 and a spin-up or -down spinor (you will find six of these determinants too).

(c) Express the wave functions of part (a) of this problem in those of (b).

4.3 Consider a Slater determinant

�AS(x1, . . . , xN) = 1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
...

ψ1(xN) ψ2(xN) · · · ψN (xN)

∣∣∣∣∣∣∣∣∣
= 1√

N !
∑

P

εPPψ1(x1) . . . ψN (xN).

The spin-orbitals ψk(x) are orthonormal.

(a) Show that the Slater determinant is normalised, by considering the inner product
of two arbitrary terms occurring in the sum of the Slater determinant and then
summing over all possible pairs of such terms.

(b) Show in the same way that the density of electrons with coordinates x, given by:

n(x) = N
∫

dx2 . . . dxN |�AS(x, x2, . . . , xN)|2,

can be written in terms of the ψk as:

n(x) =
∑

k

|ψk(x)|2.

Suppose all spin-orbitals can be written as the product of a normalised orbital
and a normalised one-particle spinor, what is then the spatial charge density of
the electrons (i.e. regardless of the spin)?

(c) Derive Eqs. (4.35) and (4.36) using the methods employed in (a) and (b).

4.4 Consider the helium atom with two electrons having the same spin, represented by
the spinor α(s).

(a) Give the form of the two-electron wave function, expressed in orthonormal
spatial orbitals φ1 and φ2.

(b) Write down the Schrödinger equation for this system.
(c) Give an expression for the expectation value of the energy in the orbitals φi.

4.5 The Hartree–Fock analysis can be performed not only for fermions, but also for
bosons. Consider a system consisting of N spin-0 particles in one dimension having
spin-orbital coordinates xi (for spin-0 particles, only the orbital coordinate matters).

Exercises 83

The bosons interact via a δ-function potential:

H = −
N∑

i=1

∂2

∂x2
i

+ g
N∑

i>j

δ(xi − xj).

This means that the particles feel each other only if they are at the same position: they
experience an infinitely large attraction with an infinitely short range. Although this
problem can be solved exactly, we consider the Hartree–Fock approximation here.

A boson wave function � is symmetric under particle exchange. This means that
all the particles are in the same orbital φ.

(a) Show that the kinetic term of the Hamiltonian has the form:〈
�

∣∣∣∣∣−
N∑

i=1

∂2

∂x2
i

∣∣∣∣∣�
〉

= −N

〈
φ

∣∣∣∣ d2

dx2

∣∣∣∣φ
〉

.

(b) Show that the expectation value of the interaction potential is given by〈
�

∣∣∣∣∣∣g
∑
i<j

δ(xi − xj)

∣∣∣∣∣∣�
〉

= 1

2
N(N − 1)

∫
dx|φ(x)|4.

(c) Show, by minimisation of the energy-functional

〈E〉 = 〈�|H|�〉
〈�|�〉

with respect to φ, that the Hartree–Fock equation reads[
− ∂2

∂x2
− g(N − 1)|φ(x)|2

]
φ(x) = εφ(x).

(d) The solution to this last equation is found as

φ(x) =
[
(1/8)g(N − 1)

]1/2
cosh

[
(1/4)g(N − 1)x

] ;

ε = 1

16
g2(N − 1)2.

Show that this function indeed satisfies the Hartree–Fock equation.

4.6 Consider the Fock spectrum of a many-electron system. In the ground state, the N
electrons fill the lowest N levels of this spectrum. Consider the same spectrum, but
now with one electron removed from it. This means that the system has been
ionised. Show from the expressions for the Fock operator and the energy in terms of
the spin-orbitals, Eqs. (4.41) and (4.48), that the ionisation energy is equal to the
difference between the sum over the occupied Fock levels εk in the ground state and
the same sum for the ionised state.

It is then clear that the same holds for adding an electron to the ground state, and
therefore for moving an electron from level a to level b (by first removing the
electron from level a and then adding one in level b).

84 The Hartree–Fock method

4.7 Consider a Slater determinant constructed from spin-orbitals ψk , k = 1, . . . , N . A
unitary transformation transforms the spin-orbitals ψk into new ones, which we
denote by ψ ′

k :

ψ ′
k =

N∑
l=1

Uklψl.

Ukl are the elements of the unitary matrix U.

(a) Show that the new basis is orthonormal.
(b) Show that the Slater determinant constructed from the new spin-orbitals can be

written as the determinant of the product of the matrix

1√
N !



ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
...

ψ1(xN) ψ2(xN) · · · ψN (xN)




and the matrix U.
(c) Show that the Slater determinant built from ψk and that built from ψ ′

k are equal
up to a complex constant of absolute value unity.

4.8 [C] In this problem, the program for calculating the electronic structure of the
hydrogen atom (see Section 3.2.2), is extended to the H+

2 ion. The H+
2 ion contains

only one electron and the problem is therefore essentially the same as that of
Section 3.2.2, the difference being a second nucleus at a distance R from the first
one. The global structure of the program is therefore the same, the main difference
being that the basis now consists of eight functions: four functions centred around
each nucleus. Therefore, all matrices now have dimension 8.

It is important to note that for basis functions centred around one of the two
nuclei, the Coulomb attraction of the other nucleus is still important, as is
immediately clear from the expression of the Coulomb matrix A:

Apq =
∫

d3r χp(r)
(

1

|r − RA| + 1

|r − RB|
)
χq(r)

where RA and RB denote the positions of the two nuclei. The integrals for
calculating the matrix elements of the various operators can be found in Section 4.8.
Write a program to determine the ground state of the H+

2 ion.
For a distance 1a0 between the nuclei, the program should yield an energy

(without the Coulomb repulsion between the nuclei) equal to −1.442 455 a.u.
4.9 [C] In this problem, the program developed in the previous problem is extended

along the lines of the helium ground state calculation of Section 4.3.2 in order to
calculate the electronic structure of the hydrogen molecule. This means that a
second electron is added to the ionic hydrogen system and we must solve the Hartree
equation for a finite basis, Eq. (4.14), self-consistently analogous to the helium
calculation.

Exercises 85

The matrix to be diagonalised is given by

Fpq = hpq +
∑

rs

CrCsQprqs

with

Qprqs = 〈pr|g|qs〉 =
∫

d3r1 d3r2 φp(r1)φr(r2)
1

r12
φq(r1)φs(r2).

As we are dealing with two electrons only, we do not have to sum over the different
orbitals k.

In Problem 4.8 you have already programmed the expressions for the matrix
elements hpq, so these pose no problems. The two-electron matrix elements Qprqs are
rather complicated; they are given in Section 4.8. The resulting expressions can be
written in the form:

〈χpχr |g|χqχs〉 = 2

√
AB

π(A + B)
SpqSsrF0(t).

Here, t is defined as

t = (αp + αq)(αr + αs)

(αp + αq + αr + αs)
|RA − RB|2;

RA = αpRp + αqRq

αp + αq

RB = αrRr + αsRs

αr + αs
,

and A and B as

A = αp + αq

B = αr + αs.

Spq is the overlap matrix.
You can now use these matrix elements in a program which has the same structure

as that of the helium atom.
Check: for a distance 1 a.u. between the atoms, one finds for the ground state

vector C:
(0.092 561 548 6, 0.165 180 118, 0.120 122 665, 0.021 154 565 7,
0.092 561 548 6, 0.165 180 118, 0.120 122 665, 0.021 154 565 7)
and an energy −1.078 547 61 (nuclear repulsion +1 included!).

4.10 In a restricted Hartree–Fock (RHF) calculation using a finite basis χp(r), the kinetic
and Coulomb integrals must be calculated. We can gain speed by using the
symmetry of these matrices, for example

〈χp|∇2|χq〉 = 〈χq|∇2|χp〉.
We do not assume other symmetries to be present in the system.

86 The Hartree–Fock method

(a) Suppose the basis contains M basis functions, at least how many of these matrix
elements must be calculated?

(b) How many two-electron matrix elements

〈pr|g|qs〉
must be calculated?

Now suppose that the molecule for which we are performing the calculation
consists of three identical atoms, located on an equilateral triangle:

On every atom, we have M basis functions which we denote by χA
p (r) etc.,

p = 1, . . . , M. The basis functions on the different atoms have the same form:

χA
p (r) = χp(r − RA),

χB
p (r) = χp(r − RB)

and similarly for C.

(c) How many different kinetic and Coulomb matrix elements must be calculated in
this case?

(d) How many different two-electron matrix elements must be calculated?
(e) Suppose now that M is very large. What is then the gain in speed when using all

symmetries of the matrix elements instead of using no symmetry at all?

4.11 Suppose a Hartree–Fock calculation is carried out for a linear chain of K identical
atoms and N electrons, where K is a large number. The distance between two
successive atoms is a. For each atom, the same set of M basis functions is used. We
assume that the overlap between two wave functions centred around two atoms at a
distance larger than pa (p is some integer) vanishes.

(a) How many elements of the Hamilton matrix are nonzero (for large K)?
(b) How many nonzero two-electron matrix elements 〈pr|g|qs〉 do we have (for

large K)?

4.12 [C] In this problem, we modify the hydrogen calculation as carried out in
Problem 4.9 to a Hartree–Fock calculation – remember that in the previous version
we solved the Hartree equation and not the Hartree–Fock equation. Furthermore, we
consider exploiting the symmetry in order to speed up the calculation. As we have

References 87

mentioned in Section 4.3.1, the Hartree approach is good enough for the ground
state of a two-electron system because the two electrons are described by the same
orbital: antisymmetry is taken into account via the spins which are opposite. The
present program should therefore yield the same result as the previous one but have
the structure of the programs dealing with more electrons or excited states.

The main difference from the previous version is that the array Q is replaced by Q̃
in this program, defined in terms of the Qprqs as follows:

Q̃pqrs = 2Qprqs − Qprsq.

(a) [C] First of all, you can exploit the symmetry in the calculation of Spq and hpq:
both matrices are symmetric, so you only need to calculate the upper or lower
triangular elements. Implement this in your program.

(b) [C] In order to calculate the matrix Qprqs fast, you can restrict the indices to
p ≥ q, q ≥ r and if p = r, q ≥ s, otherwise r ≥ s, see Section 4.7. For each set
of p, q, r, s in these ranges, seven other Q-matrix elements having the same
values can then be found because of symmetry. These are: Qqrps, Qpsqr , Qqspr ,
Qrpsq, Qsprq, Qrqsp and Qsqrp.

(c) [C] Now use the matrix elements Q̃pqrs instead of Qprqs and check that you
obtain the same results as in the previous program.

(d) The fact that using Q̃ instead of Q leads to the same results is quite surprising,
since it is a different Fock matrix we are diagonalising (you can check this by
printing out the Fock matrices of the old and the present program). Show that if
the vector C has converged, the results are equivalent (hint: by inspection of the
energy, rather than the Fock matrix).

(e) Exploit the full symmetry of the two-electron matrix elements by distinguishing
all possible cases for p, q, r, s being different or equal. Formulate the equations
analogous to Eq. (4.89) for all these cases (there are 14 of them).

(f) [C] Implement these equations into your program.

References

[1] B. T. Sutcliffe, ‘Fundamentals of computational quantum chemistry,’ in Computational Tech-
niques in Quantum Chemistry and Molecular Physics (ed. G. H. F. Diercksen, B. T. Sutcliffe,
and A. Veillard), Proceedings of the NATO ASI held at Ramsau, Germany, Boston, Reidel, 1975,
p. 1.

[2] D. R. Hartree, Proc. Camb. Phil. Soc., 24 (1928), 89.
[3] C.-O. Almbladh and A. C. Pedroza, ‘Density-functional exchange-correlation potentials and

orbital eigenvalues for light atoms,’ Phys. Rev. A, 29 (1984), 2322–30.
[4] J. C. Slater, Quantum Theory of Molecules and Solids, vol. IV. New York, McGraw-Hill, 1982.
[5] R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd edn. New York, Academic Press,

1989.
[6] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry. London, Macmillan, 1982.
[7] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York, Holt, Reinhart and Winston,

1976.

88 The Hartree–Fock method

[8] W. J. Hehre, L. Radom, P. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory. New
York, John Wiley, 1986.

[9] C. A. Coulson and I. Fisher, ‘Notes on the molecular orbital treatment of the hydrogen molecule,’
Philos. Mag., 40 (1949), 386–93.

[10] S. F. Boys, ‘A general method of calculation for the stationary states of any molecular system,’
Proc. Roy. Soc. (London), 200 (1950), 542–54.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd edn.
Cambridge, Cambridge University Press, 1992.

[12] R. Poirer, R. Kari, and I. G. Czismadia, Handbook of Gaussian Basis Sets. Amsterdam, Elsevier,
1985.

[13] A. Veillard, ‘The logic of SCF procedures,’ in Computational Techniques in Quantum Chemistry
and Molecular Physics (ed. G. H. F. Diercksen, B. T. Sutcliffe, and A. Veillard), Proceedings of
the NATO ASI held at Ramsau, Germany, Boston, Reidel, 1975, p. 201.

[14] P. Pulay, ‘Improved SCF convergence acceleration,’ J. Comp. Chem., 3 (1982), 556–60.
[15] E. Clementi and D. R. Davis, ‘Electronic structure of large molecular systems,’ J. Comp. Phys.,

2 (1967), 223–44.
[16] V. R. Saunders, ‘An Introduction to Molecular Integral Evaluation,’ in Computational Techniques

in Quantum Chemistry and Molecular Physics (ed. G. H. F. Diercksen, B. T. Sutcliffe, and
A. Veillard), Proceedings of the NATO ASI held at Ramsau, Germany, Boston, Reidel, 1975,
pp. 347–92.

[17] A. Hinchliffe, Computational Quantum Chemistry. Chichester, John Wiley & Sons, 1988.
[18] W. Kolos and L. Wolniewicz, ‘Improved theoretical ground-state energy of the hydrogen

molecule,’ J. Chem. Phys., 49 (1968), 404–10.
[19] B. J. Rosenberg and I. Shavitt, ‘Ab initio SCF and CI studies on the ground state of the water

molecule. I. Comparison of CGTO and STO basis sets near the Hartree–Fock limit,’ J. Chem.
Phys., 63 (1975), 2162–74.

5

Density functional theory

5.1 Introduction

In the previous chapter we saw how the many-electron problem can be treated in
the Hartree–Fock formalism in which the solution of the many-body Schrödinger
equation is written in the form of a Slater determinant. The resulting HF equations
depend on the occupied electron orbitals, which enter these equations in a nonlocal
way. The nonlocal potential of Hartree–Fock is difficult to apply in extended sys-
tems, and for this reason there have been relatively few applications to solids; see
however Ref. [1].

Most electronic structure calculations for solids are based on density functional
theory (DFT), which results from the work of Hohenberg, Kohn and Sham [2, 3].
This approach has also become popular for atoms and molecules. In the density
functional theory, the electronic orbitals are solutions to a Schrödinger equation
which depends on the electron density rather than on the individual electron orbitals.
However, the dependence of the one-particle Hamiltonian on this density is in
principle nonlocal. Often, this Hamiltonian is taken to depend on the local value
of the density only – this is the local density approximation (LDA). In the vast
majority of DFT electronic structure calculations for solids, this approximation is
adopted. It is, however, also applied to atomic and molecular systems [4].

In this chapter we describe the density functional method for electronic struc-
ture calculations. In the present section, the physical interpretation of the density
functional equations is first described and the formal derivations are given. In the
next section the local density approximation is considered. An application to the
ground state of the helium atom will be described in some detail in Section 5.5.
Finally, some results obtained using density functional theory will be discussed in
Section 5.5.3. For further reading, there are many reviews and books available; see
for example Refs. [4–7].

89

90 Density functional theory

5.1.1 Density functional theory: physical picture

In density functional theory, an effective independent-particle Hamiltonian is
arrived at, leading to the following Schrödinger equation for one-electron spin-
orbitals:[

−1

2
∇2 −

∑
n

Zn

|r − Rn| +
∫

d3r′ n(r′) 1

|r − r′| + Vxc[n](r)
]
ψk(r) = εkψk(r).

(5.1)
The first three terms in the left hand side of this equation are exactly the same
as those of Hartree–Fock, Eq. (4.31), namely the kinetic energy, the electrostatic
interaction between the electrons and the nuclei, and the electrostatic energy of
the electron in the field generated by the total electron density n(r). The fourth
term contains the many-body effects, lumped together in an exchange-correlation
potential. The main result of density functional theory is that there exists a form
of this potential, depending only on the electron density n(r), that yields the exact
ground state energy and density. Unfortunately, this exact form is not known, but
there exist several approximations to it, as we shall see in Sections 5.2 and 5.3.
The dependence of the independent-particle Hamiltonian on the density only is in
striking contrast with Hartree–Fock theory, where the Hamiltonian depends on the
individual orbitals. The solutions of Eq. (5.1) must be self-consistent in the density,
which is given by

n(r) =
N∑

k=1

|ψk(r)|2, (5.2)

where the sum is over the N spin-orbitals ψk having the lowest eigenvalues εk in
(5.1), and N is the number of electrons in the system.

The total energy of the many-electron system is given by

E =
N∑

k=1

εk − 1

2

∫
d3r d3r′ n(r)

1

|r − r′|n(r′)+ Exc[n] −
∫

d3r Vxc[n](r)n(r)
(5.3)

where the parameters εk are the eigenvalues occurring in Eq. (5.1) and Exc is
the exchange correlation energy. The exchange correlation potential Vxc[n] which
occurs in (5.1) is the functional derivative of this energy with respect to the density:

Vxc[n](r) = δ

δn(r)
Exc[n]. (5.4)

Although the energy parameters εk are not, strictly speaking, one-electron ener-
gies they are often treated as such for comparison with spectroscopy experiments
according to an extended version of Koopman’s theorem (see Problem 5.4). The
wave functionsψk also have no individual meaning but are used to construct the total

5.1 Introduction 91

charge density. This again contrasts with Hartree–Fock where the one-electron spin-
orbitals have a definite interpretation: they are the constituents of the many-electron
wave function.

Equations (5.1) and (5.2) are solved in an iterative self-consistency loop,
which is started by choosing an initial density n(r), constructing the Schrödinger
equation (5.1) from it, solving the latter and calculating the resulting density from
(5.2). Then a new Schrödinger equation is constructed and so on, until the density
does not change appreciably any more.

In both DFT and Hartree–Fock theory, the electrons move in a background com-
posed of the Hartree and external potentials. In addition to this, the exchange term
in Hartree–Fock accounts for the fact that electrons with parallel spin avoid each
other as a result of the exclusion principle (exchange hole). Opposite spin pairs do
not feel this interaction. In DFT, the exchange-correlation potential includes not
only exchange effects but also correlation effects due to the Coulomb repulsion
between the electrons (dynamic correlation effects). In HF, the exchange interac-
tion is treated exactly, but dynamic correlations are neglected. DFT is in principle
exact, but we do not know the exact form of the exchange correlation potential – both
exchange and dynamic correlation effects are in practice treated approximately.

It is essential that the exchange correlation energy is given in terms of the elec-
tron density only and contains no explicit dependence on the external potential (in
our case the potential due to the atomic nuclei). As we shall see in Section 5.2,
a local approximation for the exchange correlation energy occuring in the DFT
equation (5.1) is usually made, thereby simplifying the implementation significantly
with respect to Hartree–Fock with its complicated nonlocal exchange term.

*5.1.2 Density functional formalism and derivation of the Kohn–Sham
equations

For a many-electron system, the Hamiltonian is given by

H =
∑

i

[
−1

2
∇2

i + Vext(ri)

]
+ 1

2

∑
i,j;
i �=j

1

|ri − rj| . (5.5)

Vext is an external potential which, in the systems of interest to us, is the Coulomb
attraction by the static nuclei.

In Chapter 3 we have seen how the ground state can be found by varying the
energy-functional with respect to the wave function. Now consider carrying out this
variational procedure in two stages: first – for a given electron density – minimise
with respect to the wave functions consistent with this density, and then minimise
with respect to the density. Denoting by min�|n a minimisation with respect to the

92 Density functional theory

wave functions � which are consistent with the density n(r), we can write

E[n] = min
�|n 〈�|H|�〉 (5.6)

and it will be clear that the ground state of the many-electron Hamiltonian can be
found by minimising the functional E[n] with respect to the density, subject to the
constraint ∫

d3r n(r) = N (5.7)

where N is the total number of electrons.
Now consider a separation of the Hamiltonian into the Hamiltonian H0 of the

homogeneous electron gas (with external potential Vext ≡ 0), and the external
potential:

H = H0 + Vext(r). (5.8)

In this case we can write E[n] as

E[n] = min
�|n

[
〈�|H0|�〉 +

∫
d3r Vext(r)n(r)

]
. (5.9)

If we minimise the term in square brackets for a given density n(r), the second term
is a constant so that we do not have to include it in the minimisation:

E[n] = min
�|n [〈�|H0|�〉] +

∫
d3r Vext(r)n(r). (5.10)

Writing
F[n] = min

�|n [〈�|H0|�〉] (5.11)

we see that E[n] can be written as

E[n] = F[n] +
∫

d3r Vext(r)n(r) (5.12)

and F[n] obviously does not depend on the external potential. We shall now use
these general statements to treat our problem of interacting electrons in an external
potential. Summarising the results obtained so far, we see that:

• The ground state density can be obtained by minimising the
energy-functional (5.6).

• If we split the Hamiltonian H into a homogeneous one, H0, and the external
potential, the energy-functional can be split into a part F[n], which is defined in
(5.11) and which is independent of the external potential, and the functional∫

d3r Vext(r)n(r).

The problem with treating the many-electron system lies in the electron–electron
interaction. In fact, for both interacting and noninteracting electron systems the form
of the functional E[n] is unknown, but the ground state energy for noninteracting

5.1 Introduction 93

electrons can be solved for trivially, and we can use this to tackle the problem of
interacting electrons. In the noninteracting case, E[n] has a kinetic contribution and
a contribution from the external potential Vext:

E[n] = T [n] +
∫

d3r n(r)Vext(r). (5.13)

Variation of E with respect to the density leads to the following equation:

δT [n]
δn(r)

+ Vext(r) = λn(r), (5.14)

where λ is the Lagrange parameter associated with the restriction of the density to
yield the correct total number of electrons, N . The form of T [n] is unknown, but
we know that the ground state of the system can be written as a Slater determinant
with spin-orbitals satisfying the single-particle Schrödinger equation:[

−1
2∇2 + Vext(r)

]
ψk(r) = εkψk(r). (5.15)

The ground state density is then given by

n(r) =
N∑

k=1

|ψk(r)|2 (5.16)

where the spin-orbitalsψk are supposed to be normalised so that the density satisfies
the correct normalisation to the number of particles N . Using the above analysis,
and taking T [n] for the functional F[n], we immediately see that the kinetic energy-
functional T is independent of the potential Vext. Summarising, we have:

• The energy-functional of a noninteracting electron gas can be split into a kinetic
functional T [n], and a functional representing the interaction with the external
potential,

∫
d3r Vext(r)n(r). The kinetic functional does not depend on the

external potential.
• The exact solution of the noninteracting electron gas is given in terms of the

eigenfunction solutions of the independent-particle Hamiltonian; see Eq. (5.15).

The energy-functional for a many-electron system with electronic interactions
included can be written in the form

E[n] = T [n] +
∫

d3r n(r)Vext(r)

+ 1

2

∫
d3r

∫
d3r′ n(r′) 1

|r − r′|n(r)+ Exc[n], (5.17)

where the last term, the exchange correlation energy, contains, by definition, all
the contributions not taken into account by the first three terms which represent the
kinetic energy-functional of the noninteracting electron gas, the external and the

94 Density functional theory

Hartree energy respectively. It is important to note that we have made no approx-
imations so far but moved all the unknown correlations into Exc, which depends on
the density n rather than on the explicit form of the wave function because all the
other terms in (5.17) depend on the density. For the interacting electron gas it is not
clear that the kinetic energy and the electron–electron interaction can be written as
a sum of two terms depending on the density only; therefore the kinetic functional
for noninteracting electrons, which depends only on the density, has been split off
and the remaining part of the kinetic energy has been moved into Exc. Varying this
equation with respect to the density, we obtain

δT [n]
δn(r)

+ δExc[n]
δn(r)

+
∫

d3r′ n(r′) 1

|r − r′| + Vext(r) = λn(r). (5.18)

This equation has the same form as (5.14), the only difference being the potential
replaced by a more complicated one, the ‘effective potential’:

Veff(r) = V(r)+ δExc[n]
δn(r)

+
∫

d3r′ n(r′) 1

|r − r′| . (5.19)

The analogue of Eq. (5.15) now becomes[
−1

2
∇2 + Veff(r)

]
ψk(r) = εkψk(r). (5.20)

Comparing Eqs. (5.20) and (5.17), we see that adding the eigenvalues εk of the
occupied states does not lead to the total energy as the Hartree energy is overestim-
ated by a factor of 2, and there is a further difference in the exchange correlation
term, so that we have altogether:

E =
N∑

k=1

εk − 1

2

∫
d3r d3r′ n(r)

1

|r − r′|n(r
′)+ Exc[n] −

∫
d3r Vxc[n(r)]n(r).

(5.21)
where Vxc is defined in (5.4). The density functional procedure is now given by
Eqs. (5.16), (5.19), (5.20) and (5.21). These equations were first derived by Kohn
and Sham [3].

We have already mentioned that the exact form of the exchange correlation
potential is not known. This energy is a functional of the density, but there may
be an additional explicit dependence on the external potential. Such a dependence
would imply that each physical system has its own particular exchange correlation
energy-functional. That the exchange correlation potential does not have such a
dependence follows immediately from the argument given at the beginning of this
section (Eqs. (5.8–5.12)) by separating the external potential off the Hamiltonian
and taking the remaining contributions to the energy-functional for F[n]. This shows
that the exact exchange correlation potential, which should work for all materials,
is simply a functional of the density. In practice we have to use approximations

5.2 The local density approximation 95

for Exc, as the exact form of this functional is unknown, and our approximation
might be better for some materials than for others. The final conclusion can then
be formulated as follows:

• If we split the energy-functional according to (5.17), the term Exc[n] into which
we have moved all the terms we do not have under control, is independent of the
external potential.

• The minimisation problem of the energy-functional can be carried out using the
Kohn-Sham equations (5.20) together with the constraint (5.16).

5.2 The local density approximation

The difference between the Hartree–Fock and density functional approximation
is the replacement of the HF exchange term by the exchange correlation energy
Exc which is a functional of the density. The exchange correlation potential is a
functional derivative of the exchange correlation energy with respect to the local
density and for a homogeneous electron gas this will depend on the value of the
electron density. For a nonhomogeneous system, the value of the exchange correl-
ation potential at the point r depends not only on the value of the density at r but
also on its variation close to r, and it can therefore be written as an expansion in
the gradients to arbitrary order of the density:

Vxc[n](r) = Vxc[n(r), ∇n(r), ∇(∇n(r)), . . .]. (5.22)

Apart from the fact that the exact form of the energy-functional is unknown, inclu-
sion of density gradients makes the solution of the DFT equations rather difficult,
and usually the Ansatz is made that the exchange correlation energy leads to an
exchange correlation potential depending on the value of the density in r only and
not on its gradients – this is the local density approximation (LDA):

Exc =
∫

d3r εxc[n(r)]n(r) (5.23)

where εxc[n] is the exchange correlation energy per particle of an homogeneous
electron gas at density n. The local density approximation is exact for an homo-
geneous electron gas, so it works well for systems in which the electron density
does not vary too rapidly. We shall briefly discuss the various forms used for the
exchange correlation energy density in the local density approximation, εxc[n(r)],
and refer to the literature for more details [4, 8, 9].

The exchange effects (denoted by the subscript ‘x’) are usually included in a term
based on calculations for the homogeneous electron gas [10] giving the following
form for the exchange energy in density functional theory:

εx[n(r)] = Const. × n1/3(r) (5.24)

96 Density functional theory

which we have already encountered at the end of Section 4.5.1. The value for the
constant is found as −(3/4)(3/π)1/3.

For open-shell systems the spin-up and -down densities n+ and n− are usu-
ally taken into account as two independent densities in the exchange correlation
energy according to a natural extension of the DFT formalism [4]. In local dens-
ity approximation (now called local spin density approximation), the exchange is
given as

Ex[n+, n−] = −Const.
∫

d3r [n4/3
+ (r)+ n4/3

− (r)], (5.25)

with Const. = (3/2)(3/4π)1/3 in accordance with the closed-shell prefactor in
(5.24), as can be checked by putting n+ = n− = n/2. As is to be expected for
an exchange coupling, this expression contains interactions between parallel spin
pairs only.

In addition to exchange, there is a contribution from the dynamic correlation
effects (due to the Coulomb interaction between the electrons) present in the
exchange correlation potential, and several local density parametrisations of this
interaction have been proposed. A successful one is a parametrised version of the
correlation energy obtained in quantum Monte Carlo simulations of the homogen-
eous electron gas at different densities [11, 9]. Other parametrisations have been
presented by von Barth and Hedin [12], and Gunnarson and Lundqvist [13]. These
dynamic correlations represent couplings between both parallel and opposite spin
pairs.

In calculations of the electronic structure, the DFT–LDA approach has turned
out very successfully. In some systems, however, it leads to noticeable deviations
or even failures – for examples some stable negative ions such as H−, O− and
F− are predicted to be unstable. Many improvements on LDA have therefore been
proposed. One of these consists of including gradients of the density in the exchange
correlation functional (we will come back to this in the second part of the next
section), whose form is motivated by calculations taking many-electron effects into
account [8].

Another approach focuses on the self-interaction present in the Hartree energy
which contains Coulomb couplings between an electron and its own charge distribu-
tion. This overestimation of the electron–electron interaction should be cancelled by
the exchange correlation term, which – in LDA – succeeds only partially (although
in the hydrogen atom for example, 95% of the self-interaction is cancelled by
the exchange correlation). It is possible to add these corrections afterward to the
exchange correlation potential [9], but this introduces a dependence of the exchange
correlation on the individual orbitals, ψk , instead of a dependence on the density
only. Both the gradient-correction and self-interaction methods lead to important
improvements in calculations of physical properties [4].

5.3 Exchange and correlation: a closer look 97

5.3 Exchange and correlation: a closer look

5.3.1 The adiabatic theorem and the normalisation conditions

In this section we consider exchange and correlation in more detail. We shall take
into account the spin as well as the spatial coordinates. All spin-space coordinates
(r1, s1; . . . rN , sN) are denoted by X. Let us first consider the exact energy-functional
(of the spin-orbitals):

Eexact =
∫
�∗

AS(X)

(
−1

2

∑
i

∇2
i + Vext + Vee

)
�AS(X)dX. (5.26)

Here, �AS(X) is a wave function which is antisymmetric in the xi = (ri, si), but
not necessarily a Slater determinant. We compare the exact energy with the Kohn–
Sham functional (which should also be exact for the correct exchange-correlation
functional):

EKS = −
∑

k

∫
ψ∗

k (x)
1

2
∇2

kψk(x)dx +
∑∫

n(r)Vext(r)dx

+ 1

2

∫
n(r)

1

|r − r′|n(r
′) d3r d3r′ + Exc[n]. (5.27)

The terms related to Vext(r) are the same in both cases: the exchange and correlation
term Exc makes up for the difference in the kinetic energies and the difference
between the exact Coulomb interaction and the Hartree approximation in the Kohn–
Sham scheme.

We now try to connect the exact form to the Kohn–Sham picture in order to
pinpoint this difference better. This is done in the adiabatic connection procedure,
which works as follows. We first introduce a tunable electron–electron interaction

Vc,λ =
∑

ij

λ

|ri − r′
j|

= λVc, (5.28)

where the subscript C stands for Coulomb and where Vc is identified with Vc,λ=1.
Just as we did in Section 5.1.2, we split the many-body Hamiltonian into that of

an homogeneous electron gas with interaction Vλ and the external potential:

Hλ = H0,λ +
∑

i

Vext(ri) = (T + Vc,λ)+
∑

i

Vext(ri), (5.29)

and note that for fixed densities n(r), the last term will always give the same con-
tribution to the energy. Indeed, we minimise this Hamiltonian for such a fixed
density:

Eλ[n] = min
ψ |n 〈�|H0,λ|�〉 +

∫
Vext(r)n(r)d3r = Fλ[n] +

∫
Vext(r)n(r)d3r,

(5.30)

98 Density functional theory

where we have used the definition

Fλ[n] = min
ψ |n 〈�|H0,λ|�〉 (5.31)

The minimisation is carried out on the set of wave functions compatible with the
given densities n(r).

We now need a theorem that plays an important role in the quantum molecular
dynamics method (see Chapter 9): the Hellmann–Feynman theorem. Here we shall
prove this theorem for the simple case in which we have a Hamiltonian depending
on a single parameter λ. The theorem tells us how the energy eigenvalues of a
Hamiltonian Hλ, depending on a parameter λ, vary with λ. Differentiating the
Schrödinger equation

Hλ|ψλ〉 = Eλ|ψλ〉 (5.32)

with respect to λ we obtain (the prime indicates derivative with respect to λ):

H ′
λ‖ψλ〉 + Hλ‖ψ ′

λ〉 = E′
λ|ψλ〉 + Eλ|ψ ′

λ〉. (5.33)

Taking the inner product from the left with 〈ψλ| and using the Hermitian conjugate
of (5.32), we see that

dEλ
dλ

= 〈ψλ|dHλ/dλ|ψλ〉
〈ψλ|ψλ〉 . (5.34)

We can write the derivative of Fλ from the Hellmann–Feynman theorem, by
realising that, since |ψλ〉 is the variational ground state of Fλ, it must be the lowest
eigenstate of H0,λ. We then obtain

dFλ
dλ

= 〈�λ|Vc|�λ〉. (5.35)

From this, and from the fact that for λ = 0 we have trivial, noninteracting electron
gas, we have

Fλ=1[n] = TKS[n] +
∫ 1

0
〈ψλ|Vc|�λ〉dλ. (5.36)

We now find the exchange correlation potential as the difference between the
interacting and noninteracting electron gas including the Hartree energy EH:

Exc = Fλ=1[n] − TKS[n] −
∑ 1

2

∫
n(r)

1

|r − r′|n(r′) d3r d3r′

=
∫ 1

0
〈ψλ|Vc|�λ〉dλ− EH. (5.37)

The main point of the derivation is that in (5.36), which holds for the interacting gas,
the kinetic energy is that of the noninteracting gas; therefore, we find the exchange
correlation correction only in terms of the Coulomb interaction. For λ = 0, the XC
correction term is nonzero as the Hartree energy does not take the antisymmetry of

5.3 Exchange and correlation: a closer look 99

the full many-body wave function into account: it is the exchange-only part of the
correction.

There is another fruitful way of looking at the exchange correlation term, which
is related to the discussion in Section 5.1.2. There we considered the probability
density for finding the particles 1 and 2 with coordinates x and x′ respectively:

P(x, x′) =
∫

|�(x, x′, x3, . . . , xN)|2dx3 . . . dxN . (5.38)

We now use this definition for a general wave function (not necessarily a Slater
determinant).

The single-particle density is given as

n(x) = N
∫

|�(x, x2, . . . , xN)|2dx2 . . . dxN . (5.39)

Integrating the single-particle density gives the number of particles:∫
n(x)dx = N . (5.40)

From the definition of n(x) we immediately see that

N
∫

P(x, x′)dx′ = n(x). (5.41)

The reason for introducing these quantities is that they give insight in the exchange
and correlation energies. To see this, consider the Coulomb energy:

Ec = N(N − 1)

2

∫
P(x, x′) 1

|r − r′| dx dx′ (5.42)

(the prefactor counts the number of particle pairs). We now define the exchange
correlation hole, nxc(x, x′), through

N(N − 1)P(x, x′) = n(x)n(x′)+ n(x)nxc(x, x′). (5.43)

The exchange correlation hole indicates how the actual distribution of a second
electron, given a first electron at x, deviates from the average density. Then we can
write

Ec = EH + 1

2

∫
n(x)nxc(x, x′) 1

|r − r′| dx dx′. (5.44)

Note that the second term can be identified with the exchange correlation energy.
The most important consequence of this is that we can derive some properties

of the exchange correlation hole, which any exchange correlation energy should
satisfy. The first of these properties follows from the normalisation of P:∫

P(x, x′) dx dx′ = 1 (5.45)

100 Density functional theory

which follows directly from the normalisation of the wave function. Furthermore,∫
n(x)dx = N (5.46)

for the same reason. Integrating Eq. (5.43) now over dx′ (this actually denotes an
integration over r′ and a sum over s′), we obtain the result

(N − 1)n(x) = Nn(x)+ n(x)
∫

nxc(x, x′) dx′; (5.47)

in other words, ∫
nxc(x, x′)dx′ = −1. (5.48)

Realising that the second term in Eq. (5.44) is the exchange correlation correction to
the Coulomb energy, we see that this correction can be described in terms of a charge
distribution which carries a positive unit charge: this is the exchange correlation
hole nxc.

Now let us return to the Hartree–Fock approximation. There we considered a
Slater determinant containing all exchange effects. If we apply the above analysis
to a Slater determinant we obtain an exchange hole (Coulomb correlations are
absent in this case) which integrates up to a charge −1 (that is, a positive hole),
irrespective of the strength λ of the Coulomb interaction. Therefore we conclude
that the exchange hole adds up to −1 and, supposing that the exchange correlation
hole is the sum of an exchange and a correlation contribution, the correlation hole
must add up to 0.

Let us summarise the results obtained so far. The first is that we can remove the
exchange and correlation contribution to the kinetic energy from the description
by applying the adiabatic connection formula. The price we have to pay is that
we have to integrate the Coulombic term due to exchange and correlation over the
interaction strength λ. The second result is that this contribution can be described
in terms of an exchange and a correlation hole, the first of which integrates up to −1
and the second integrates to 0.

5.3.2 The generalised gradient approximation

We can now understand the success of LDA: the exchange and correlation holes are
taken from very accurate quantum Monte Carlo results for the homogeneous elec-
tron gas and therefore they satisfy the two normalisation conditions for exchange
and correlation just described.

We can now also describe how a gradient expansion can be constructed: we must
take into account isotropy conditions and then make sure that the exchange and the
correlation hole satisfy their respective normalisation conditions. This scheme has

5.4 Beyond DFT: one- and two-particle excitations 101

been carried out by several groups, and some well known functionals are those of
Perdew and Wang of 1986 [14, 15] and 1991 [16] (respectively PW86 and PW91),
and of Becke [17], Lee, Yang and Parr [18] (LYP) and Perdew, Burke and Enzerhof
[19, 20]. These exchange correlation functionals go by the name of generalised
gradient approximations (GGAs).

In general, GGA improves on LDA for the quantities which are already success-
fully treated in LDA: total energies and hence binding energies, bond lengths and
angles. Ionisation energies based on Kohn–Sham energy eigenvalues are approxim-
ately the same as for LDA. In general, LDA tends to over-estimate the correlation
energy and underestimates the exchange energy; these are remedied to some extent
in GGA, but as the two corrections are opposite, the net effect is not too spectacular.
That does not mean that the improvement is not important: the GGA gives a more
accurate description of the many-body electron system than LDA.

One major deficiency which is shared by GGA and LDA is the fact that the
exchange correlation correction does not cancel the self-interaction present in the
Hartree energy. This in particular affects the interpretation of the highest Kohn
Sham energy as the ionisation energy of the system (see also Section 5.4.1).

5.3.3 Exact exchange

The problem with the known exchange functionals which are given as explicit
functions of the density is the presence of self-interaction terms, a feature that was
absent in the Hartree–Fock theory. It is possible to include the HF exchange term
in the exchange correlation functional. This is justified in the so-called optimized
potential method [21, 22] which leads to a Kohn–Sham picture where the exchange
correlation functional is allowed to depend explicitly on the orbitals rather than on
the density. The advantage of having no self-interaction left is counteracted by a
less favourable scaling behaviour: just as in the HF theory, we must calculate and
sum over two-electron integrals which makes this method rather time-consuming.

Finally, hybrid functionals combine exact exchange with traditional functionals.

5.4 Beyond DFT: one- and two-particle excitations

5.4.1 One-particle theories: ionisation and electron addition energies

The DFT is designed to yield correct ground state energies for a many-body system.
It is, however, not justifiable to interpret Kohn–Sham energies as energy levels
which can be detected in a spectroscopy experiment. An exception must be made
for the highest occupied level, which gives the correct ionisation potential in exact
DFT. To see that this is indeed the case, note that if one of the electrons (we take

102 Density functional theory

this to be electron number N) of a neutral system is moved very far away from all
the nuclei in the system, the exact ground state wave function for the N electrons
can be written as

ψN (r1, . . . , rN) = ψN−1(r1, . . . , rN−1)ϕ(rN), (5.49)

where this form is justified by the notion that at the large distance between particle
N and its partners, any correlation between them has disappeared. Note that
ψN−1(r1, . . . , rN−1) is the normalised ground state wave function of the N − 1
particles close to the nuclei, as the perturbation due to particle N can be neglected.

The Hamiltonian for the N-particle system can be written as [23]

H(N) = H(N − 1)+ p2
N

2m
+ Vext(rN)+

N−1∑
j=1

1

|rj − rN | , (5.50)

where H(N − 1) is the (N − 1)-particle Hamiltonian. Writing up the Schrödinger
equation for the N electrons, using the wave function (5.49) and using the fact that
the first term on the right hand side of that equation represents the (N − 1)-particle
ground state, we obtain an equation for ϕ:
EGS

N−1 + p2
N

2m
+ Vext(rN)+

〈
ψN−1

∣∣∣∣∣∣
N−1∑
j=1

1

|rj − rN |

∣∣∣∣∣∣ψN−1

〉ϕ(rN) = EGS
N ϕ(rN).

(5.51)
The asymptotic (large r) behaviour of this equation is exactly the same as that of the
Kohn–Sham equation (which also describes an electron far away from a localised
charge distribution with net charge +1), and this can only be the case when the
‘energy’ eigenvalue of the Kohn–Sham equation is the same as EGS

N − EGS
N−1 [24].

This is a very interesting result when it is combined with Janak’s theorem [25]
which says that the highest occupied orbital energy gives the chemical potential (see
Problem 5.4). In DFT, we can fill the orbitals partially by calculating the density
with a fractional filling factor fj:

n(r) =
∑

j

fj|ψ(r)|2. (5.52)

This shows that we can really take an infinitesimal differential of the total energy
(by varying fN) with respect to the charge in the highest occupied orbital, which
is the proper definition of the chemical potential. From the fact that the chemical
potential and the ionisation energy are both given as the highest occupied Kohn–
Sham eigenvalue, we see that the discrete derivative of the total energy with respect
to the charge in the highest occupied level must be equal to the continuous derivative.

Perdew et al. [26] have argued that the derivative is constant for any fractional
occupation of the highest occupied level, but their reasoning can be criticised

5.4 Beyond DFT: one- and two-particle excitations 103

because they impose this property in their form of the energy-functional (based
on a density operator form), which need not describe the pure-state functional of
DFT [27].

The property we have just derived – the Kohn–Sham energy of the highest occu-
pied level gives us the ionisation energy – is satisfied very well for extended systems,
but poorly for molecules, where the highest occupied Kohn–Sham energy (called
the highest occupied molecular orbital, or HOMO) is generally found a few eV
above the experimental value. Hartree–Fock usually gives a much better value. The
reason why DFT fails so badly in practice lies in the poor asymptotic behaviour of
the available exchange-correlation potentials, which, among other imperfections,
do not cancel the self-interaction and hence give an incorrect asymptotic form of
the Kohn–Sham potential. In our derivation, this asymptotic behaviour played a
crucial role. The fact that we do not have the exact exchange correlation functional
at our disposal therefore is a serious handicap in describing the spectra of atoms
and molecules.

There is a way around this: given the fact that DFT is very good at calculating
ground state energies, we can perform two calculations: one for N electrons, and
one for N − 1 (for the electron addition energies, the second calculation would
be performed for N + 1 electrons). The difference in the total energies then gives
the ionisation (or electron addition) energy. Instead of these two energies, it is also
possible to do one calculation at half filling of the highest occupied (or lowest
unoccupied) level. The Kohn–Sham energy of that level is the derivative of the total
energy with respect to the charge, so that we can predict the ionisation energy from

EGS(N)− EGS(N − 1) =
[
∂Etot

∂N

]
N+1/2

= εKS
N (N + 1/2). (5.53)

A similar procedure gives the electron addition energy. This method is known as
delta-SCF.

5.4.2 General theories for excitation energies

Looking at what causes a system which is in the ground state to go to an excited
state, we conclude that there should always be some time-dependent perturbation
to the Hamiltonian which is responsible for this. Therefore, we should consider the
response of the system to an external, time-dependent perturbation. The standard
approach is to consider the response to a monochromatic perturbation with fre-
quence ω. However, if the response of the system to a perturbation is faster than the
typical period of the perturbation, we may consider a time-independent approach.

An electron which has been excited to a higher energy level will return to its
ground state orbital after some time. This finite lifetime gives rise to a finite width of

104 Density functional theory

the energy spectrum, according to the time–energy uncertainty relation. Therefore,
we can no longer speak of a discrete energy level, but we can still find a fingerprint
of the spectrum in quantities such as the macroscopic dielectric function, which is
the long-wavelength limit of the microscopic function ε(r, r,ω). This will exhibit
peaks as a function of ω whose centres can be viewed as energy levels, and the
widths as lifetimes.

Experimentally, excited states are studied by using spectroscopy techniques. In
direct photo-emission, an incident photon excites an electron to sufficiently high
energy that it can leave the system (ionisation). In inverse photo-emission we send
an electron into the material to occupy an unoccupied state, causing emission of a
photon whose energy is detected (electron addition). In absorption spectroscopy,
the electron or photon that is sent into the system is also detected when it leaves
the system. It may meanwhile have changed its energy by interaction with another
electron in the material which is excited to a higher state.

The first two processes, ionisation and electron addition, are called one-particle
processes; the third is a two-particle process. The two-particle character arises
because, when an electron is excited in a system, it leaves a (positive) hole behind. If
the electron remains in the system, it interacts with the hole, and in particular it may
form an exciton: a bound state of the particle–hole system. We shall briefly describe
the analysis for one-particle processes, and then review two-particle methods.

In the previous subsection, the problem of finding the ionisation energy was
addressed. In general, when performing spectroscopy experiments, levels other
than the highest one may be excited. Of course, one could try to use a generalised
delta-SCF procedure for these, but this is difficult because for a band structure
calculation, we would need many calculations as each k-vector in the Brillouin
zone has its own particular excitation. Another problem is that for a band state,
DFT differs essentially from Hartree–Fock, which allows for calculating excited
states: the HF orbital energies can be interpreted as excitation energies accord-
ing to Koopman’s theorem (which only holds for the highest band in DFT, see
above). This theorem is based on the assumption that the orbitals do not relax
when the configuration changes by emptying full, or filling empty levels. This
approximation fails miserably in solids, for example in diamond, where the band
gap is in HF predicted to be 15 eV, more than twice the experimental gap of
about 7 eV.

What is missing from the description of a ground state system, is the fact that an
electron added to the system does not feel the pure Coulomb interaction from the
ground state charge distribution: the resident electrons will re-order in the presence
of the visiting electron, and tend to screen the effect of the Coulomb interaction. A
many-body theory for band structure takes these effects into account; HF and DFT
do not.

5.4 Beyond DFT: one- and two-particle excitations 105

Such a many-body theory was formulated by Hedin in 1965 [28], for reviews see
Refs. [29, 30]. We shall not go into the details of the many-body theory behind
this approach, but consider a particular, relatively simple form, the COHSEX
approximation in some detail (we shall explain the name COHSEX below). This
approximation can be understood quite well without going into the formal theory.

Suppose we put an extra unit charge into the system. This charge will occupy some
state with orbital wave function ψ(r). We could describe the interaction between
this electron and the resident electrons by Hartree–Fock terms, i.e. a Coulomb inter-
action and an exchange interaction. However, although exchange is treated correctly
(apart from neglecting screening effects, see below), the Coulomb interaction will
push the resident electrons away from the visitor and thereby lower the interaction
between visitor and residents.

Let us first neglect screening. The electrostatic energy is then given by

EES(r) =
∫

n(r′)v(r, r′)|ψ(r)|2d3r d3r′, (5.54)

where the interaction v(r, r′) is the ‘bare’ Coulomb interaction potential v(r, r′) =
1/|r − r′|. Screening can be viewed from two different standpoints. The first is
to consider the change
n in charge distribution due to the presence of the new
electron. The second view is to take for the potential felt by this electron a screened
potential w(r) which falls off more rapidly than the bare potential. Obviously, the
two are connected.

For the correction to the energy due to the change
n(r) in the charge distribution
we write:

E =
∫

n(r′)v(r, r′)|ψ(r)|2d3r d3r′. (5.55)

However, this result is wrong, because the response
n to the test charge is propor-
tional to that charge! Therefore, if we integrate the energy up over the extra charge
put into the system, we get a prefactor of 1/2:

E = 1

2

∫

n(r′)v(r, r′)|ψ(r)|2 d3r d3r′. (5.56)

In order to get a handle on the screened potential w, we note that it is defined as
the potential measured at r′ given the fact that there is a test point charge at r. We
therefore may write:

w(r′, r) =
∫
δ(r − r′′)v(r′′, r′)d3r′′ +

∫

n(r′′|r)v(r′′, r′)d3r′′

= v(r, r′)+
∫

n(r′′|r)v(r′′, r′) d3r′′. (5.57)

Here,
n(r′|r) is the change in the charge density at r′ due to a unit test charge
placed at r. The induced charge density
n(r) due to a charge distribution |ψ(r)|2

106 Density functional theory

is given as the integral of the induced charge
n(r′′|r) over r, weighted by |ψ(r)|2.
Putting these results back into Eq. (5.56) leads to the formal expression

E = 1

2

∫
δ(r − r′)[w(r, r′)− v(r, r′)]|ψ(r)|2 d3r d3r′. (5.58)

If we take the functional derivative of this expression with respect to ψ(r), we
obtain a term

Vψ(r) = 1

2

∫
δ(r − r′)[w(r, r′)− v(r, r′)] d3r′ ψ(r) (5.59)

in the one-particle Schrödinger equation. Exchange is already treated correctly, so
in the exchange term, we can simply replace the bare Coulomb interaction by the
screened interaction. We see that the correction boils down to taking into account
the COulomb Hole and Screened EXchange – hence the name COHSEX.

Now there is still something missing: we do not know the screened interaction
potential w(r, r′). This can however be found in a so-called random phase approx-
imation (RPA) scheme, which is based on perturbation theory. It works as follows.
We place a test charge at position r. As we have seen above, this test charge gener-
ates a change
n of the resident charge distribution, and the bare potential v(r, r′) is
replaced by the screened potential w(r, r′). The relation between the two is usually
formulated in terms of the dielectric constant. This is defined as:

v(r, r′) =
∫
ε(r′, r′′)w(r, r′′) d3r′′. (5.60)

We can therefore write for the screening correction

w(r, r′)− v(r, r′) =
∫

[δ(r′, r′′)− ε(r′, r′′)]w(r, r′′) d3r′′

=
∫

n(r′′|r)v(r′, r′′)d3r′′, (5.61)

where
n(r′′|r) denotes a change of the density at r′′ due to a unit point charge
being placed at r.

Now we view the effect of this point charge at r as a perturbing potential w. The
lowest order correction to the occupied orbital j in stationary perturbation theory is
given by [31]

ψj(r′) =
∑

k unocc.

〈ψk|w|ψj〉
Ej − Ek

ψk(r′). (5.62)

5.4 Beyond DFT: one- and two-particle excitations 107

The total change in the density is therefore given by

n(r′) = 2
∑
j occ.

ψ∗
j (r

′)
ψj(r′)

= 2
∑
j,k

′ ∫ ψ∗
j (r

′)ψk(r′)ψ∗
k (r

′′)ψj(r′′)
Ej − Ek

w(r′, r) d3r′′, (5.63)

where the prime with the sum indicates that the index j runs over occupied, and k
over unoccupied levels. Putting this back into the rightmost term of Eq. (5.61) and
using the equality between the second and third expression in this equation yields

ε(r′, r)− δ(r′, r) = 2
∑
j,k

′ ∫ ∫
ψj(r)ψ∗

k (r)ψ
∗
k (r

′′)ψj(r′′)
(Ej − Ek)|r − r′| d3r′′. (5.64)

In this derivation we have assumed that the effects of the new electron on the resident
one can be completely described in terms of the Hartree term in the Hamiltonian.
This is known as the random phase approximation [32].

Hybertsen and Louie have implemented the full GW approximation into an LDA
framework [33, 34], and obtained energy spectra with excellent agreement with
experiment. The static COHSEX approximation is only a first step in this procedure.
It is possible to replace the relation (5.60) by a local one:

v(r, r′) = w(r, r′)ε(r, r′), (5.65)

which is sometimes done for convenience. The detailed structure overlooked in this
approximation is denoted as local field effects. From the work of Hybertsen and
Louie it is clear that local field effects have a major impact on the energy spectra.

We see that a particle which is added to the system will influence the behaviour of
the other particles. If we could switch off the interaction between the particles, the
newly added particles would occupy sharp energy levels, and the new particle on its
own would completely determine the new level. Landau [35] analysed the many-
body behaviour of liquid helium-3 and argued that if we had a knob with which we
could tune the interactions, the spectrum would change in a continuous way. That
is, for no interaction, the spectrum consists of a series of delta-functions, which
start to broaden and shift when the interactions are switched on. The corresponding
excitations involve, as we have seen, the presence of a new particle (or, in the
case of two-particle problems, a particle occupying a new state), accompanied by a
slight change of the orbitals of the other particles. This excitation is called a quasi-
particle. Quasi-particle excitations can be analysed in terms of many-body Green’s
functions [36].

108 Density functional theory

5.4.3 Two-particle effects

A two-particle description within the many-body theory of Green’s functions can
be formulated: it is known as the Bethe–Salpeter theory. Implementation of this is
possible but generally demanding – for a review see Ref. [37]. Another approach
which potentially describes any type of excitation of a many-body system in the
presence of a time-dependent field is time-dependent density functional theory
(TDDFT) [38–40]. The formalism of this theory is analogous to that of plain DFT,
and the analogue of the DFT Hohenberg–Kohn theorem in TDDFT is the Runge–
Gross theorem. This reads:

Two densities ρ(r, t) and ρ ′(r, t) evolving from a common initial state ψ(R, t =
0) [R = (r1, r2, . . . , rN)] under the influence of two external potentials v(r, t) and
v′(r, t) are always different provided these potentials differ by more than a purely
time-dependent function

v′(r, t) �= v(r, t)+ c(t). (5.66)

The presence of the uniform function c(t) in this last condition is related to the
‘gauge invariance’: multiplying ψ(r, t) by a factor exp[−iC(t)/�] solves the time-
dependent Schrödinger equation with a potential shifted by c(t) = Ċ(t). This is
easily verified.

A time-dependent Kohn–Sham formulation can be derived from this theorem.
This formulation gives the time-evolution of single-particle orbitals which generate
the same density as the full many-body problem. These orbitals evolve according
to a time-dependent Schrödinger equation:

i
∂ψk(r, t)

∂t
=
[
−1

2
∇2 + Vext(r, t)+ VH(r, t)+ Vxc(r, t)

]
ψk(r, t)fork = 1, . . . , N .

(5.67)
The density is now time-dependent: it is as usual given by

n(r, t) =
N∑

k=1

|ψk(r, t)|2. (5.68)

The Hartree and exchange-correlation potentials VH and Vxc are defined in terms
of the time-dependent density using the same expressions as in static DFT. Note,
however, that an exchange-correlation potential that works in static DFT is not
guaranteed to work in TDDFT. In fact this is the greatest weakness of TDDFT
at this moment: it is as yet unclear which are the reliable approximations to this
potential.

Technically, the solution of the time-dependent Kohn–Sham equations can be
carried out in a Crank–Nicholson or in a split-operator scheme (see Appendix 7.2).
The application of these schemes is however slightly tricky [41]. The reason is that
in a proper Crank–Nicholson scheme, we use the Hamiltonian operator evaluated

5.5 A density functional program for the helium atom 109

at t + h/2, where h is the time step in going from t to t + h. As the Hamiltonian
depends on the solutionsψk(t+h/2)which are not yet known, we must first estimate
ψk(t + h) using H evaluated at t (� = 1; do not confuse with the time step h):

ψ̃k(t + h) = 1 + ihH(t)/2

1 − ihH(t)/2
ψk(t). (5.69)

Using the ψ̃k(t + h), we evaluate H̃(t + h). Then we again perform a Crank–
Nicholson step where we use the mean of H(t) and H̃(t + h).

In the split-operator scheme, the solution to the fact that the orbitals are unknown
at t + h/2 can be solved in an elegant way [41]. The scheme brings us from t to
t + h by applying the following operation:

ψk(t + h) = exp(−iT/2) exp[−iV(t + h/2)] exp(−iT/2)ψk(t), (5.70)

where T is the kinetic, and V the potential energy. In order to perform this step, we
need to Fourier-transform back and forth between the momentum and direct-space
representations where the operators occurring in the exponentials are diagonal:

ψk(r, t)
FFT−−→ ψk(p, t)

× exp[−iT/2)−−−−−−−→ ψ ′
k(p, t)

FFT−−→ ψ ′
k(r, t)

× exp[−iV(t+h/2)]−−−−−−−−−−−→
ψ ′′

k (r, t)
FFT−−→ ψ ′′(p, t)

× exp(−iT/2)−−−−−−−−→ ψ ′′′
k (p, t)

FFT−−→ ψ ′′′
k (r, t) = ψk(t + h).

(5.71)

The nice property of applying the second operator (× exp[−iV(t + h/2)]) is that
it does not change the density, as it represents just a phase factor in real space.
Therefore we can just take the orbitalsψ ′

k to evaluate the potential in this procedure.
This implies that we already have ψk at the half-integer steps at our disposal.
Furthermore, we can glue the last stage of this procedure onto the first stage of the
next step, at the expense of not having the ψk at our disposal at the integer time
steps.

A particularly nice sample application of TDDFT is the description of higher
harmonic generation in helium [42], which describes the generation of higher
harmonics in the response to monochromatic light of high intensity [43]. Gen-
erally, TDDFT is a very useful tool for calculating dynamic response functions
(frequency-dependent polarisabilities) [44].

5.5 A density functional program for the helium atom

In this section we describe the construction of a program for the calculation of the
ground state of the helium atom within the local density approximation. As the
two electrons occupy the 1s-orbital, the density and hence the Hartree potential are
radially symmetric and we exploit this symmetry in spatial integrations. Instead

110 Density functional theory

of using basis functions, we solve the radial Schrödinger equation directly, just
as we have done in the first chapter for calculating scattering cross sections. The
program is set up in three steps. First, we use a simple integration algorithm and
combine this with an interpolation routine in order to find the stationary states of
hydrogen-like atoms. Second, a routine for obtaining the Hartree potential from the
(radial) electronic density is added. At this point the results should compare with
those obtained in the previous chapter using Gaussian basis functions. Finally, the
exchange correlation potential is added and we have a fully self-consistent local
density program.

5.5.1 Solving the radial equation

To solve the radial Schrödinger equation you can use the Numerov algorithm which
is discussed in Appendix 7.1 and which has been used for the scattering program in
Chapter 2. However, we also have to solve other differential equations and integ-
rals, and in order to avoid complications we shall not require the O(h6) accuracy
of Numerov’s algorithm – hence you can also use the simpler Verlet–Stoermer
algorithm of Appendix A7.1. It is of course possible and recommended to use
library routines throughout the program. For integrating the radial Schrödinger
equation, a nonuniform grid is often used which is dense near the nucleus where
the Coulomb potential diverges (see Problem 5.1). For the hydrogen atom, the radial
equation for l = 0 reads (in atomic units)[

−1

2
∇2 − 1

r

]
u(r) = Eu(r) (5.72)

where u(r) is given as rR(r), R(r) being the radial wave function. For the hydrogen
atom we know that the solution for the ground state is given by E = −0.5 a.u. and
u(r) ∝ re−r , and this enables us to test our programs. The energy eigenvalues can
be found by integrating the radial Schrödinger equation from some large radius rmax

inward to r = 0 and checking whether the solution vanishes there. The procedure
is analogous to that described in Problem A4. You should first check whether for
E = −0.5 a.u. the radial solution does indeed vanish at r = 0. Note that for the
regular solutions [u(0) = 0] we are looking for, the divergence of the potential near
the origin causes no problems in the integration routine as long as it is not evaluated
at r = 0.

For the starting values at rmax you can substitute the exact values u(rmax) =
rmax exp(−rmax) and similarly for u(rmax −h), but it is also possible to take u(rmax)

equal to 0 and u(rmax −h) equal to a very small value. It is interesting to play around
varying the starting conditions and the value of rmax in order to get a feeling for
how the accuracy is affected by these.

5.5 A density functional program for the helium atom 111

To arrive at a program which determines the spectrum for you, you must couple
the integration routine to a root-finding scheme and apply it to the value of u at the
origin. Although it is in principle possible to solve for the energy derivative of u
alongside the determination of u itself, we assume here that the integration routine
does not provide energy derivatives. Therefore a library root-finding routine must
not use the derivative and the same holds for one you write yourself. In the latter
case, the secant method is appropriate; see Appendix A3. You will have to supply
the boundaries between which the root must lie when using the program.

programming exercise

Combine the integration routine and the root-finding routine into a method
for finding the l = 0 states of a radial potential.

Check Test your program for the hydrogen atom.

5.5.2 Including the Hartree potential

We now describe an extension of the hydrogen program to the helium case, which
implies having a nuclear potential −2/r in the Hamiltonian and requires some
treatment of the electron–electron interaction. In this section we take the latter into
account in the same way as in Section 4.3.2, that is by a so-called Hartree potential
which is the electrostatic potential generated by the charge distribution following
from the wave function. This potential is given by

VH(r) =
∫

d3r′ ns(r′) 1

|r − r′| . (5.73)

Here, ns stands for the density of a single orbital – the total charge density is twice
as large as a result of summation over the spin. The proper Hartree potential is
therefore twice as large, but half of it consists of the self-interaction which we have
subtracted off because this can easily be done for the helium case (see also the end
of Section 4.3.1). Rather than solving for this potential by calculating the integral
(5.73) directly, we shall find it by solving Poisson’s equation:

∇2VH(r) = −4πns(r). (5.74)

Using the radial symmetry of the density and defining U(r) = rVH(r), this equation
reduces to the form

d2

dr2
U(r) = −4πrns(r). (5.75)

This is an ordinary second order differential equation which can be solved again
using Verlet’s algorithm (or a library routine). Note that it is necessary to normalise

112 Density functional theory

the radial wave function before integrating Poisson’s equation! If you take for the
normalisation ∫

dr u2(r) =
∫

dr r2R2(r) = 1, (5.76)

you have already included a factor 4π into the density (arising from the angular
integrations) and the factor 4π in Poisson’s equation drops out:

U ′′(r) = −u2(r)

r
. (5.77)

We shall use the normalisation (5.76) throughout this section.
The solution of Eq. (5.77) contains two integration constants which have to be

fixed by the boundary conditions. We take U(0) = 0 as the first boundary condition.
Elementary electrostatics then leads to the second condition

V ′
H(rmax) = qmax

r2
max

, (5.78)

where qmax is the electron charge contained in a sphere of radius rmax:

qmax =
∫ max

0
dr u2(r). (5.79)

For large rmax, qmax is the total electron charge. In that case we see from the
asymptotic form of (5.78), using the fact that U(rmax) is now constant as a function
of rmax), that U(rmax) = qmax. When carrying out the numerical integration, we
take for the first starting condition U(0) = 0. The second starting condition, for
U(h), is not known at the beginning – we take U(h) = h. As the solution U(r) = αr
solves the homogeneous differential equation, U ′′(r) = 0, we can add this solution
to the numerical solution found, with α taken such as to satisfy the end condition
U(rmax) = qmax, without violating the starting condition U(0) = 0.

programming exercise

Add an extra integration to your program which solves Eq. (5.77).

It is useful to check for correctness by using the hydrogen atom as an example.
The normalised ground state density (in the sense of (5.76)), found at E = −0.5 a.u.,
is 4e−2r and we must solve

U ′′(r) = −4re−2r , (5.80)

with the boundary conditions U(0) = 0, U(∞) = 1, so

U(r) = −(r + 1)e−2r + 1. (5.81)

Check Check whether your program produces these results

5.5 A density functional program for the helium atom 113

The next step is to make the program self-consistent. This is done by adding the
Hartree potential to the nuclear potential and solving for the eigenstate again. You
repeat this process until the energy does not change appreciably between subsequent
steps. The total energy is given by

E = 2ε −
∫

dr VH(r)u
2(r). (5.82)

The Hartree correction arises because the Hartree energy is quadratic in the density.

Check Try to reproduce the results for the helium Hartree–Fock calculation in
Section 4.3.2. In fact, the present method is more accurate as the wave functions
are not restricted to linear combinations of four Gaussians. For an integration
step h = 0.01 (in the Verlet algorithm) you will find for the eigenvalue of the
radial Schrödinger equation the value −0.923 a.u. and for the Hartree correction
1.0155 a.u., so that the total energy amounts to E = −2.861 a.u., in good agree-
ment with the result obtained in the previous chapter. The experimental value
is −2.903 a.u.

5.5.3 The local density exchange potential

The aim of the exercise has not yet been achieved: we must calculate the energy and
eigenvalues in the density functional formalism within the local density approxim-
ation. Remember that in density functional theory, the density that gives rise to the
Hartree potential is the full density n(r), i.e. the density of the two electrons, and in
the previous section we have subtracted off the self-interaction contribution, lead-
ing to a reduction by a factor of 2 of the Hartree potential. Multiplying the Hartree
potential by a factor of 2 in the previous program yields very poor results and there-
fore we hope that the exchange potential will correct for the self-interaction. As we
have noted above, a popular form of the local density exchange potential is the one
based on a treatment of the exchange hole in a homogeneous electron gas and is
given by

Vx(r) = Const. × n1/3(r) (5.83)

where the constant is given as

Const. = −
(

3

π

)1/3

. (5.84)

Here, again, the full density is to be taken in the right hand side of (5.83) and this
is twice the single electron density arising from the radial Schrödinger equation,
since we have two electrons. Therefore, in terms of the radial eigenfunctions u

114 Density functional theory

normalised as in (5.76), our exchange potential reads

Vx(r) = −
[

3u2(r)

2π2r2

]1/3

(5.85)

which, for the s-states under consideration, depends only on the radial coordinate
r. The total energy is given by

E = 2ε −
∫

dr VH(r)u
2(r)+ 1

2

∫
dr u2(r)Vx(r). (5.86)

The extension of your program to a local density version is now straightforward:
instead of adding only the Hartree potential to the nuclear attraction, you take twice
this potential and add the exchange potential to it. The self-consistency loop remains
unaltered.

programming exercise

Extend your Hartree–Fock program to include the exchange potential.

Check If your program is correct, it should give the following values for the
energies: ε = −0.52 and E = −2.72 a.u.

Obviously the result is inferior to Hartree–Fock as the exchange potential is
included only in an approximate way. Improvement is possible by considering
an exchange correlation potential based on an interpolation of quantum Monte
Carlo results by Ceperley and Alder [45], and it yields a ground state energy of
E = −2.83 a.u. [9] which is an important improvement with respect to −2.72,
although it is still worse than the HF result of −2.86 a.u. Implementation of this is
straightforward and will be done in Problem 5.6.

5.6 Applications and results

In numerous calculations for atoms, molecules and solids the DFT–LDA approach
has been very successful. In this section we quote some results which have been
taken from the review by Jones and Gunnarson [4].

The original applications were to the ground state properties of solids, and some
typical results are shown in Table 5.1. Binding energies for atoms and molecules
are often better than HF (Table 5.3); total energies are close to but a bit worse than
HF (Table 5.2). Interpretation of the Kohn–Sham eigenvalues as excitation ener-
gies works surprisingly well in many solids, where the energy bands frequently
agree with those measured in photo-emission for example (see Problem 5.4 and

5.6 Applications and results 115

Table 5.1. Lattice constants and cohesive energies for
diamond, Si and Ge. Atomic units are used.

Lattice constant Cohesion energy

DFT Expt DFT Expt

Diamond 6.807 6.740 7.58 7.37
Si 10.30 10.26 4.84 4.64
Ge 10.69 10.68 4.02 3.85

Data taken from Ref. [4].

Table 5.2. Energies in a.u. for various atoms.

Atom HF DFT Expt.

Li −7.433 −7.353 −7.479
C −37.702 −37.479 −37.858
O −74.858 −74.532 −75.113

Data taken from Ref. [4]

Table 5.3. Binding energies in a.u. for diatomic
molecules.

Atom HF DFT Expt.

H2 3.64 4.91 4.75
C2 0.79 7.19 6.32
O2 1.28 7.54 5.22

Data taken from Ref. [4].

Section 5.3). But we should be cautious about interpreting ψk and εk as any-
thing other than auxiliary quantities for constructing the ground state energy and
density as explained extensively in that section. There are several examples where
interpretation of εk as excitation energies goes drastically wrong: band gaps in semi-
conductors and insulators are almost invariably too small, and ionisation energies for
atoms and molecules are usually way too small. The inclusion of self-interaction
corrections, mentioned in the previous subsection, gives better results for these
gaps, but remember that these corrections introduce dependence of the Hamiltonian
on individual orbitals instead of the density only and are therefore incompatible

116 Density functional theory

with DFT. The best approach is to use many-body theories for calculating actual
excitation energies.

Exercises

5.1 [C] Instead of the regular grid which was used in the helium program of Section 5.5,
it is better to use a grid with a step size which grows from a very small value near the
nucleus to larger values in the valence region, because the wave function will oscillate
more rapidly near the nucleus as a result of the deep Coulomb potential. Consider a
grid with grid points given by the following formula:

rj = rp[exp(jδ)− 1], j = 0, 1, . . . , jmax.

The grid point with j = 0 coincides with the nucleus and the grid runs up to a radius
rmax which fixes the value of the prefactor rp to

rp = rmax/[exp(jmaxδ)− 1].
The grid is defined by the number of grid points jmax, by the outermost point rmax and
by the parameter δ which determines how much the grid constant near the nucleus
differs from that near rmax. All these three values must be specified and then the
prefactor rp can be determined.

(a) Show that, in terms of j, the radial Schrödinger equation

d2

dr2 u(r) = [V(r)− E]u(r)
transforms into

d2

dj2 u(j)− δ
d

dj
u(j) = r2

pδ
2e2jδ[V(j)− E]u(j),

where u(j) = u(rj).
(b) Write a general integral

∫ max
0 f (r)dr as an integral over j.

(c) [C] Transform all integrals and differential equation methods in the density
functional program to the nonhomogeneous grid defined above. Compare the
accuracies of the two versions.

(d) Show that the first derivative occurring in the radial Schrödinger equation in
terms of j above can be transformed away by writing u(j) = v(j) exp(jδ/2). Show
that the resulting equation for v reads

d2

dj2 v(j)− δ2

4
v(j) = r2

pδ
2e2jδ[V(j)− E]v(j).

(e) [C] Numerov’s algorithm (see Appendix A7.1) can be used for solving this
differential equation. Try this out for the ground state of the hydrogen atom and
show that the numerical error scales as 1/N4 as is expected (see Problem A3).
Note that when the number of points is doubled, δ should be decreased by a
factor of 2.

Exercises 117

5.2 [C] The Hartree energy

EH = 1

2

∫
d3r d3r′ n(r′)n(r)

|r − r′|
overestimates the classical electrostatic energy of the electrons because it includes
interactions of the electrons with themselves – these are the so-called
self-interactions. In Hartree–Fock theory, this spurious effect is cancelled by the
exchange energy. In density functional theory, the exchange correlation energy does
not ensure this cancellation a priori and we can only hope that it cancels the
self-interaction as much as possible. To see to what extent the exchange correlation
potential succeeds in doing so, we consider the hydrogen atom in DFT (of course,
DFT was designed for many-electron systems, but its use is not a priori restricted to
systems containing more than one electron). In the hydrogen atom, we find a
nonvanishing Hartree and exchange correlation energy, which can easily be evaluated
with our DFT program for helium.

Change the nuclear charge back to Z = 1 and make sure that the density used in
the Hartree and exchange correlation energies is evaluated for the single electron (i.e.
not multiplied by 2 as in the helium case). Evaluate both energies for the exact
solution of the hydrogen atom.

You should find that the exchange correlation energy compensates about 80% of
the self-interaction. For better exchange correlation energies, a value of 96% can be
found – see the following problem and Ref. [9]. See also Ref. [46] for more examples.

5.3 [C] The Slater exchange potential

Vx(r) = −
(

3

π

)1/3

n1/3(r)

is based on the exchange energy in a homogeneous electron gas [47]. It is quite a crude
approximation, and a refinement can be made using quantum Monte Carlo results
obtained by Ceperley and Alder [9, 11, 45]. This leads to a parametrised correlation
energy which should be added to the Slater term given above. The parametrisation is
given in terms of the parameter rs which is related to the density n according to

n = 3

4πr3
s

.

The parametrisation is split into two parts: rs ≥ 1 and rs < 1. We need an expression
for the correlation energy parameter εc defined by

Ec =
∫

d3r n(r)εc(n)n(r).

(a) Show that from this an expression for the correlation potential Vc can be derived
according to

Vc(rs) =
(

1 − rs

3

d

drs

)
εc(rs).

118 Density functional theory

Table 5.4. Parameters for correlation energy

Unpolarised Polarised

A 0.0311 0.01555
B −0.048 −0.0269
C 0.0020 0.0014
D −0.0116 −0.0108
γ −0.1423 −0.0843
β1 1.0529 1.3981
β2 0.3334 0.2611

(b) [C] A parametrised form of εc is given by the following expressions. For rs ≥ 1
we have

εc = γ /(1 + β1
√

rs + β2rs)

and for rs > 1
εc = A ln rs + B + Crs ln rs + Drs.

From this, we obtain the following expressions for the correlation potential:

Vc(rs) = εc
1 + 7/6β1

√
rs + β2rs

1 + β1
√

rs + β2rs

for rs ≥ 1 and

Vc(rs) = A ln rs + B − A/3 + 2

3
Crs ln rs

+ (2D − C)rs/3.

The values of the parameters A, B etc. depend on whether we are dealing with the
polarised (all spins same z component) or unpolarised case. For both cases, the
values are given in Table 5.4.

Use this parametrisation in your helium density functional theory program
(unpolarised). You should find an energy E = −2.83 atomic units,to be compared
with −2.72 without this correction.

(c) [C] Use the polarised parametrisation for the hydrogen program of the previous
problem. You should find an energy E = −0.478 a.u.

(d) [C] It is also possible to combine the self-energy correction with the correlation
energy. You should consult the paper by Perdew and Zunger [9], if you intend to
do this. This results in an energy E = −2.918 a.u., which is only 0.015 a.u. off the
experimental value.

5.4 In this problem, we consider a generalisation of Koopman’s theorem (see
Section 4.5.3) to the density functional formalism. To this end, we consider the
spectrum {εi} and the corresponding eigenstates of the Kohn–Sham Hamiltonian.
We consider the chemical potential, which is found by removing a small amount of

References 119

charge from the system. In practice this means that the highest level (which is level
N) is not fully occupied. We usually calculate the density according to

n(r) =
N∑

i=1

fi|ψN (r)|2.

The change in the density is realised by reducing the value fN slightly:

fN → fN − δfN .

This induces a change in the density

δn(r) = δfN |ψN (r)|2.

The total energy is calculated according to:

E(N) =
N∑

i=1

fiεi −
∫

1

2
d3r d3r′ n(r)n(r′)

|r − r′| −
∫

d3r n(r)Vxc(r)+ Exc[n].

The levels εi arise from taking the matrix elements 〈ψi|H(N)|ψi〉. As a result of the
change in density, both the Hamiltonian occurring in these matrix elements and the
remaining terms in the energy expression change.

We therefore have three contributions to the change in the total energy. First, the
factor fN in the sum over the energy levels changes; second, the potential for which
the levels are calculated changes slightly; and third, the correction terms in the
expression for the energy change.

Show that, to linear order in δn(r), the combined effect of the change in the
Hamiltonian matrix elements is precisely compensated by the change in the
remaining terms in the energy expression so that we obtain

E(N)− E(N − δfN) = εNδfN

Hint: the change in the exchange correlation energy Exc[n] is given by the expression

δExc[n] =
∫

d3r δn(r)
δExc[n]
δn(r)

=
∫

d3r Vxc[n](r)δn(r).
This proves Janak’s theorem [25].

References

[1] C. Pisany, R. Dovea, and C. Roetti, Hartree–Fock Ab-initio Treatment of Crystalline Systems.
Berlin, Springer, 1988.

[2] P. Hohenberg and W. Kohn, ‘Inhomogeneous electron gas,’ Phys. Rev., 136 (1964), B864–71.
[3] W. Kohn and L. J. Sham, ‘Self-consistent equations including exchange and correlation effects,’

Phys. Rev., 140 (1965), A1133.
[4] R. O. Jones and O. Gunnarsson, ‘The density functional formalism, its applications and

prospects,’ Rev. Mod. Phys., 61 (1989), 689–746.
[5] S. Lundqvist and N. March, Theory of the Inhomogeneous Electron Gas. New York, Plenum,

1983.

120 Density functional theory

[6] P. Phariseau and W. M. Temmerman, The Electronic Structure of Complex Systems, NATO ASI
series B. New York, Plenum, 1984.

[7] R. M. Martin, Electronic Structure. Cambridge, Cambridge University Press, 2004.
[8] D. C. Langreth and M. J. Mehl, ‘Easily implementable nonlocal exchange-correlation energy-

functional,’ Phys. Rev. Lett. 47 (1981), 446–50.
[9] J. P. Perdew and A. Zunger, ‘Self-interaction correction to density-functional approximations

for many-electron systems,’ Phys. Rev. B, 23 (1981), 5048–79.
[10] J. C. Slater, Quantum Theory of Molecules and Solids, vol. IV. New York, McGraw-Hill, 1982.
[11] D. M. Ceperley, ‘Ground state of the fermion one-component plasma – a Monte Carlo study in

two and three dimensions,’ Phys. Rev. B, 18 (1978), 3126–38.
[12] U. von Barth and L. Hedin, ‘A local exchange-correlation potential for the spin-polarized case:

I,’ J. Phys. C, 5 (1972), 1629–42.
[13] O. Gunnarson and B. I. Lundqvist, ‘Exchange and correlation in atoms, molecules and solids

by the spin-density-functional formalism,’ Phys. Rev. B, 13 (1976), 4274–98.
[14] J. P. Perdew and Y. Wang, ‘Accurate and simple density functional for the electronic exchange

energy: Generalized gradient approximation,’ Phys. Rev. B, 33 (1986), 8800–2.
[15] J. P. Perdew, ‘Density-functional approximation for the correlation energy of the inhomogeneous

electron gas,’ Phys. Rev. B, 33 (1986), 8822–4.
[16] Y. Wang and J. P. Perdew, ‘Correlation hole of the spin-polarized electron gas, with exact

small-wave-vector and high-density scaling,’ Phys. Rev. B, 44 (1991), 13298–307.
[17] A. D. Becke, ‘Density functional exchange energy approximation with correct asymptotic

behaviour,’ Phys. Rev. A, 38 (1988), 3098–100.
[18] C. Lee, W. Yang, and R. G. Parr, ‘Development of the Colle–Salvetti correlation-energy formula

into a functional of the electron density,’ Phys. Rev. B, 37 (1988), 785–9.
[19] J. P. Perdew, K. Burke, and M. Enzerhof, ‘Generalized gradient approximation made simple,’

Phys. Rev. Lett., 77 (1996), 3865–86.
[20] J. P. Perdew, K. Burke, and M. Enzerhof, ‘Generalized gradient approximation made simple

(Erratum),’ Phys. Rev. Lett., 78 (1997), 1396.
[21] R. T. Sharp and G. K. Horton, ‘A variational approach to the unipotential many-electron problem,’

Phys. Rev., 90 (1953), 317.
[22] J. D. Talman and W. F. Shadwick, ‘Optimized effective atomic central potential,’ Phys. Rev. A,

14 (1976), 36–40.
[23] J. D. Talman and W. F. Shadwick, ‘Asymptotic behavior of atomic and molecular wave functions,’

Proc. Natl. Acad. Sci, 77 (1980), 4403–6.
[24] M. Levy, J. P. Perdew, and V. Shani, ‘Exact differential equation for the density and ionization

energy of a many-particle system,’ Phys. Rev. A, 30 (1984), 2745–8.
[25] J. F. Janak, ‘Proof that ∂E/∂ni = ε in density-functional theory,’ Phys. Rev. B, 18 (1978),

7165–8.
[26] J. P. Perdew, R. G. Par, M. Levy, and J. L. Balduz, ‘Density-functional theory for frac-

tional particle number: derivative discontinuities of the energy,’ Phys. Rev. Lett., 49 (1982),
1691–4.

[27] J. F. Janak, ‘Significance of the highest occupied Kohn–Sham eigenvalue,’ Phys. Rev. B, 56
(1997), 12042–5.

[28] L. Hedin, ‘New method for calculating the one-particle Green’s function with application to the
electron-gas problem,’ Phys. Rev., 139 (1965), A796–A823.

[29] F. Aryasetiawan and O. Gunnarsson, ‘The GW method,’ Rep. Prog. Phys., 61 (1998),
237–312.

[30] W. G. Aulbur, L. Jönsson, and J. W. Wilkins, ‘Quasiparticle calculations in solids,’ in Solid
State Physics, vol. 54 (H. Ehrenreich and F. Spaepen, eds.). San Diego, Academic Press, 2000,
pp. 1–218.

References 121

[31] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, vols. 1 and 2. New York/Paris,
John Wiley/Hermann, 1977.

[32] D. Pines, Elementary Excitations in Solids. New York, Wiley, 1964.
[33] M. S. Hybertsen and S. G. Louie, ‘First-principles theory of quasiparticles: calculation of band

gaps in semiconductors and insulators,’ Phys. Rev. Lett., 55 (1985), 1418–21.
[34] M. S. Hybertsen and S. G. Louie, ‘Electron correlation in semiconductors and insulators: Band

gaps and quasiparticle energies,’ Phys. Rev. B, 34 (1986), 5390.
[35] L. D. Landau, ‘Theory of the Fermi liquid,’ Soviet Physics JETP, 3 (1957), 920–5.
[36] G. D. Mahan, Many-Particle Physics, 3rd edn. New York, Kluwer Academic/Plenum Press,

2000.
[37] G. Onida, L. Reining, and A. Rubio, ‘Electronic excitations: density functional versus many-body

Green’s function approaches,’ Rev. Mod. Phys., 74 (2002), 601–59.
[38] E. Runge and E. K. U. Gross, ‘Density-functional theory for time-dependent systems,’ Phys.

Rev. Lett., 52 (1984), 997–1000.
[39] E. K. U. Gross, J. F. Dobson, and M. Petersilka, ‘Density functional theory of time-independent

phenomena,’ in Topics in Current Chemistry: Density Functional Theory (R. F. Nalewajski, ed.),
Heidelberg, Springer, 1996, pp. 81–172.

[40] R. van Leeuwen, ‘Key concepts in time-dependent density-functional theory,’ Int. J. Mod. Phys.
B, 15 (2001), 1969–2023.

[41] H. Appel and E. K. U. Gross, ‘Static and time-dependent many-body effects via density-
functional theory,’ in Quantum Simulations of Complex Many-Body Systems: From Theory to
Algorithms; Kerkrade, The Netherlands (J. Grotendorst, D. Marx, and A. Muramatsu, eds.),
Jülich, John von Neumann Institute for Computing, 2002, pp. 255–68.

[42] J. F. Ward and G. H. C. New, ‘Optical third-harmonic generation in gases by a focused laser
beam,’ Phys. Rev., 185 (1969), 57–72.

[43] S. Erhard and E. K. U. Gross, ‘High harmonic generation in hydrogen and helium atoms subject to
one- and twocolor laser pulses,’ in Multiphoton Processes 1996 (P. Lambropoulus and H. Walther,
eds.). Bristol, Institute of Physics, 1997, pp. 37–46.

[44] S. J. A. van Gisbergen, J. M. Pacheco, and E. J. Baerends, ‘Influence of the exchange-correlation
potential in density-functional calculations on polarizabilities and absorption spectra of alkali-
metal clusters,’ Phys. Rev. A, 63 (2001), 063201.

[45] D. M. Ceperley and B. J. Alder, ‘Ground state of the electron gas by a stochastic method,’ Phys.
Rev. Lett., 45 (1980), 566–9.

[46] C.-O. Almbladh and A. C. Pedroza, ‘Density-functional exchange-correlation potentials and
orbital eigenvalues for light atoms,’ Phys. Rev. A, 29 (1984), 2322–30.

[47] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York, Holt, Reinhart and Winston,
1976.

6

Solving the Schrödinger equation in periodic solids

In the previous chapter we encountered density functional theory (DFT) which is
extensively used for calculating the electronic structure of periodic solids. Aside
from DFT, carefully designed potentials often allow accurate electronic structures to
be obtained by simply solving the Schrödinger equation without going through
the self-consistency machinery of DFT. In both approaches it is necessary to solve
the Schrödinger equation and the present chapter focuses on this problem, although
some comments on implementing a DFT self-consistency loop will be made.

The large number of electrons contained in a macroscopic crystal prohibits a
direct solution of the Schrödinger equation for such a system. Fortunately, the solid
has periodic symmetry in the bulk, and this can be exploited to reduce the size
of the problem significantly, using Bloch’s theorem, which enables us to replace
the problem of solving the Schrödinger equation for an infinite periodic solid by
that of solving the Schrödinger equation in a unit cell with a series of different
boundary conditions – the so-called Bloch boundary conditions. Having done this,
there remains the problem that close to the nuclei the potential diverges, whereas it is
weak when we are not too close to any of the nuclei (interstitial region). We can take
advantage of the fact that the potential is approximately spherically symmetric close
to the nuclei, but further away the periodicity of the crystal becomes noticeable.
These two different symmetries render the solution of the Schrödinger equation in
periodic solids difficult. In this chapter we consider an example of an electronic
structure method, the augmented plane wave (APW) method, which uses a spatial
decomposition of the wave functions: close to the nuclei they are solutions to a
spherical potential, and in the interstitial region they are plane waves satisfying the
appropriate Bloch boundary conditions.

It is possible to avoid the problem of the deep potential altogether by replacing
it by a weaker one, which leaves the interesting physical properties unchanged.
This is done in the pseudopotential method which we shall also discuss in this
chapter.

122

6.1 Introduction: definitions 123

x

y
z

a1

a1a1

a2
a2a2

a3

a3a3

Figure 6.1. Lattice structure of the simple cubic (left), body-centred cubic (middle)
and face-centred cubic (left) lattices with basis vectors.

Before going into these methods, we start with a brief review of the theory of
electronic structure of solids. For further reading concerning the material in the first
three sections of this chapter, we refer to general books on solid state physics [1, 2].

An excellent reference for computational band structures is the book by
R. M. Martin [3].

6.1 Introduction: definitions

6.1.1 Crystal lattices

We consider crystals in which the atomic nuclei are perfectly ordered in a periodic
lattice. Such a lattice, a so-called Bravais lattice, is defined by three basis vec-
tors. The lattice sites R are given by the integer linear combinations of the basis
vectors:

R =
3∑

i=1

niai, ni integer. (6.1)

Each cell may contain one or more nuclei – in the latter case we speak of a lat-
tice with a basis. The periodicity implies that the arrangement of these nuclei
must be the same within each cell of the lattice. Of course, in reality solids will
only be approximately periodic: thermal vibrations and imperfections will destroy
perfect periodicity and moreover, periodicity is destroyed at the crystal surface.
Nevertheless, the infinite, perfectly periodic lattice is usually used for calculat-
ing electronic structure because periodicity facilitates calculations and a crystal
usually contains large regions in which the structure is periodic to an excellent
approximation.

Three common crystal structures, the simple cubic (sc), body-centred cubic (bcc)
and face-centred cubic (fcc) structures, are shown in Figure 6.1.

124 Solving the Schrödinger equation in periodic solids

6.1.2 Reciprocal lattice

A function which is periodic on a Bravais lattice can be expanded as a Fourier series
with wave vectors K whose dot product with every lattice vector of the original
lattice yields an integer times 2π :

R · K = 2πn, integer n. (6.2)

The vectors K form another Bravais lattice – the reciprocal lattice. The basis vectors
bj of the reciprocal lattice are defined by

ai · bj = 2πδij (6.3)

and an explicit expression for the bj is

bj = 2πεjkl
ak × al

a1 · (a2 × a3)
. (6.4)

εjkl is the Lévi–Civita tensor, which is +1 for jkl an even permutation of (1, 2, 3),
and −1 for odd permutations.

In the reciprocal lattice, the first Brillouin zone is defined as the volume in
reciprocal space consisting of the points that are closer to the origin than to any
other reciprocal lattice point. A general wave vector q is usually decomposed into
a vector k of the first Brillouin zone and a vector K of the reciprocal lattice:

q = k + K. (6.5)

For a finite rectangular lattice of size Lx ×Ly ×Lz, the allowed wave vectors q to
be used for expanding functions defined on the lattice are restricted by the boundary
conditions. A convenient choice is periodic boundary conditions in which functions
are taken periodic within the volume of Lx×Ly×Lz. In that case, vectors in reciprocal
space run over the following values:

q = 2π

(
nx

Lx
,

ny

Ly
,

nz

Lz

)
(6.6)

with integer nx, ny and nz.

6.2 Band structures and Bloch’s theorem

We know that the energy spectra of electrons in atoms are discrete. If we place two
identical atoms at a very large distance from each other, their atomic energy levels
will remain unchanged. Electrons can occupy the atomic levels on either of both
atoms and this results in a double degeneracy. On moving the atoms closer together,
this degeneracy will be lifted and each level splits into two; the closer we move the
atoms together, the stronger this splitting. Suppose we play the same game with

6.2 Band structures and Bloch’s theorem 125

three instead of two atoms: then the atomic levels split into three different ones,
and so on. A solid consists of an infinite number of atoms moved close together
and therefore each atomic level splits into an infinite number, forming a band. It is
our aim to calculate these bands.

We shall now prove the famous Bloch theorem which says that the eigenstates of
the Hamiltonian with a periodic potential are the same in the lattice cells located at
Ri and Rj up to a phase factor exp[iq · (Ri − Rj)] for some reciprocal vector q. We
shall see that a consequence of this theorem is that the energy spectra are indeed
composed of bands.

We write the Schrödinger equation in reciprocal space. The potential V is periodic
and it can therefore be expanded as a Fourier sum over reciprocal lattice vectors K:

V(r) =
∑

K

eiK·rVK. (6.7)

An arbitrary wave function ψ can expanded as a Fourier series with wave vectors
q allowed by the periodic boundary conditions (6.6):1

ψ(r) =
∑

q

eiq·rCq. (6.8)

Writing q = k + K, the Schrödinger equation reads (in atomic units)[
1

2
(k + K)2 − ε

]
Ck+K +

∑
K′

VK−K′Ck+K′ = 0. (6.9)

This equation holds for each vector k in the first Brillouin zone: in the equation,
wave vectors k + K and k + K′ are coupled by the term with the sum over K′, but
no coupling occurs between k + K and k′ + K′ for different k and k′. Therefore,
for each k we can, in principle, solve the eigenvalue equation (6.9) and obtain the
energy eigenvalues ε and eigenvectors Ck with components Ck+K, leading to wave
functions of the form (see (6.8))

ψk(r) = eik·r
(∑

K

Ck+KeiK·r
)

. (6.10)

The eigenvalues form a discrete spectrum for each k. The levels vary with k and
therefore give rise to energy bands. Equation (6.9) yields an infinite spectrum for
each k. We might attach a label n, running over the spectral levels, alongside the
label k, to the energy level ε: ε = εnk.

We can rewrite (6.10) in a more transparent form. To this end we note that the
expression in brackets in this equation is a periodic function in r. Denoting this
periodic function by uk(r), we obtain

ψk(r) = eik·ruk(r). (6.11)

1 For an infinite solid, the sum over q becomes an integral.

126 Solving the Schrödinger equation in periodic solids

The eigenstates of the Hamiltonian can thus be written in the form of a plane wave
times a periodic function. Equivalently, evaluating such a wave function at two
positions, separated by a lattice vector R, yields a difference of a phase factor eik·R,
according to our previous formulation of Bloch’s theorem.

Electronic structure methods for periodic crystals are usually formulated in recip-
rocal space, by solving an equation like (6.9) in which the basis functions are plane
waves labelled by reciprocal space vectors. In fact, Bloch’s theorem allows us to
solve for the full electronic structure in real space by considering only one cell
of the lattice for each k and applying boundary conditions to the cell as dictated
by the Bloch condition (6.11). In particular, each facet of the unit cell boundary
has a ‘partner’ facet which is found by translating the facet over a lattice vector
R. The solutions to the Schrödinger equation should on both facets be equal up to
factor exp(ik · R). These boundary conditions determine the solutions inside the
cell completely. We see that we can try to solve the Schrödinger equation either
in reciprocal space or in real space. For nonperiodic systems, real-space methods
enjoy an increasing popularity [4–7].

6.3 Approximations

The Schrödinger equation for an electron in a crystal can be solved in two limiting
cases: the nearly free electron approximation, in which the potential is considered
to be weak everywhere, and the tight-binding approximation in which it is assumed
that the states are tightly bound to the nuclei. Both methods aim to reduce the
difficulty of the band structure problem and to increase the understanding of band
structures by relating them to those of two different systems which we can easily
describe and understand: free electrons and electrons in single-atom orbitals. The
tight-binding method has led to many computational applications. We shall apply
it to graphene and carbon nanotubes.

6.3.1 The nearly free electron approximation

It is possible to solve Eq. (6.9) if the potential is small, by using perturbative
methods. This is called the nearly free electron (NFE) approximation. You might
consider this to be inappropriate as the Coulomb potential is certainly not small
near the nuclei. Surprisingly, the NFE bands closely resemble those of aluminium,
for example! We shall see later on that the pseudopotential formalism provides an
explanation for this.

The main results of the NFE are that the bands are perturbed by an amount
which is quadratic in the size of the weak potential V except close to Bragg planes

6.3 Approximations 127

E
ne

rg
y

k

Figure 6.2. Nearly free electron spectrum for a periodic potential in one dimension.

consisting of reciprocal points q which satisfy

|q| = |K − q|, (6.12)

where K is a reciprocal lattice vector. At a Bragg plane, a band gap of size 2|Vq|
opens up. Figure (6.2) gives the resulting bands for the one-dimensional case.
Figure (6.3) shows how well the bands in aluminium resemble the free electron
bands.

6.3.2 The tight-binding approximation

The tight-binding (TB) approximation will be discussed in more detail as it is an
important way for performing electronic structure calculations with many atoms
in the unit cell. It naturally comes about when considering states which are tightly
bound to the nuclei. The method is essentially a linear combination of atomic
orbitals (LCAO) type of approach, in which the atomic states are used as basis
orbitals. Let us denote these states, which are assumed to be available from some
atomic electronic structure calculation, by up(r−R), in which the index p labels the
levels of an atom located at R. From these states, we build Bloch basis functions as

φp,k(r) = 1√
N

∑
R

eik·Rup(r − R), (6.13)

and a general Bloch state is a linear combination of these:

φk(r) =
∑

p

Cp(k)φp,k(r). (6.14)

128 Solving the Schrödinger equation in periodic solids

k

X W L KΓΓ

E
ne

rg
y

(a
to

m
ic

 u
ni

ts
)

 0.0

 0.1

 0.2

 0.3

 0.4

–0.1

 0.5

Figure 6.3. Band structure of aluminium. Also shown (open squares) is the free
electron result. X , W etc. are special points in the Brillouin zone (see Section 6.5).

The coefficients Cp(k) can be found from the variational principle. Applying the
techniques of Chapter 3, we see that we must solve the generalised eigenvalue
problem

HC(k) = ESC(k) (6.15)

for the vector C(k)with components Cp(k). The matrix elements of the Hamiltonian
H and of the overlap matrix S (which depend on k) are given by

Hpq = 〈φp,k|H|φq,k〉 and (6.16a)

Spq = 〈φp,k|φq,k〉. (6.16b)

Writing out the matrix elements using (6.13) and the lattice periodicity, we obtain
the following expressions:

Hpq =
∑

R

eik·R
∫

d3r up(r − R)Huq(r) (6.17a)

Spq =
∑

R

eik·R
∫

d3r up(r − R)Suq(r). (6.17b)

As the states up(r) are rather strongly localised near the nuclei, they will have
virtually no overlap when centred on atoms lying far apart. This restricts the sums
in (6.17) to only the first few shells of neighbouring atoms, sometimes only nearest

6.3 Approximations 129

neighbours. The numerical solution of the generalised eigenvalue problem HC =
ESC is treated in Chapter 3.

Of course, we may relax the condition that we consider atomic orbitals as basis
functions, and extend the method to allow for arbitrary, but still localised, basis
functions. This even works for the valence orbitals in metals, although in that case
relatively many neighbours have to be coupled, so that the approach pays off only
for large unit cells. We may use the tight-binding approach for fixed interatomic
distances – for a tight-binding method in which the atoms are allowed to move,
thereby requiring varying distances, see Chapter 9.

The tight-binding method comes in two flavours. The first is the semi-empirical
TB method, in which only a few valence orbital basis functions are used. Their
couplings are restricted to nearest neighbour atoms and the value of the couplings
are fitted to either experimental data such as band gaps and band widths, or to similar
data obtained using more sophisticated band structure calculations. Once satisfact-
ory values have been obtained for the TB couplings, more complicated structures
may be considered which are beyond reach of self-consistent DFT calculations.

We may also be more ambitious and use more TB parameters which are fitted
to DFT Hamiltonians. This is particulary useful when the TB Hamiltonians were
obtained using localised basis functions, such as Gaussian or Slater orbitals (see
Chapter 4 for a dicussion of these basis sets). For DFT calculations, Slater type
orbitals are becoming increasingly popular, as the reason for choosing Gaussians
in Hartree–Fock calculations, i.e. the fact that integrals can be evaluated analytically,
ceases to be relevant in DFT with its highly nonlinear exchange correlation potential.
Therefore, the Hamiltonian naturally has a tight-binding form, and this means that
it is sparse, that is, a small minority of the elements of the Hamiltonian are nonzero.
Such a Hamiltonian allows for iterative methods to be used.

In the next subsection we consider an appealing application of the tight-binding
method: graphene and carbon nanotubes.

6.3.3 Tight-binding calculation for graphene and carbon nanotubes

In this subsection, we calculate the band structure of a carbon nanotube within
the tight-binding approximation. It is a very instructive exercise which is strongly
recommended as an introduction to band structure calculations. Here we follow the
discussion in Refs. [3, 8].

We assume that only elements of the Hamiltonian and overlap matrix coupling
two atomic orbitals are relevant, and that three-point terms do not occur. This is the
so-called Slater–Koster approximation [9]. We shall first apply this to graphene,
which is a sheet consisting of carbon atoms ordered within a hexagonal lattice. This
is not a Bravais lattice, but it can be described as a triangular Bravais lattice with a

130 Solving the Schrödinger equation in periodic solids

Figure 6.4. Hexagonal lattice of the graphene sheet with basis vectors a1 and a2
indicated. The zigzag nanotube is also indicated.

basis consisting of two atoms, A and B (see Figure 6.4). The two basis vectors are

a1 = a

(
1

2

√
3,

1

2

)
; a2 = a

(
1

2

√
3, −1

2

)
. (6.18)

where the lattice constant a = 2.461 Å. We only include nearest neighbour
interactions.

The most relevant part of the band structure is the valence band – it turns out that
this is formed by the π -orbitals which are built from the pz-atomic orbitals. This
leads us to taking only a single orbital per atom into account. Furthermore we keep
only nearest neighbour matrix elements in the tight-binding matrices. We see from
Figure 6.4 that an A-atom has nearest neighbours of the type B only.

The essential idea of using Bloch’s theorem in calculating the band structure
is to reduce the entire problem to that of the unit cell, which contains only two
orbitals: the pz orbitals of A and B. We must therefore calculate HAA(k) = HBB(k),
SAA(k) = SBB(k), HAB(k) = H∗

BA(k) and SAB(k) = S∗
BA(k) for each Bloch vector

k. The spectrum is then given by the equation:

(
HAA(k) HAB(k)
HBA(k) HBB(k)

)(
ψA(k)
ψB(k)

)
= E(k)

(
SAA(k) SAB(k)
SBA(k) SBB(k)

)(
ψA(k)
ψB(k)

)
. (6.19)

6.3 Approximations 131

It follows that the energies E(k) are given as

E±(k) = −(−2E0 + E1)±√
(−2E0 + E1)2 − 4E2E3

2E3
, (6.20)

where

E0 = HAASAA; E1 = SABH∗
AB + HABS∗

AB;

E2 = H2
AA − HABH∗

AB; E3 = S2
AA − SABS∗

AB.

The matrix element HAA(k)must be a real constant which does not depend on k
and the same holds for SAA(k). We take the first to be 0 (with a suitable shift of the
energy scale) and the second is 1 because of the normalisation of the orbitals.

You may verify that the off-diagonal elements have the form

HAB = γ0[exp(ik · R1)+ exp(ik · R2)+ exp(ik · R3)] (6.21)

with γ0 a real constant independent of k. The vectors R1 connect A to its three
neighbours. For SAB we find the same form but we call the constant s0.

After some calculation, the energies are found as

E±(k) = ε2p ∓ γ0
√

f (k)

1 ∓ s0
√

f (k)
, (6.22)

where

f (k) = 3 + 2 cos(k1)+ 2 cos(k2)+ 2 cos(k1 − k2); (6.23)

k1 = k · a1, k2 = k · a2 etc. (6.24)

In the Brillouin zone, the point � is identified with k = (0, 0), and the point K
is a vector of length 2π/a in the direction of a2; M is the point 2π/

√
3(1, 0). We

can now plot the bands (i.e. the values E±(k) between M, � and K . The result is
shown in Figure 6.5. Note that we find two energy values per atom. As we know
that there should only be a single electron per pz orbital, the Fermi energy must be
the highest negative energy. We see that graphene is a metal: the bands touch each
other precisely at the Fermi energy, so infinitesimal excitations are possible which
yield nonzero momentum.

Now we turn to carbon nanotubes. These are graphene sheets rolled into a cyl-
indrical form. There are many ways in which the two long ends can be glued
together. These ways correspond to different strips which can be drawn on this
sheet such that the two sides of the strip can be connected together smoothly. This
is possible when the vector running perpendicularly across the sheet is an integer
linear combination of the basis vectors a1 and a2. This is also indicated in Figure 6.4.

132 Solving the Schrödinger equation in periodic solids

KΓM

 Γ

–10

–8

–6

–4

–2

 0

 2

 4

 6

 8

 10

K

M

Figure 6.5. Tight-binding band structure of graphene. The points of the Brillouin
zone are shown on the right hand side.

We speak now of an (n, m) nanotube where n and m are the integer coefficients. We
restrict ourselves here to the case where m = 0. Such tubes are called ‘zigzag’ tubes
because a circle running around the tube consists of a zigzag structure of nearest
neighbour bonds.

A carbon nanotube is a one-dimensional object – therefore the states are labelled
by a Bloch vector along the tube. We neglect effects due to the curvature of the
sheet, which alter the interactions. For large tubes (i.e. tubes with a large diameter)
this is a good approximation. Across the tube, the wave function must be periodic.
The difference from a periodic cell in a periodic crystal must be emphasised here.
In a crystal, the potential and the density are periodic, but the wave function (in
general) is not. In the present case the wave function must match onto itself across
the tube – hence it is really periodic. This implies that the transverse component of
the wave vector must be 2π j/L for a tube circumference L and integer j. For each
n we find an energy value, that is, for each fixed longitudinal k-vector we find a
discrete energy spectrum.

For this case, the period along the tube is a
√

3. This means that the longitudinal
Brillouin zone runs up to k = π/(a

√
3). This point is denoted as X. The transverse

period is given as L = na. In order to calculate the band structure, we perform a
loop over the longitudinal k-vector. For each such vector we run over the possible
transverse k-vectors (values 2π j/L where j lies between 0 and n). We calculate the
two energies in (6.20), and plot these as a function of the longitudinal k. The result
is shown in Figure 6.6 for a tube with an odd and an even number of orbitals. Note
the difference between the two: one is a metal, the other an insulator. In reality, the
even tube has a small gap due to the curvature with respect to the graphene case.
Tubes of another type, the so-called arm-chair tubes, characterised by m = n, are
always metallic. The reader is invited to investigate that case.

6.4 Band structure methods and basis functions 133

XΓ XΓ
–6

–4

–2

 0

 2

 4

 6

–6

–4

–2

 0

 2

 4

 6

Figure 6.6. Energy bands for a (12, 0) and a (13, 0) tube. In reality, both have an
energy gap. That of the even tube is very small. It is absent in the present analysis
owing to the neglect of tube curvature.

6.4 Band structure methods and basis functions

Many band structure methods exist and they all have their own particular features.
A distinction can be made between ab initio methods, which use no experimental
input, and semi-empirical methods, which do. The latter should not be considered
as mere fitting procedures: by fitting a few numbers to a few experimental data,
many new results may be predicted, such as full band structures. Moreover, the
power of ab initio methods should not be exaggerated: there are always approx-
imations inherent to them, in particular the reliance on the Born–Oppenheimer
approximation separating the electronic and nuclear motion, and often the local
density approximation for exchange and correlation.

In ab initio methods, the potential is usually determined self-consistently with
the electron density according to the DFT scheme. Some methods, however, solve
the Schrödinger equation for a given, cleverly determined potential designed to give
reliable results. The latter approach is particularly useful for nonperiodic systems
where many atoms must be treated in the calculation.

In a general electronic structure calculation scheme we must give the basis func-
tions a good deal of attention since we know that by cleverly choosing the basis
states we can reduce their number, which has a huge impact on the computer time
needed as the latter is dominated by the O(N3) matrix diagonalisation.

Two remarks concerning the potential in a periodic solid are important in this
respect. First, the potential grows very large near the nuclei whereas it is (relatively)
small in the interstitial region. There is no sharp boundary between the two regions,
but it is related to the distance from the nucleus where the atomic wave function

134 Solving the Schrödinger equation in periodic solids

V(r)

Ψ(r)

Figure 6.7. Valence state and Coulomb potential in a crystal.

becomes small. Second, the potential is approximately spherically symmetric near
the nuclei, whereas at larger distances the crystal symmetry dominates.

Consider the valence state shown in Figure 6.7, together with the potential. Close
to the nucleus, the valence state feels the strong spherically symmetric Coulomb
potential and it will oscillate rapidly in this region. In between two nuclei, the
potential is relatively weak and the orbital will oscillate slowly. The shape of this
valence function can also be explained in a different way. Suppose that close to
the nucleus, where the potential is essentially spherically symmetric, the valence
wave function has s-symmetry (angular momentum quantum number l = 0), i.e.
no angular dependence. There might also be core states with the same symmetry.
As the states must be mutually orthogonal, the valence states must oscillate rapidly
in order to be orthogonal to the lower states. A good basis set must be able to
approximate such a shape using a limited number of basis functions.

For each Bloch wave vector, we need a basis set satisfying the appropriate Bloch
condition. The most convenient Bloch basis set consists of plane waves:

ψPW
k+K(r) = exp[i(k + K) · r]. (6.25)

For a fixed Bloch vector k in the first Brillouin zone, each reciprocal lattice vector
K defines a Bloch basis function for k. If we take a sufficient number of such basis
functions into account, we can match any Bloch function for a Bloch vector k.
However, Figure 6.7 suggests that we would need a huge number of plane waves
to match our Bloch states because of the rapid oscillations near the nuclei. This is
indeed the case: the classic example is aluminium for which it is estimated that 106

plane waves are necessary to describe the valence states properly [10]. Although
plane waves allow efficient numerical techniques to be used, this number is very high
compared with other basis sets, which yield satisfactory results with of the order of
only 100 functions. Plane waves can only be used after cleverly transforming away
the rapid oscillations near the nuclei, as in pseudopotential methods (Section 6.7).

6.5 Augmented plane wave methods 135

Figure 6.8. The muffin tin approximation.

In the next sections, we consider the augmented plane wave (APW) method and
its linearised version, and construct a program for calculating the band structure of
copper. In Section 6.7, the pseudopotential method will be considered with a few
applications.

6.5 Augmented plane wave methods

6.5.1 Plane waves and augmentation

As we have just indicated, the problem in constructing basis sets starting from plane
waves lies in the core region. Close to the nucleus, the potential is approximately
spherically symmetric and this symmetry should be exploited in constructing the
basis functions. In the augmented plane wave (APW) [11, 12] method, the nuclei
are surrounded by spheres in which the potential is considered to be spherically
symmetric and outside which the potential is constant, and usually taken to be zero.
From a two-dimensional picture (Figure 6.8) it is clear why this approximation is
known as the ‘muffin tin’ approximation.

Outside the muffin tin spheres, the basis functions are simple plane waves eiq·r.
Inside the spheres, they are linear combinations of the solutions to the Schrödinger
equation, evaluated at a predefined energy E. These linear combinations can be
written as

∞∑
l=0

l∑
m=−l

AlmRl(r)Y
l
m(θ , ϕ) (6.26)

136 Solving the Schrödinger equation in periodic solids

where the functions Rl(r) are the solutions of the radial Schrödinger equation with
energy E:

− 1

2r2

d

dr

[
r2 dRl(r)

dr

]
+
[

l(l + 1)

2r2
+ V(r)

]
Rl(r) = ERl(r) (6.27)

which can be solved with high accuracy, and the Y l
m(θ , ϕ) are the spherical har-

monics. The expansion coefficients Alm are found by matching the solution inside
the muffin tin to the plane wave outside.

The Bloch wave exp(iq · x) in the interstitial region is an exact solution to the
Schrödinger equation at energy q2/2 (in atomic units). The muffin tin solutions
are numerically exact solutions of the Schrödinger equation at the energy E for
which the radial Schrödinger equation has been solved. However, if we take this
energy equal to q2/2, the two solutions do not match perfectly. The reason is that
the general solution in the interstitial region for some energy E = q2/2 includes
all wave vectors q with the same length. In the Bloch solution we take only one of
these. If we want to solve the Schrödinger equation inside the muffin tins with the
boundary condition imposed by this single plane wave solution then we would have
to include solutions that diverge at the nucleus, which is physically not allowed.

An APW basis function contains a muffin tin solution with a definite energy E,
and a Bloch wave exp(iq · x) in the interstitial region. It turns out to be possible to
match the amplitude of the wave function across the muffin tin sphere boundary.
In order to carry out the matching procedure at the muffin tin boundary we expand
the plane wave in spherical harmonics [13]:

exp(iq · r) = 4π
∞∑

l=0

l∑
m=−l

iljl(qr)Y l
m

∗
(θq,ϕq)Y

l
m(θ , ϕ) (6.28)

where r, θ and ϕ are the polar coordinates of r and q, θq and ϕq those of q. To keep
the problem tractable, we cut all expansions in lm off at a finite value for l:

∞∑
l=0

l∑
m=−l

→
lmax∑
l=0

l∑
m=−l

(6.29)

From now on, we shall denote these sums by
∑

lm.
The matching condition implies that the coefficients of the Yl

m must be equal for
both parts of the basis function, (6.26) and (6.28), as the Yl

m form an orthogonal
set over the spherical coordinates. This condition fixes the coefficients Alm, and we
arrive at

ψAPW
q (r) = 4π

∑
lm

il
[

jl(qR)

Rl(R)

]
Rl(r)Y

l
m

∗
(θq, ϕq)Y

l
m(θ ,ϕ) (6.30)

for the APW basis function inside the sphere.

6.5 Augmented plane wave methods 137

Summarising the results so far, we can say that in the APW method the wave
function is approximated in the interstitial region by plane waves, whereas in the
core region the rapid oscillations are automatically incorporated via direct integra-
tion of the Schrödinger equation. The basis functions are continuous at the sphere
boundaries, but their derivative is not. The APW functions are not exact solutions
to the Schrödinger equation, but they are appropriate basis functions for expanding
the actual wave function:

ψk(r) =
∑

K

CKψ
APW
k+K (r). (6.31)

The muffin tin parts of the ψAPW in this expansion are all evaluated at the same
energy E. The coefficients CK are given by the lowest energy solution of the
generalised eigenvalue equation:

HC = ESC (6.32)

where the matrix elements of H and S are given by quite complicated expressions.
In the resulting solution, the mismatch in the derivative across the sphere boundary
is minimised.

Before giving the matrix elements of the Hamiltonian and the overlap matrix,
we must point out that (6.32) differs from usual generalised eigenvalue equa-
tions in that the matrix elements of the Hamiltonian depend on energy. This
dependence is caused by the fact that they are calculated as matrix elements of
energy-dependent wave functions (remember the radial wave functions depend
on the energy). Straightforward application of the matrix methods for generalised
eigenvalue problems is therefore impossible.

In order to obtain the spectrum, we rewrite Eq. (6.32) in the following form:

(H − E)C = 0 (6.33)

whereH = H−ES+EI (I is the unit matrix). Although the form (6.33) suggests that
we are dealing with an ordinary eigenvalue problem, this is not the case: the overlap
matrix has been moved into H. To find the eigenvalues we calculate the determinant
|H − EI| on a fine energy mesh and see where the zeroes are. It is sometimes
possible to use root-finding algorithms (see Appendix A3) to locate the zeroes of
the determinant, but these often fail because the energy levels may be calculated
along symmetry lines in the Brillouin zone and in that case the determinant may
vary quadratically about the zero, so that it becomes impossible to locate this point
by detecting a change of sign (this problem does not arise in Green’s function
approaches, where one evaluates the Green’s function at a definite energy).

For crystals with one atom per unit cell, the matrix elements of the Hamiltonian
for APW basis functions with wave vectors qi = k + Ki and qj = k + Kj are

138 Solving the Schrödinger equation in periodic solids

given by

Hij = 〈k + Ki|H|k + Kj〉 = −EAij + Bij +
lmax∑
l=0

Cijl
R′

l(R)

Rl(R)
. (6.34)

In this expression, R′
l(R) is dRl(r)/dr, evaluated at the muffin tin boundary r = R.

The coefficients Aij, Bij and Cijl are given by

Aij = −4πR2

j1(|Ki − Kj|R)
|Ki − Kj| + δij,

Bij = 1

2
Aij(qi · qj) and

Cijl = (2l + 1)
2πR2

Pl

(
qi · qj

qiqj

)
jl(qiR)jl(qjR). (6.35)

Here,
 is the volume of the unit cell. Note that there is no divergence in the
expression for the matrix elements Aij if |Ki − Kj| vanishes, as j1(x) → x/3 for
small x.

In addition to the inconvenient energy dependence of the Hamiltonian, another
problem arises from the occurrence of Rl(R) in the denominator in (6.34). For ener-
gies for which the radial solution Rl happens to be zero or nearly zero on the border
of the muffin tin spheres, the matrix elements become very large or even diverge,
which may cause numerical instabilities. In the linearised APW (LAPW) method, an
energy-independent Hamiltonian is used in which the radial solution does not occur
in a denominator, and therefore both problems of the APW method are avoided.
The APW method is hardly used now because of the energy-dependence problem.
The reasons we have treated it here are that it is conceptually simple and that the
principle of this method lies at the basis of many other methods. Further details on
the APW method can be found in Refs. [14–16].

6.5.2 An APW program for the band structure of copper

Copper has atomic number Z = 29. We consider only the valence states. The core
states are two s- and two p-states, and theeleven valence electrons occupy the third
s-level and the first d-levels. Its crystal structure is fcc (Figure 6.1) with lattice
constant a = 6.822 a.u. The unit cell volume
 is equal to 3a3/4. The reciprocal
lattice is a bcc lattice with basis vectors

b1 =2π

a


−1

1
1


 , b2 =2π

a


 1

−1
1


 , b3 =2π

a


 1

1
−1


 . (6.36)

The Brillouin zone of this lattice is shown in Figure 6.9.

6.5 Augmented plane wave methods 139

kz

ky

kx

X

W

K
L

Γ

Figure 6.9. Brillouin zone of the fcc lattice.

For a given vector k in the Brillouin zone, we construct the APW basis vectors
as q = k + K. The norm of a reciprocal lattice vector K = lb1 + mb2 + nb3 is
given by

|K| = 2π

a

√
3l2 + 3m2 + 3n2 − 2lm − 2nl − 2nm. (6.37)

We take a set of reciprocal lattice vectors with norm smaller than some cut-off
and it turns out that the sizes of these sets are 1, 9, 15, 27 etc. A good basis set
size to start with is 27, but you might eventually do calculations using 113 basis
vectors, for example. The set of such reciprocal lattice vectors is easy to generate
by considering all vectors with l, m and n between say −6 and 6 and neglecting all
those with norm beyond some cut-off.

The program must contain loops over sets of k-points in the Brillouin zone
between for example � and X in Figure 6.9. The locations of the various points
indicated in Figure 6.9, expressed in cartesian coordinates, are

� = 2π

a


0

0
0


 , X = 2π

a


1

0
0


 , K = 2π

a


3/4

3/4
0


 ,

W = 2π

a


 1

1/2
0


 , L = 2π

a


 1/2

1/2
1/2


 .

(6.38)

For each k, the matrix elements Aij, Bij and Cijl in (6.35) are to be determined. Good
values for the cut-off angular momentum are lmax = 3 or 4. Then, for any energy
E, the matrix elements of H according to (6.34) can be found by first solving the
radial Schrödinger equation numerically from r = 0 to r = R and then using the

140 Solving the Schrödinger equation in periodic solids

Γ X W L Γ K
k

E

 0.0

 0.1

 0.2

 0.3

Figure 6.10. Band structure of fcc copper. The Fermi energy is shown as a
horizontal dashed line.

quotient R′
l(R)/Rl(R) as obtained from this solution in (6.34). Our program will

not be self-consistent as we shall use a reasonable one-electron potential.2

It is best to use some numerical routine for calculating the determinant. If such
a routine is not available, you can bring your matrix to an upper-triangular form
as described in Appendix A8 and multiply the diagonal elements of the resulting
upper triangular matrix to obtain the determinant.

If you have a routine at your disposal which can calculate the determinant
for each k-vector and for any energy, the last step is to calculate the eigenval-
ues (energies) at some k-point. This is a very difficult step and you are advised
not to put too much effort into finding an optimal solution for this. The prob-
lem is that often the determinant may not change sign at a doubly degenerate
level, and energy levels may be extremely close. Finally, changes of sign may
occur across a singularity. A highly inefficient but fool-proof method is to cal-
culate the determinant for a large amount of closely spaced energies containing
the relevant part of the spectrum (to be read off from Figure 6.10) and then scan
the results for changes of sign or near-zeroes. It is certainly not advisable to try
writing a routine which finds all the energy eigenvalues automatically using clever
root-finding algorithms.

2 The potential can be found on www.cambridge.org/9780521833469. There are in fact two files in which
the potential is given on different grids: the first one is a uniform grid and the second an exponential grid
considered in Problem 5.1. Details concerning the integration of the Schrödinger equation on the latter are to be
found in this problem.

http://www.cambridge.org/9780521833469

6.6 The linearised APW (LAPW) method 141

programming exercise

Write a program for calculating the determinant |H − E|.
Check Check that the determinant vanishes near the values which you can read
off from Figure 6.10 for a few points in the Brillouin zone.

The Fermi level for the potential supplied lies approximately at 0.29 a.u., so
one conclusion you can draw from the resulting band structure is that copper is a
conductor as the Fermi energy does not lie in the energy gap.

You will by now have appreciated why people have tried to avoid energy-
dependent Hamiltonians. In the next section we shall describe the linearised APW
(LAPW) method which is based on the APW method, but avoids the problems
associated with the latter.

6.6 The linearised APW (LAPW) method

A naive way of avoiding the energy-dependence problem in APW calculations
would be to use a fixed ‘pivot’ energy for which the basis functions are calculated
and to use these for a range of energies around the pivot energy. If the form of the
basis functions inside the muffin tin varies rapidly with energy (and this turns out
to be often the case) this will lead to unsatisfactory results.

The idea of the LAPW method [17, 18] is to use a set of pivot energies for
which not only the solution to the radial Schrödinger equation is taken into account
in constructing the basis set, but also its energy derivative. This means that the
new basis set should be adequate for a range of energies around the pivot energy
in which the radial basis functions can be reasonably approximated by an energy
linearisation:

R(r, E) = R(r, Ep)+ (E − Ep)Ṙ(r, Ep). (6.39)

Here, and in the remainder of this section, the dot stands for the energy derivative, as
opposed to the prime, which is used for the radial derivative – for any differentiable
function f (r, E):

ḟ (r, E) = ∂

∂E
f (r, E) and (6.40a)

f ′(r, E) = ∂

∂r
f (r, E). (6.40b)

The energy derivatives of the radial solution within the muffin tins are used alongside
the radial solutions themselves to match onto the plane wave outside the spheres.
Note that the APW Hamiltonian depends on energy only via the radial solutions
Rl, so if we take these solutions and their energy derivatives Ṙl at a fixed energy
into account, we have eliminated all energy dependence from the Hamiltonian.

142 Solving the Schrödinger equation in periodic solids

In comparison with the APW method, we have twice as many radial functions
inside the muffin tin sphere, Rl and Ṙl, and we can match not only the value but
also the derivative of the plane wave exp(iq · r) across the sphere boundary. We
write the wave function inside as the expansion

�k+K(r) =
∑
lm

[AlmRl(r; Ep)+ BlmṘl(r; Ep)]Y l
m(θ ,φ) (6.41)

and the numbers Alm and Blm are fixed by the matching condition. There is no energy
dependence of the wave functions, and they are smooth across the sphere boundary,
but the price which is paid for this is giving up the exactness of the solution inside
the sphere for the range of energies we consider.

We end up with a generalised eigenvalue problem with energy-independent over-
lap and Hamiltonian matrices. These matrices are reliable for energies in some range
around the pivot energy. It turns out that the resulting wave functions have an inac-
curacy of (E − Ep)

2 as a result of the linearisation and that the energy eigenvalues
deviate as (E − Ep)

4 from those evaluated at the correct energy – see Ref. [18].
The expressions for the matrix elements are again quite complicated. They

depend on the normalisations for Rl and Ṙl which will be specified below. For
the coefficients Alm and Blm, the matching conditions lead (with q = k + K,
q′ = k + K′) to:

Alm(q) = 4πR2il
−1/2Y l
m

∗
(θq,φq)al; (6.42a)

al = j′l(qR)Ṙl(R)− jl(qR)Ṙ′
l(R); (6.42b)

Blm(q) = 4πR2il
−1/2Y l
m

∗
(θq,φq)bl; (6.42c)

bl = jl(qR)R′
l(R)− j′l(qR)Rl(R). (6.42d)

The matrix elements of the overlap matrix and the Hamiltonian can now be
calculated straightforwardly – the result for the overlap matrix is [18]

SK,K′ = U(K − K′)+ 4πR4

∑
l

(2l + 1)Pl(q̂ · q̂′)sl
K,K′ with (6.43a)

sl
K,K′ = al(q)al(q

′)+ bl(q)bl(q
′)Nl and (6.43b)

U(K) = δK,O − 4πR2

jl(KR)

K
. (6.43c)

Here, Nl is the norm of the energy derivative inside the muffin tin (see below). The
Hamiltonian is given by

HK,K′ = (q · q′)U(K − K′)+ 4πR2

∑
l

(2l + 1)Pl(Els
l
K,K′ + γl) (6.44a)

6.6 The linearised APW (LAPW) method 143

with

γl = R′
l(R)Ṙl(R)[j′l(qR)jl(q

′R)+ jl(qR)j′l(q
′R)]

− [R′
l(R)Ṙ′

l(R)jl(qR)jl(q
′R)+ Rl(R)Ṙl(R)j

′
l(qR)j′l(q′R)]. (6.44b)

We see that a pleasing feature of these expressions is that we do not get APW-type
numerical inaccuracies due to radial solutions vanishing at the muffin tin radius and
occurring in the denominator of the expressions for the matrix elements.

Finally, we must find out how the energy derivative of the solution of the
radial Schrödinger equation, Ṙl, can be calculated. By differentiating the radial
Schrödinger equation

(H − E)Rl(r; E) = 0 (6.45)

with respect to E, we find that Ṙl satisfies the following differential equation:

(H − E)Ṙl(r; E) = Rl(r; E). (6.46)

This second order inhomogeneous differential equation needs two conditions to fix
the solution. The first condition is that Ṙl (like Rl) is regular at the origin which
leaves the freedom of adding αRl(r) to it, for arbitrary α (Rl is the solution of
the homogeneous equation). The number α is fixed by the requirement that Rl is
normalised: ∫ R

0
dr r2R2

l (r; E) = 1 (6.47)

which, after differentiation with respect to E, leads to∫ R

0
r2Rl(r)Ṙl(r)dr = 0 (6.48)

i.e. Rl and Ṙl are orthogonal. The norm of Ṙl,

Nl =
∫ R

0
drr2|Ṙl(r)|2, (6.49)

which occurs in the definition of the overlap matrix, is therefore in general not
equal to one. It can be shown that the normalisation condition (6.47) leads to the
following boundary condition at the muffin tin bounday (r = R):

R2[R′
l(R)Ṙl(R)− R(R)Ṙ′

l(R)] = 1; (6.50)

see Problem 6.5.
The interested reader might try to write a program for calculating the band

structure of copper using this linearisation technique. The determination of the
eigenvalues will be found much more easily than in the case of the APW calculation,
as the Hamiltonian is energy-independent.

144 Solving the Schrödinger equation in periodic solids

V

V

1

2

2

1

r

V

ψ

ψ

Figure 6.11. The principle of the pseudopotential. The wave functions of the full
potential (�1) and of the pseudopotential (�2) are equal beyond some radius.

6.7 The pseudopotential method

We have already seen that the main problem in calculating band structures is the
deep Coulomb potential giving rise to rapid oscillations close to the nuclei. In the
pseudopotential method this problem is cleverly transformed away by choosing a
potential which is weak. It is not immediately obvious that this is possible: after
all, the solutions of the problem with a weak and with a deep potential can hardly
describe the same system! The point is that the pseudopotential does not aim at
describing accurately what happens in the core region, but it focuses on the valence
region. A weak potential might give results that outside the core region are the same
as those of the full potential.

In order to obtain a better understanding of this, we must return to Chapter 2,
where the concept of phase shift was discussed. The phase shift uniquely determines
the scattering properties of a potential – indeed, we seek a weak pseudopotential
that scatters the valence electrons in the same way as the full potential, so that the
solution beyond the core region is the same for both potentials. An important point
is that we can add an integer timesπ to the phase shift without changing the solution
outside the core region, and there exist therefore many different potentials yielding
the same valence wave function. To put it another way: if we make the potential
within the core region deeper and deeper, the phase shift will increase steadily,
but an increase by π does not affect the solution outside. The pseudopotential is a
weak potential which gives the same phase shift (modulo π) as the full potential
and hence the same solution outside the core region. The principle is shown in

6.7 The pseudopotential method 145

Figure 6.11 which shows two different potentials and their solutions (for the same
energy). These solutions differ strongly within the core region but they coincide in
the valence region.

What the pseudopotential does is to remove nodes from the core region of the
valence wave function while leaving it unchanged in the valence region. The nodes
in the core region are necessary in order to make the valence wave functions ortho-
gonal to the core states. If there are no core states for a given l, the valence wave
function is nodeless and the pseudopotential method is less effective. Such is the
case in 3d transition metals, such as copper.

The phase shift depends on the angular momentum l and on the energy. A pseudo-
potential that gives the correct phase shift will therefore also depend on these
quantities. The energy dependence is particularly inconvenient, as we have seen in
the discussion of the APW method. In Section 6.7.2 we shall see that this depend-
ence disappears automatically when solving another problem associated with the
pseudopotential: that of the distribution of the charge inside and outside the core
region. More details will be given in that section, and we restrict ourselves here to
energy-independent pseudopotentials.

There is a considerable freedom in choosing the pseudopotential as it only has
to yield the correct phase shift outside the core region, and several simple para-
metrised forms of pseudopotentials have been proposed. These are fitted either to
experimental data for the material in question (the semi-empirical approach), or
to data obtained using ab initio methods for ions and atoms of the same material,
obtained using full-potential calculations.

We give two examples of pseudopotentials.

• The Ashcroft empty-core pseudopotential [19]:

V(r) =

−Ze

r
, r > rc

0 r < rc

. (6.51)

Z is the valence of the ion and there is only one parameter to be adjusted: the
cut-off length rc. Although its simplictity is very attractive, this potential does
not perform very well for wide energy ranges, although it reproduces some
material properties reasonably well.

• The Fourier-component parametrisation

V(r) =
∑′

K
VKeiK·R. (6.52)

where the sum
∑′ is over a limited set of K-vectors. This parametrisation is

convenient for the plane wave basis set which is (nearly) always used in
pseudopotential calculations. In the next subsection we shall use this form of
the pseudopotential in a band structure program for silicon.

146 Solving the Schrödinger equation in periodic solids

d

x

y

z

Figure 6.12. The diamond structure.

There are numerous review articles on the pseudopotenial method and readers who
are interested in the subject are referred to those by Heine [10], Brust [20] and
Pickett [21].

6.7.1 A pseudopotential band structure program for silicon

In this section, the construction of a pseudopotential program for silicon is
described. For details, the review by Brust [20] and the paper by Chelikowsky
and Cohen [22] may be consulted.

Silicon is considered here in the diamond structure which is a fcc lattice with,
at each lattice point, two atoms at relative positions ±1/8(a1 + a2 + a3) (see
Figure 6.12). We have already described the fcc crystal structure and the special
points in the first Brillouin zone in Section 6.5. The lattice constant is 5.43a0. The
pseudopotential is given in the convenient form of a few Fourier components (see
above). We restrict the number of coefficients by assuming the pseudopotential to
be a repetition of spherically symmetric potentials in cells surrounding the atoms,
which leads to the following form of the Fourier components of the pseudopotential
Vps arising from a single atom per cell:

V (at)
ps (K) = 1

Vcell

∫
cell

d3r V (at)
ps (r)e

−iK·r. (6.53)

The Fourier components depend only on the length of the wave vector K, and this
property reduces the number of independent Fourier coefficients.

Another reduction comes about when calculating the Fourier compon-
ent of the sum of the potentials arising from the two atoms at positions

6.7 The pseudopotential method 147

d1,2 = ±1/8(a1 +a2 + a3) relative to the lattice points:

V (tot)
ps (K) = V (at)

ps (K)(e
iK·d1 + eiK·d2). (6.54)

The sum of the exponentials on the right hand side is known as the structure factor.
Therefore, we find for a vector K = ∑3

i=1 nibi that

V (tot)
ps (K) = cos[π(n1 + n2 + n3)/4]V (at)

ps (K). (6.55)

It follows immediately that the pseudopotential components vanish if the sum of
the ni is an odd multiple of 2: the structure factor causes extinction of certain wave
vectors. Furthermore, we can choose the component V (tot)

ps (K = 000) to be equal to
zero, as this induces a mere shift in the energy offset. Collecting all bits and pieces,
we are left with the following values of |K| = K for which the pseudopotential
does not vanish (apart from a factor 4π2/a2):

K2 = 3, 8, 11, . . . (6.56)

and only these first three components are taken into account in the pseudopotential.
This means that only three numbers are to be fitted and the whole band structure
follows from them.

We shall not carry out the fitting procedure but quote the resulting values for the
potential from literature, resulting from a fit to optical transition energies [22] –
they read (in atomic units):

V (tot)
ps (

√
3) = −0.1121; V (tot)

ps (
√

8) = 0.0276; V (tot)
ps (

√
11) = 0.0362. (6.57)

The matrix element of the pseudopotential Hamiltonian for plane waves k + K
and k + K′ is given by (�K = K − K′)

HK,K′ = 1

2
|k + K|2δK,K′ + V(|�K|) cos

[
(�K1 +�K2 +�K3)

π

4

]
. (6.58)

The diagonalisation of the resulting matrix is straightforward: the plane waves are
orthogonal and hence no overlap matrix has to be taken into account. You can use
basis sets of size 9, 15, 27 etc., just as in the APW case. In Figure 6.13 the band
structure is represented for a basis with 113 states.

The band structure in Figure 6.13 matches the results of calculations using more
sophisticated methods very well, which is remarkable if you note that only three free
parameters enter into the potential. The fact that the band gap comes out well is not
surprising since it has been used in the fitting procedure. It turns out to be 1.17 eV,
and you might compare this with kBT at room temperature in order to estimate
the fraction of electrons excited into the conduction band using the Fermi–Dirac
distribution.

148 Solving the Schrödinger equation in periodic solids

Γ X W L Γ K
k

E

 0.0

 0.5

Figure 6.13. Band structure of silicon.

6.7.2 Accurate energy-independent pseudopotentials

Suppose we have a pseudopotential that gives exactly the same phase shift as the
full potential. In the valence region, the wave functions have the same shape as
for the full potential, but their normalisation may differ: the wave functions in
the valence region for the two potentials are the same only up to a scaling factor.
The point is that if two normalised wave functions differ within the core region
while being similar (up to a multiplication constant) in the valence region, their
respective charges will be distributed differently among core and valence regions.
The resulting charge difference is called orthogonality hole and one should correct
for it, for example by rescaling the full pseudo-wave function.

It turns out that the normalisation of the states is related to energy dependence of
the pseudopotential. It can be shown (see Problem 6.1) that for the full potential, the
charge inside a sphere around the nucleus with radius Rc carried by the solution ψ
of the Schrödinger equation evaluated at energy E is related to the energy derivative
of the wave function at Rc:

∫
core

d3r|ψ(r)|2 = −1

2

∫
d
R2

c ψ(r)
∂2ψ(r)
∂r∂E

∣∣∣∣
r=Rc

(6.59)

where the integration is carried out over the spherical angles, d
 = d cosϑdϕ. This
is another instance of the relation between norm and energy derivative which was
previously encountered in connection with the energy derivatives of the solution of
the radial equation in the LAPW wave functions in Section 6.6.

6.7 The pseudopotential method 149

If we now consider an energy-dependent pseudopotential Vps with eigenstate φ,
we obtain, aside from the surface integral on the right hand side, an integral over
the energy derivative of Vps:∫

core
d3r|φ(r)|2 = −1

2

∫
d
R2

c φ(r)
∂2φ(r)
∂r∂E

∣∣∣∣
r=Rc

+
∫

core
d3r

∂V(r, E)

∂E
|φ(r)|2.

(6.60)
The first term on the right hand side is equal to the right hand side in (6.59) if we
fix the amplitude of φ to be equal to that of ψ at Rc. Therefore, if both solutions
have the same amount of charge inside the core region, the second term on the
right hand side must vanish, which implies that the pseudopotential is independent
of energy. This means that if we have solved the orthogonality hole problem, we
have obtained an energy-independent pseudopotential, so that we have solved two
problems at once.

Bachelet, Hamann and Schlüter [23] have constructed accurate norm-conserving
pseudopotentials and we refer to their paper and to the review article by Pickett [21]
for further details. Goedecker, Teter and Hutter [24] have developed a particularly
convenient type of pseudopotential which, being based on Gaussian functions,
allows for analytic Fourier transforms. We shall use this pseudopotential in the
following section in the construction of a fully self-consistent pseudopotential
program.

6.7.3 Building a self-consistent pseudopotential program

The construction of a fully self-consistent pseudopotential program is quite elabor-
ate – we shall therefore restrict ourselves to the case of a cubic unit cell and instead
of summing over all points in the Brillouin zone, we shall only consider the�-point
(i.e. reciprocal vector K = 000). This restriction is often applied when dealing with
molecules: the cell is taken big enough to ensure that the electron density vanishes
near the cell boundary. This choice therefore renders our program more suitable
for molecular systems or clusters than for periodic solids. However, the method for
periodic systems uses very similar techniques, and the interested reader is invited
to extend his or her program to that case.

It is important to build up the program in a step by step fashion and check each
step very carefully. The steps are described below. We closely follow the setup of
the CPMD program, described in the review paper by Marx and Hutter [25]. For
more details concerning the program and further background, that paper should be
consulted.

We start with some remarks concerning definitions and conventions relating
to Fourier transforms and choice of basis functions. For simplicity, we restrict

150 Solving the Schrödinger equation in periodic solids

ourselves to cubic unit cells. Although all quantities are expanded in a basis of
plane waves with wave vectors on a grid in reciprocal space, we cannot always use
periodicity on this grid. Consider for example the potential of a nucleus or ion core,
located at position r0 in the unit cell. We expand this potential using a grid of wave
vectors

K = 2π

L
(nx, ny, nz) (6.61)

with nx running from 1 to N , L/N being the resolution in real space. If we represent
the potential in real space on the real-space grid, its Fourier transform is periodic
in K-space, with a period 2πN/L in each Cartesian direction. Usually we are given
the (Fourier transform of the) pseudopotential for an ion core located at the origin.
If the atom is actually located at some place r0, the Fourier transfrom acquires an
extra structure factor exp(−iK · r0). If r0 does not lie on the real-space grid, this
structure factor is nonperiodic in reciprocal space!

Another example of a nonperiodic operator in reciprocal space is the kinetic
energy, for which we know the Fourier transform of the operator in continuum
space:

T = �
2K2

2m
(6.62)

(in atomic units, this reduces to K2/2). This expression is cut off at some maximum
wave vector beyond which the components of the orbitals are supposed to be very
small. Note that we do not use the periodic discrete form of the kinetic energy (with
Fourier transform 3−cos(Kxa)−cos(Kya)−cos(Kza); a = L/N); the form (6.61)
is a more accurate representation.

As a basis, we use Fourier waves eiK·r/
√

 (remember that
 is volume of the

unit cell). An orbital φ(j) is then expanded in these basis vectors as

φ(j)(r) = 1√

∑
K

c(j)K eiK·r. (6.63)

The coefficients c(j)K come out of a diagonalisation routine and are usually
normalised according to ∑

K

|c(j)K |2 = 1. (6.64)

Therefore we have:∑
r

|φ(j)(r)|2 = 1

∑
r

∑
K,K′

c(j)K c(j)K′
∗
ei(K−K′)·r = N3

. (6.65)

The density due to all orbitals is therefore given by

n(r) =
∑

j

fj|φ(j)(r)|2, (6.66)

6.7 The pseudopotential method 151

where fj is the occupancy, which is usually the Fermi–Dirac function with an
additional factor of 2 in the closed-shell case. To check that the normalisation
is indeed correct, we calculate the total charge for the closed-shell system at T = 0:∫

n(r) d3r = 2
∑
jocc

|φ(j)(r)|2 d3r = 2

N3

∑
jocc

∑
r

|φ(j)(r)|2 = Nel (6.67)

where Nel is the number of electrons (the factor 2 in front of the second and third
expressions is due to the spin degeneracy). Note that the prefactor
/N3 results
from the transition of the integral to a sum.

We can formulate Fourier transforms in continuous, real space by writing oper-
ators and vectors with respect to the basis functions exp(iK · r)/

√

. In that case,

the discrete representation converges to the continuum one for fine grids, and there
is no ambiguity concerning the prefactors in the Fourier transforms (powers of
).
The only exception is the density, which is not a vector or operator in Hilbert space,
and we have therefore some freedom in the definition of its Fourier transform. We
adopt the convention usually taken in this field, writing

n(r) =
∑

K

n(K)eiK·r. (6.68)

It then follows from Eqs. (6.63) and (6.66) that

n(K) = 1

∫
n(r)e−iK·r d3r = 1

∑
j

fj
∑
K′

c(j)K+K′c
∗(j)
K′ . (6.69)

An important issue concerns the truncation of the sums over K. The point is that
the potential is expressed in terms of the density, and not of the wave function. Now
suppose that we can safely assume that the wave function vanishes for K-vectors
beyond some maximum value Kmax. In that case, from working out the density in
real space,

n(r) =
∑

j

fj|φj(r)|2 =
∑

j

fj
∑
K,K′

c(j)K eiK·rc∗(j)
K′ e−iK′·r

= 1

∑
j

fj
∑
K,K′

c(j)K+K′c
∗(j)
K′ eiK·r =

∑
K

n(K)eiK·r, (6.70)

we see that n(K) contains contributions K − K′ running up to 2Kmax! Therefore,
the potential also contains nonzero components for K up to 2Kmax. To see that these
terms occur in the Hamiltonian matrix, we consider now a local potential: this is a
potential which depends only on r. Fourier transforming leads to a potential VK,K′
in reciprocal space which is translationally invariant:

VK,K′ = V(K − K′). (6.71)

152 Solving the Schrödinger equation in periodic solids

Even if both |K| and |K′| are smaller than Kmax, their difference can attain lengths
up to 2Kmax!

A two-dimensional representation of the situation is depicted in Figure 6.14,
where the sphere of radius Kmax is indicated as a dashed circle, called C1. The
kinetic energy is evaluated only for values of K within this circle. When evaluating
the kinetic energy, only the points lying inside C1 must be taken into account.
However, the Fourier transorm of the density, which satisfies periodicity in K-space,
has nonzero components for points inside the bigger circle C2.

Now let us again consider the contribution to the Hamiltonian of a local potential.
The matrix elements are given by

VK,K′ = 1

∫
e−i(K−K′)·rV(r) d3r ≈ 1

N3

∑
r

e−i(K−K′)·rV(r) = V(K − K′).

(6.72)
The last expression on the right hand side is the discrete Fourier transform of the
potential in real space. We regularly must perform Fourier transforms, for which
we use the FFT algorithm (see Appendix A9). There exist packages containing FFT
routines, and we mention here the FFTW package (http:// www.fftw.org).
Often, these packages have their own type definitions for real and complex numbers,
which should then be used throughout your program.

The simplest possible nontrivial case is the one with seven wave vectors in C1:
one in the origin and two along each of the three Cartesian axes. These are used for
the Hamiltonian and the wave functions. The wave vectors for which the density is
evaluated run over a grid with a linear size at least four times as large as the cut-off
wave vector Kmax (see Figure 6.14), which would suggest a unit cell with a side of
four grid points. We take the grid size one larger (i.e. a 5 × 5 × 5 grid) in order
to avoid the coincidence of point pairs like (2, 0, 0) and (−2, 0, 0) for functions or
operators which are nonperiodic in reciprocal space (such as the pseudopotential
of an ion which is not located at a real-space grid point, see above).

6.7.4 Free particle in a box

We start by considering a free particle in the box. The Hamiltonian only contains
the kinetic term:

HK,K′ = K2

2
δ(K − K′). (6.73)

For a box of size L × L × L, the seven vectors K we take into account are the null
vector and the vectors with size 2π/L along the positive and negative Cartesian
axes. The eigenvalues are therefore equal to 0 (with multiplicity 1) and 2π2/L2

(with multiplicity 6). If we put four electrons in the box, the total energy is given by

(http://www.fftw.org

6.7 The pseudopotential method 153

Gridsize 10
C2

C1

UC

Figure 6.14. Two-dimensional representation of the reciprocal grid. The dashed
sphere C1 contains the wave vectors of the wavefunctions – its periodic images
are also shown as solid circles. The bigger circle C2 contains the reciprocal wave
vectors for representing the electron density, and we need all those points for
accurately constructing the Hamiltonian. The cell UC is a unit cell of the reciprocal
lattice.

4π2/L2, as two of these have energy 0 and the other two are divided over the second
level. In fact, in each of the six degenerate levels, we should put 1/3 electron because
of symmetry. This is an example of fractional filling resulting from degeneracy.

programming exercise

Write a program which diagonalises the Hamiltonian for a particle confined
to a box.

Check For the density in a box of size 5 a.u. we find in this case that the density
is homogeneous and equals 0.032 = 4/125. This is not surprising as we put four
electrons in a box of volume 53 = 125.

6.7.5 Adding a pseudopotential

The pseudopotential is part of the total potential felt by the electrons. The pseudo-
potential consists of a local and a nonlocal part. A local potential can be evaluated
as in Eq. (6.71). The local pseudopotential potential depends only on r − r0, where
r0 is the centre of an atom. We have:

VK,K′ = V(K − K′) = e−i(K−K′)·r0

∫
e−i(K−K′)·rV(r) d3r. (6.74)

154 Solving the Schrödinger equation in periodic solids

Note that K and K′ are indices of the Hamiltonian – therefore they lie inside the
C1 in Figure 6.14. Their difference will be inside C2.

For the j-th component (j = x, y, z) of K, Kj = 2πnj/L, the periodic image lying
on the grid in Fig. 6.14 is found as follows:

Kj = 2π(nj mod GridSize), (6.75)

where [. . .] denotes the integer part.
For r0 on the real-space grid, the structure factor in front of the integral is periodic

in K-space. However, an atom does not know how we define our grid and may be
located in between grid points (of course, with only one atom in the cell, we could
always move the atom to R = 0). This nonperiodicity of the structure factor is
responsible for the difference between potential at the points (2, 0, 0) and (−2, 0, 0)
(in units of the reciprocal grid constant) – hence we cannot take a grid size of 4
units, but instead need a 5 × 5 × 5 grid, as mentioned above.

We now give a specific form of the pseudopotential. We shall use the Goedecker–
Teter–Hutter (GTH) potential described in refs. [24] and [26]. This potential for a
core, located at the origin, with s and p electrons has the form:3

V(r, r′) = Vcore(r)+ Vloc(r)δ(r − r′)+ Vnonloc(r, r′) (6.76)

with

Vcore = −Zeff

r
erf

(
r√
2ξ

)
; (6.77a)

Vloc(r) = exp[−(r/ξ)2/2] × [C1 + C2(r/ξ)
2], (6.77b)

and

Vnonloc(r, r′) =
2∑

i=1

Y 0
0 (r̂)p

0
i (r)h

0
i p0

i (r
′)Y 0

0
∗
(r̂′)

+
∑

m=1,0,−1

Y 1
m(r̂)p

1
1(r)h

1
1p1

1(r
′)Y 1

m
∗
(r̂′) (6.78)

In these expressions, ξ , Ci, hl
i are parameters, and the pl

i are the functions

pl
1(r) = √

2
rle−(1/2)(r/rl)

2

rl+3/2
√
�(l + 3/2)

and (6.79)

pl
2(r) = √

2
rl+2e−(1/2)(r/rl)

2

rl+7/2
√
�(l + 7/2)

(6.80)

3 The form given here is somewhat simpler than the full GTH potential. For the atoms considered here,
however, the present form is sufficient.

6.7 The pseudopotential method 155

Table 6.1. Parameters for the GTH pseudopotential

Hydrogen Silicon

ξ 0.2 0.44
C1 −4.0663326 −6.9136286
C2 0.6778322D0 0.0
rl=0 – 0.4243338
hl=0

1 – 3.2081318

hl=0
2 – 2.5888808

rl=1 – 0.4853587
hl=0

2 – 2.6562230

Source: [24, 26]
Only values for hydrogen and silicon are listed.

The Gamma-function in the denominators ensures proper normalisation:∫
pl

i(r)p
l
i(r)r

2 dr = 1. (6.81)

Let us spend a few moments studying this potential. The very first term,
−Zeff/rerf(r/2ξ), is the Coulomb potential of a Gaussian charge distribution with
total charge Zeff and width ξ : for large arguments, that is, far from the ion core,
the error function erf tends to 1. The remaining terms are short-ranged and allow
therefore for refinement of the shape of the radial charge distribution. The nonlocal
term is, as usual, a projection onto the different l subspaces. For a complete list of
pseudopotential parameters, we refer to Refs. [24] and [26]; here we give those for
hydrogen and silicon – see Table 6.1.

The Fourier transform of the GTH potential can be calculated analytically,
yielding the following closed forms.

Vcore(K) = −4π
Zeff

e−(Kξ)2/2

K2
; (6.82)

Vloc(K) =
√
(2π)3

ξ3

e−(Kξ)2/2{C1 + C2[3 − (Kξ)2]} (6.83)

and

Vnonloc(K, K′) =
2∑

i=1

Y0
0 (K̂)p

0
i (K)h

0
i p0

i (K
′)Y 0

0
∗
(K̂′)

−
∑

m=1,0,−1

Y 1
m(K̂)p

1
1(K)h

1
1p1

1(K
′)Y1

m
∗
(K̂′). (6.84)

156 Solving the Schrödinger equation in periodic solids

The projector functions have the form pl
i:

p0
1 = 1√

4rs

√
2rsπ

5/4e−(Krs)
2/2, (6.85a)

p0
2 = 1√

8rs

√
2rs

15
π5/4e−(Krs)

2/2[3 − (Krs)
2], and (6.85b)

p1
1(K) = 1

8r2

1

√
r1

3
π5/4e−(Krs)

2/2K . (6.85c)

This pseudopotential can be directly incorporated into the Kohn–Sham
Hamiltonian. It does not depend on the density, so if we simply want to calu-
late the energies and eigenfunctions of a particle moving in the pseudopotential,
we just have to diagonalise the Hamiltonian which consists of the kinetic energy
plus pseudopotential. A self-consistency cycle is not necessary.

The Fourier transform of the local part of the pseudopotential for a core located
at Rn must be multiplied by exp(−iK · Rn). The nonlocal part must be multiplied
by exp[i(K − K′) · Rn].

Check Doing this for a cubic cell with an edge length of 5 a.u. containing one
hydrogen-core and an energy cut-off of (1/2)K2

max = 1.3, we obtain the eigen-
values −0.03572203 (once), 0.68175686 (once), 0.80555307 (three times) and
0.83735807 (twice). If we fill all seven levels, the density should be 0.05600 on
any real-space grid point. Try this first for a hydrogen at the origin, and then
some arbitrary position within the cell.

6.7.6 Exchange-correlation and Hartree potentials

The exchange-correlation and Hartree potentials are density-dependent; therefore,
including them makes a self-consistency cycle necessary. We shall first consider the
general problem of including density-dependent potentials into the problem. First,
we must have the density at our disposal. After diagonalising the Hamiltonian, we
calculate the Fourier transforms φ(j)(r) of the eigenfunctions c(j)K as in (6.63). Then
we calculate the density on all real-space grid points inside the cell according to
(6.66). Finally, we calculate the density in reciprocal space according to

n(K) = 1

N3

∑
r

n(r)e−iK·r. (6.86)

For the exchange-correlation potential, we use the GTH parametrisation of the
pseudopotential of Perdew and Wang [27]. This is a form of Padé approximant:

εxc = −
∑4

i=1 airi−1
s∑4

i=1 biri
s

. (6.87)

6.7 The pseudopotential method 157

Table 6.2. Parameters for the GTH parametrisation
of the exchange-correlation energy.

a1 0.4581652932831429 b1 1.0
a2 2.217058676663745 b2 4.504130959426697
a3 0.7405551735357053 b3 1.110667363742916
a4 0.01968227878617998 b4 0.02359291751427506

Here, rs = [3/(4πn)]1/3 is the radius of the spherical volume per atom; the numbers
ai and bi are given in Table 6.2. The exchange-correlation potential is given as the
derivative of the energy with respect to n. It must be calculated in real space, where
it is periodic (as it depends on the density, which is periodic), and then Fourier-
transformed so that it can be added to the (K-space) Hamiltonian. The procedure is
therefore to first fill a grid with the values of Vxc(r). This is then Fourier-transformed
to Vxc(K). Then, the contribution Vxc(K, K′), where K and K′ lie inside the circle
C1 of Figure 6.14, is found by first translating K − K′ to a point inside the unit cell
UC of the reciprocal grid, and then taking for Vxc(K, K′) the Fourier-transformed
exchange-correlation potential at that reciprocal grid point.

The Hartree potential

VH(r) =
∫

n(r′)
|r − r′|d3r′ (6.88)

can be Fourier-transformed to give

VH(K, K′) = VH(K − K′) = 4π

|K − K′|2 n(K − K′). (6.89)

For the density, the difference K − K′ has to be translated to lie inside the unit cell
UC (see Figure 6.13), just as in the case of the exchange correlation potential. For
the denominator, we simply take the norm of the smallest periodic image of the
difference K − K′.

Check If we incorporate both the exchange-correlation and the Hartree poten-
tials, we have a complete self-consistent pseudopotential Kohn–Sham program.
For the calculation with one hydrogen atom in a cubic cell of size 5 and a cut-off
of 1.3 atomic units, we obtain the energy spectrum:

−0.468131; 0.249348; 0.373144; 0.373144;

0.373144; 0.404949; 0.404949.

158 Solving the Schrödinger equation in periodic solids

6.7.7 Evaluating the energy

If you have obtained the correct spectrum, the density should necessarily be correct
too. One major task remains, however: evaluating the total energy. The energy can
be evaluated either by adding all the Kohn–Sham eigenvalues and subtracting the
appropriate corrections as in Eq. (5.3), or by using the Kohn–Sham eigenfunctions
to evaluate all the contributions to the energy as in (5.17) one by one. We take the
second approach. First of all, the kinetic energy is given by

Ekin =
∑

j

f (Ej)
∑

K

|c(j)|2K2/2. (6.90)

The exchange-correlation energy is evaluated in real space:

Exc =
∑

r

εxc(r)n(r), (6.91)

where the sum is over the real-space lattice points, or in reciprocal space, where it
reads:

Exc =

∑

K

ε(K)n∗(K). (6.92)

Following Marx and Hutter [25], we combine the electrostatic contributions from
the electrons and the ion cores. Remember that the core part of the pseudopotential,

Vcore = − Zn

|r − Rn|erf

(|r − Rn|√
2ξ

)
; (6.93)

derives from a Gaussian charge distribution:

ncore(r) = − Zn

(
√

2ξn)3
π−3/2 exp

[
−1

2

(
r − Rn

ξ

)2
]

. (6.94)

The Fourier transform of the core density is

ncore(K) = −Zn

exp

[
−1

2
(ξK)2

]
e−iK·Rn . (6.95)

For the total charge density we have

ntot(K) = nel(K)+ ncore(K). (6.96)

The electrostatic energy resulting from the total charge density is

EES = 1

2

∫
nel(r)nel(r′)

|r − r′| d3r d3r′ +
∫

ncore(r)nel(r′)
|r − r′| d3r d3r′

+ 1

2

∑
n
=n′

ZnZ ′
n

|Rn − R′
n|

, (6.97)

6.7 The pseudopotential method 159

where the first term is the Hartree electrostatic energy due to the electrons, the
second term is the interaction between the electrons and the core, and the last term
is the core–core interaction.

This last term causes problems as we must sum it over all periodic images of the
unit cell for which we are performing the calculations (for a discussion concerning
convergence of this type of expression, see Section 8.7.1). These problems can
be avoided by replacing the last term by the electrostatic interaction of the core
charges. This is done by adding and subtracting a term

Ecc = 1

2

∫
ncore(r)ncore(r′)

|r − r′| d3r d3r′ (6.98)

to the expression for the total energy, Eq. (6.97). The added term, together with the
first two terms in that equation, yields a contribution

1

2

∫
ntot(r)ntot(r′)

|r − r′| d3r d3r′ (6.99)

The remaining terms can be written as a convergent sum [25], leading to

EES = 1

2

∫
ntot(r)ntot(r′)

|r − r′| d3rd3r′

+ 1

2

∑
n,n′

ZnZn′

|Rn − Rn′ |erfc


 |Rn − Rn′ |√

2(ξ2
n + ξ2

n′)


−

∑
n

Z2
n

2
√
πξn

. (6.100)

The second term on the right hand side is due to the overlap of the core distributions,
and the third term corrects for the self-energy (that is, the energy of a core with
itself). Both of these are contained in the first term.

For periodic boundaries, we can reformulate this expression in Fourier space,
where it reads:

EES = 2π

∑
K
=000

|ntot(K)|2
K2

+ Eovrl − Eself , (6.101)

where ntot(K) is given above (Eq. (6.95)) and where

Eovrl =
∑

L

∑
n,n′

′ ZnZn′

|Rn − Rn′ − L|erfc


 |Rn − Rn′ − L|√

2(ξ2
n + ξ2

n′)


 , (6.102)

where L is an integer linear combination of the sides of the unit cell, the second
sum is restricted to n < n′ for L = 000, and

Eself =
∑

n

Z2
n

2
√
πξn

. (6.103)

160 Solving the Schrödinger equation in periodic solids

Table 6.3. Contributions to electronic energy of
hydrogen atom.

Contribution Value

Kinetic 0.159 230 87
Short range part of pseudopotential −0.021 083 18
Local pseudopotential −0.244 116 10
Exchange correlation −0.210 599 25
Hartree energy 0.024 351 53
Nonlocal pseudopotential 0.000 000 00
Local core energy 1.12582002
Self-energy 0.92508958
Electrostatic overlap 0.000 000 00

Total energy −0.557 835 94

Finally, we must include the energy contributions due to the pseudopotential.
These do not depend on the charge distribution and they contain the local and the
nonlocal terms. The local contribution is easily evaluated using

Elocal =
∫ ∑

n

Vlocal,n(r − Rn)n(r) d3r

=

∑

n

∑
K

Vlocal,n(K)e−iK·Rnn∗(K). (6.104)

where n runs over the atoms in the cell. The nonlocal energy reads:

Enonlocal =
∑

j

fj
∑

n

∑
l,mεn

(Fn
jlm)

∗hn
lmFn

jlm (6.105)

where l, mεn denotes the orbital with quantum numbers l, m belonging to atom
number n, and

Fn
jlm =

∑
K

e−iK·Rnc∗
j (K)Ylm(K̂)pl

m(K). (6.106)

Now that you have everything in place, you can calculate the electronic energy
of the hydrogen atom. It is built up from the contributions shown in Table 6.3.

6.8 Extracting information from band structures

Apart from ground state energies, from which cohesion energies and lattice spacings
can be determined, and those energy levels that can be measured directly using
spectroscopy experiments, it is useful to determine the density of states, n(E),
which can also be determined experimentally. This is defined as the number of levels

6.8 Extracting information from band structures 161

between E and E + dE, divided by dE. Another quantity of interest is the charge
density, which is needed for calculating the Hartree and exchange and correlation
potentials in the DFT self-consistency loop. The charge density is given by

n(r) =
∑
k,n

′|ψk,n(r)|2 =
∫ EF

−∞
dE n(r, E), (6.107)

where the sum in the second expression is over the occupied levels, i.e. those with
energy below the Fermi energy EF.

The charge density can also be found from an integration over the energy of the
local density of states, which is defined as the charge density resulting exclusively
from states at energy E. An elegant way of finding this quantity using Green’s
functions is described in Problem 6.3. Such an approach is necessary when the
total charge of the system is not known, as is the case for a small system coupled
to a large reservoir which determines the chemical potential: for a metal, this is (to
very good approximation) the Fermi energy of the large system. This Fermi energy
is defined with respect to the vacuum energy as the work function: the energy needed
to remove an electron from the large system. There exist Green’s function methods
in which the small system (e.g. an atom or a molecule) is coupled to the surface
Green’s function of a metal. The electronic structure can then still be determined in
a self-consistency loop, in which the charge density is determined from the Green’s
function of the combined system plus reservoir rather than from the eigenstates of
the Hamiltonian [28].

To find physical properties or quantities, we often must perform an integration
over the Brillouin zone, as the vectors (together with the band labels) in this zone
are quantum numbers of the stationary states. Taking the crystal symmetry into
account, these integrations only need to be carried out in the ‘irreducible wedge’
of the Brillouin zone: this can be used to fill the whole Brillouin zone by crystal
symmetry transformations. For example, in a two-dimensional lattice having the
symmetry of the square, the Brillouin zone is also a square, but to integrate quantity
over the Brillouin zone, an integration over a wedge of area 1/8 of the whole square
needs to be carried out. For the Brillouin zone of the fcc lattice in Figure 6.9, this
irreducible wedge is the volume bounded by the labelled points.

There exist many different methods for performing Brillouin zone integration
[21]. The most popular methods are those using special points [29, 30] and tetrahed-
ron methods. In the latter, (part of) the Brillouin zone is divided up into tetrahedra,
in each of which either a linear or a quadratic approximation of the function to be
integrated is made. For calculating the density of states, the quadratic works very
well since it is capable of reproducing all known Van Hove singularities [31–34].

162 Solving the Schrödinger equation in periodic solids

6.9 Some additional remarks

In this chapter we have described how the nonrelativistic Schrödinger equation can
be solved efficiently in a solid. The core electrons near heavy nuclei move at speeds
where relativistic effects become significant, although they are still small, so that
relativistic corrections must be included. This can be done in a perturbative way,
and the resulting equation for the radial part Rnl of the wave function reads:[

− 1

2M

1

r2

d

dr

(
r2 d2

dr2

)
+ l(l + 1)

2Mr2
+ V(r)− V ′(r)

4M2c2

d

dr

]
Rnl(r) = ERnl(r).

(6.108)
V ′(r) is the derivative of the potential V , and M is given in terms of the electron
rest mass m, the energy E and the potential as:

M(r) = m + 1

2c2
[E − V(r)]. (6.109)

This equation is derived from the Dirac equation; see for example Ref. [13].
Solving the Schrödinger equation is only one step in a DFT self-consistency

equation. Having found the density as described in the previous section, we must
calculate the Hartree potential by solving Poisson’s equation:

∇2VH(r) = −4πn(r). (6.110)

Solving this equation in a pseudopotential method with a plane wave basis is not
so difficult, as the Laplace operator ∇2 has the diagonal form k2

r δrs in reciprocal
space. For muffin tins, most of the codes use a method developed by Weinert [35].
In this method we obtain an expansion of the potential in spherical harmonics. Note
that in the APW method considered above, we use the spherical average of the full
potential. We shall only briefly discuss the two main ideas upon which Weinert’s
method is based.

First of all, inside the muffin tins, the charge density and potential are expanded
in spherical harmonics. The radial part of the Hartree potential can then be found
by integration of a radial differential equation, as was done for the l = 0 case in
the local density program for helium – see Section 5.5. The problem then remains
of finding the solution outside the muffin tins, which is determined by the charge
density in and outside the muffin tin. It seems a good idea to solve this problem in
reciprocal space because of the Laplace operator being diagonal there. However, a
huge number of plane waves would be necessary for obtaining an accurate solution,
as the charge inside the muffin tin contains rapid oscillations (it is constructed from
the wave functions which, as we have seen, vary rapidly close to the nucleus). The
second ingredient of Weinert’s method is the replacement of the charge density
inside the spheres by a weaker one, just as in the replacement of the full potential

Exercises 163

by a pseudopotential. The new, weak charge density is called pseudo-charge dens-
ity. That this replacement is possible can be seen by realising that the effect of a
muffin tin charge distribution can be formulated in terms of the multipole moments
of the charge density, and many different charge densities give the same multi-
pole moments. Note that this justification is also analogous to the pseudopotential
method, where the fact that many different potentials yield the same phase shifts
justifies the replacement of the full potential by a pseudopotential. For details we
refer to Weinert’s paper.

6.10 Other band methods

There are numerous band structure methods [1, 10, 36]), and we have considered
only two illustrative examples in this chapter. Another important approach is the
Korringa–Kohn–Rostocker (KKR) method, [37–39] based on a scattering approach
with a muffin tin form of potential. It leads to a matrix whose size is equal to the
number of different states used in the muffin tins.

Linearising the KKR method, one obtains the linear muffin tin orbital (LMTO)
method with localised, energy-independent wave functions which are centred at
each atom – see Refs. [40] and [41].

Exercises

6.1 In this exercise we want to establish the relation between the energy derivative and the
charge of a core wave function, Eq. (6.59). Our derivation will not rely on a spherical
shape for the core region. We use the normalisation convention that the value of the
wave function at the boundary of the core region is equal to some fixed number, so
that we have

∂ψ(rs)

∂E
= ψ̇(rs) = 0

where rs lies at the core boundary.

(a) Starting from the Schrödinger equation, derive an equation satisfied by ψ̇ . Note
that we use the full potential, which does not depend on energy.

(b) Green’s theorem applied to the core region for two arbitrary functions, ψ1 and ψ2,
reads ∫

core
d3r[ψ1(r)∇2ψ2(r)− ψ2(r)∇2ψ1(r)]

=
∫

shell
d2a[ψ1(a)n̂ · ∇ψ2(a)− ψ2(a)n̂ · ∇ψ1(a)]

where the integral on the right hand side is a surface integral over the boundary of
the core region and n̂ is a normal vector pointing out of the core boundary. Apply

164 Solving the Schrödinger equation in periodic solids

this theorem to ψ and its energy derivative and use the normalisation convention to
show that ∫

core
d3rψ2(r) = −1

2

∫
shell

d2aψ(a)n̂ · ∇ψ̇(a).
6.2 [C] Consider the following periodic potential in one dimension.

na

∆

(n + 1)a(n – 1)a

The height of the barriers is V0. The solution of the Schrödinger equation in
between two barriers at (n − 1)a and na can be written as

ψ(x) = Aneiq(x−na) + Bne−iq(x−na)

with q = √
2E. Assume that the energy we are interested in is higher than the barrier

height V0. On the nth barrier, the solution is written as

ψ(x) = Cneiκ(x−na) + Dne−iκ(x−na)

with κ = √
2(E − V0).

The values of An and Bn in neighbouring interstitial regions are connected through
the so-called ‘transfer matrix’:(

An+1

Bn+1

)
= T(E)

(
An

Bn

)
.

T is a 2 × 2 matrix which depends on energy.

(a) Show that the transfer matrix is given by

T = q

4κ

(
T11 T12

T21 T22

)
,

with

T11 = eiq(a−�)
[

eiκ�
(

1 + κ

q

)2

− e−iκ�
(

1 − κ

q

)2
]

,

T12 = −2ieiqa
(

1 − κ2

q2

)
sin(κ�);

and

T22 = T∗
11,

T21 = T∗
12.

Show that the product of the two eigenvalues of this matrix is equal to 1. Hence
these eigenvalues can either be written as e±ik (or as e±α , real α). From Bloch’s
theorem we know that the solutions can be labelled by a wave vector q̃ which is

Exercises 165

not necessarily equal to q, and that these solutions can be written as a periodic
function times eiq̃x. In our case this implies that(

An+1

Bn+1

)
= eiq̃a

(
An

Bn

)

and therefore

T

(
An

Bn

)
= eiq̃a

(
An

Bn

)
.

This equation defines the band spectrum of the system. It is now easier to find the
vector q̃ as a function of energy than vice versa: the above-mentioned eigenvalues
(which depend on energy via q and κ) must be equal to eiq̃a.

(b) [C] Write a simple computer program to determine the spectrum. In an APW
approach, the wave function outside the barriers is written as eiqmx, where
qm = k + 2πm/a and −π/a < k < π/a (m is integer). It is now convenient to
confine ourselves to the unit cell [−a/2, a/2] and to use Bloch boundary
conditions on that cell. For a Bloch state χm:

χm(−a/2) = χ(a/2)e−ika.

For each qr , the value of the wave function outside and inside the barrier can be
matched at the boundaries of the barrier. Show that Cm and Dm are given by

Cm = sin[(κ + qm)�/2]
sin(κ�)

,

Dm = sin[(κ − qm)�/2]
sin(κ�)

.

In the APW method, the coefficients bm of the expansion

ψ(x) =
∑

m

bmχm(x)

are found by solving the generalised eigenvalue problem

Hb = ESb

in which the matrix S is given by

Sml =
∫ −�/2

−a/2
e−iqmxeiqlxdx +

∫ a/2

�/2
e−iqmxeiqlxdx

+
∫ �/2

−�/2
[C∗

me−iκmx + D∗
meiκmx][Cle

iκnx + Dle
−iκlx]dx

= Sint
ml + Sext

ml

where we have split the expression for S into an integration over the interior of the
barriers and the part outside.

166 Solving the Schrödinger equation in periodic solids

(c) Show that

Sext
ml =




a −� if m = l
−2

qm − ql
sin

(qm − ql)�

2
otherwise

;

and

Sint
ml = CmCn + DmDn + (CmDn + CnDm)

κ�

κ
.

(d) Show that the Hamiltonian matrix is given as

Hml = H int
mn + 1

2
qmqnSext

mn + ∂Hmn

where

H int
ml = −κ sin(κ�)(CmDn + CnDm)+ κ2�(CmCn + DmDn),

and where ∂H is the matrix due to the jumps in derivatives across the barrier
boundaries. Show that ∂H is given by

∂Hmn = −qn sin[(qn − qm)�/2]
− Cmκ sin[(κ − qn)�/2] − Dmκ sin[(κ + qn)�/2].

(e) Write a program in which the matrices Hml and Sml are filled and find the zeroes of
the determinant |H − ES| for various k. Compare the results with the numerically
exact ones, resulting from the previous program.

6.3 In this problem we consider the determination of the local charge density using the
Green’s function. The Green’s function for a Hamiltonian’s H is defined as

(H − E)G(r, r′; E) = δ(r, r′).

(a) Show that G can be written as

G(r, r′; z) =
∞∑

n=1

ψn(r)
1

z − En
ψn(r′).

(b) Show that the electron density (charge density) can be found as

n(r) = 1

2π i

∫
�

G(r, r; z)dz,

where � is a closed contour in the complex plane which contains all the occupied
energy levels (these of course all lie on the real axis).

6.4 [C] As plane waves form an orthogonal basis, it is possible to use the Lowdin
perturbation method discussed in Section 3.4. Write an extension to your
pseudopotential program to incorporate large lattice vectors into the Hamiltonian in a
perturbative manner. Compare the results with those of the direct diagonalisation.

6.5 In this problem we derive the normalisation condition (6.50) from the normalisation
(6.47) of the radial solution inside the muffin tin.

References 167

(a) Show that the normalisation condition (6.47) can be rewritten as

〈Rl|H − E|Ṙl〉 = 1.

(b) Use this result, together with the fact that Rl is an eigenfunction of H inside the
muffin tin with eigenvalue E, and partial differentiation, to derive Eq. (6.50).

References

[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York, Holt, Reinhart and Winston,
1976.

[2] C. Kittel, Introduction to Solid State Physics, 6th edn. New York, John Wiley, 1973.
[3] R. M. Martin, Electronic Structure. Cambridge, Cambridge University Press, 2004.
[4] J. M. Thijssen and J. E. Inglesfield, ‘Embedding muffin tins into a finite difference grid,’

Europhys. Lett., 27 (1994), 65–70.
[5] S. Baroni and P. Giannozzi, ‘Towards very large-scale electronic structure calculations,’

Europhys. Lett., 17 (1992), 547–52.
[6] L.-W. Wang and A. Zunger, ‘Electronic-structure pseudopotential calculations of large

(approximate-to-1000 atoms) Si quantum dots,’ J. Phys. Chem., 98 (1994), 2158–65.
[7] T. L. Beck, ‘Real-space mesh techniques in density-functional theory,’ Rev. Mod. Phys., 72

(2000), 1041–80.
[8] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordéjon, ‘Tight-binding description of graphene,’

Phys. Rev. B, 66 (2002), 035412.
[9] J. C. Slater and G. F. Koster, ‘Simplified LCAO method for the periodic potential problem,’ Phys.

Rev., 94 (1954), 1498–524.
[10] V. Heine, ‘The pseudopotential concept,’ in Solid State Physics (F. Seitz and D. Turnbull, eds.),

vol. 24. New York, Academic Press, 1970, p. 1.
[11] J. C. Slater, ‘Wave functions in a periodic potential,’ Phys. Rev., 51 (1937), 846–51.
[12] J. C. Slater, ‘An augmented plane wave method for the periodic potential problem,’ Phys. Rev.,

92 (1953), 603–8.
[13] A. Messiah, Quantum Mechanics, vols. 1 and 2. Amsterdam, North-Holland, 1961.
[14] L. F. Mattheis, J. H. Wood, and A. C. Switendick, ‘A procedure for calculating electronic energy

bands using symmetrised augmented planes,’ in Methods in Computational Physics, vol. 8.
New York, Academic Press, 1968, pp. 63–147.

[15] T. Loucks, Augmented Plane Wave Method. New York, Benjamin, 1967.
[16] J. Callaway, Quantum Theory of the Solid State. 2nd edn. San Diego, Academic Press, 1991.
[17] O. K. Andersen, ‘Linear methods in band theory,’ Phys. Rev. B, 12 (1975), 3060–83.
[18] D. D. Koelling and G. O. Arbman, ‘Use of the energy derivative of the radial solution in an

augmented plane wave method: application to copper,’ J. Phys. F, 5 (1975), 2041–54.
[19] N. W. Ashcroft and D. C. Lang, ‘Compressibility and binding energy of the simple metals,’ Phys.

Rev., 155 (1967), 682–4.
[20] D. Brust, ‘The pseudopotential method and the single-particle electronic excitation spectra of

crystals,’ Methods in Computational Physics, vol. 8. pp. 33–61, New York, Academic Press,
1968, pp. 33–61.

[21] W. E. Pickett, ‘Pseudopotential methods in condensed matter applications,’ Comp. Phys. Rep.,
9 (1989), 115–97.

[22] J. R. Chelikowsky and M. L. Cohen, ‘Electronic structure of silicon,’ Phys. Rev. B, 10 (1974),
5095–107.

[23] G. B. Bachelet, D. R. Hamann, and M. Schlüter, ‘Pseudopotentials that work,’ Phys. Rev. B, 26
(1982), 4199–288.

168 Solving the Schrödinger equation in periodic solids

[24] S. Goedecker, M. Teter, and J. Hutter, ‘Separable dual space Gaussian pseudopotentials,’ Phys.
Rev. B, 54 (1996), 1703–10.

[25] D. Marx and J. Hutter, ‘Ab initio molecular dynamics: theory and implementations,’ in Modern
Methods and Algorithms of Quantum Chemistry, NIC Series, vol. 1. Jülich, John von Neumann
Institute for Computing, 2000, pp. 301–449.

[26] C. Hartwigsen, S. Goedecker, and J. Hutter, ‘Relativistic separable dual-space Gaussian
pseudopotentials from H to Rn,’ Phys. Rev. B, 58 (1998), 3641–62.

[27] J. P. Perdew and Y. Wang, ‘Accurate and simple analytic representation of the electron-gas
correlation energy,’ Phys. Rev. B, 45 (1992), 13244–9.

[28] N. D. Lang and A. R. Williams, ‘Theory of atomic chemisorption on simple metals,’ Phys. Rev.
B, 18 (1978), 616–36.

[29] D. J. Chadi and M. L. Cohen, ‘Special points in the Brillouin zone,’ Phys. Rev. B, 8 (1973),
5747–5753.

[30] H. J. Monkhorst and J. D. Pack, ‘Special points for Brillouin-zone integrations,’ Phys. Rev. B,
13 (1976), 5188–192.

[31] M. S. Methfessel, M. H. Boon, and F. M. Müller, ‘Analytic-quadratic method of calculating the
density of states,’ J. Phys. C, 16 (1983), L949–54.

[32] M. S. Methfessel, M. H. Boon, and F. M. Müller, ‘Singular integrals over the Brillouin zone: the
analytic-quadratic method for the density of states,’ J. Phys. C, 19 (1986), 5337–64.

[33] M. S. Methfessel, M. H. Boon, and F. M. Müller, ‘Singular integrals over the Brillouin zone:
inclusion of k-dependent matrix elements,’ J. Phys. C, 20 (1987), 1069–77.

[34] G. Wiesenecker and E. J. Baerends, ‘Analytic quadratic integration over the two-dimensional
Brillouin zone,’ J. Phys. C, 21 (1988), 4263–83.

[35] M. Weinert, ‘Solution of Poisson equation – beyond Ewald-type methods,’ J. Math. Phys., 22
(1981), 2433–9.

[36] R. Zeller, ‘Band structure methods,’ in Unoccupied Electron States (J. E. Inglesfield and
J. Fuggle, eds.), Heidelberg, Springer, 1991, pp. 25–49.

[37] J. Korringa, ‘On the calculation of the energy of a Bloch wave in a metal,’ Physica, 13 (1947),
392–400.

[38] W. Kohn and N. Rostocker, ‘Solution of the Schrödinger equation in periodic lattices with an
application to metallic lithium,’ Phys. Rev., 94 (1954), 1111–20.

[39] A. R. Williams, S. M. Hu, and D. W. Jepsen, ‘Recent developments in KKR theory,’ in Computa-
tional Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), New York,
Plenum, 1971, p. 157.

[40] O. K. Andersen, O. Jepsen, and M. Sob, ‘Linearised band structure methods,’ in Electronic
Band Structure and its Applications (M. Yussouff, ed.), Lecture Notes in Physics, vol. 283,
Heidelberg-Berlin, Springer, 1987, ch. 1, pp. 1–57.

[41] H. L. Skriver, The LMTO Method. New York, Springer, 1984.

7

Classical equilibrium statistical mechanics

7.1 Basic theory

In this chapter we briefly review the theory of classical statistical mechanics with
emphasis on those issues which are relevant to computer simulations. We shall
assume that the reader has some background in thermodynamics and statistical
mechanics; for further reading, numerous textbooks are available [1–8].

Statistical mechanics concerns the study of systems with many (in principle infin-
itely many) degrees of freedom. The degrees of freedom are usually the positions
and momenta of particles, or magnetic moments (‘spins’). We restrict ourselves to
classical systems for which all degrees of freedom commute. The space spanned by
the degrees of freedom is called phase space – every point in phase space represents
a particular configuration of the system. In the course of time, the system follows
a path in phase space, determined by the equations of motion. We are obviously
not interested in the values of all these degrees of freedom as a function of time:
only the time averages of physical quantities such as pressure are measurable. This
is because our measuring devices (thermometers, barometers) respond relatively
slowly; hence they give a time average of the physical quantity of interest. How-
ever, even if we could perform an instantaneous measurement of some quantity
we would find a result very close to the time average of that quantity as a result
of the law of large numbers, which teaches us that if a quantity is composed of N
uncorrelated contributions, fluctuations in that quantity are of order 1/

√
N . This

implies that for typical macroscopic physical quantities (such as the temperature of
your cup of tea) for which N is of the order of 1024, the fluctuations are as small
as ∼10−12 if we neglect correlations. If correlations extend over ∼100 particles,
the number of uncorrelated contributions is ∼1024/100 = 1022, so the fluctuations
remain extremely small.

Computer simulations always sample relatively few degrees of freedom, since
only a restricted amount of data can be stored in memory: system sizes in simulations

169

170 Classical equilibrium statistical mechanics

are always much smaller than those of experimental systems.1 Furthermore, a time
average of a physical quantity A is given by

Ā = lim
T→∞

1

T

∫ T

0
A(t)dt, (7.1)

and we want to obtain results in a finite amount of time! In a molecular dynam-
ics simulation (see Chapter 8), the typical simulation time is of the order of
10−9–10−6 seconds, far below the time in which most measuring devices sample
physical quantities. The results of such simulations can only be representative if
the spatial correlations extend over ranges smaller than the system size and if the
correlation time of the system is smaller than the simulation time. Sometimes it is
possible to extract useful information from simulations of systems with a size much
smaller than the correlation length by extrapolation – this is done in the finite-size
scaling method which will be discussed in Section 7.3.2. In this chapter, we shall
almost exclusively be concerned with systems in equilibrium.

7.1.1 Ensembles

If a system is thermally and mechanically insulated, the internal energy will remain
unchanged in the course of time. If the system is not insulated, it will eventually
take on the temperature of its surroundings (we assume that the surroundings have
a constant temperature). Such physical quantities, which are either kept fixed or
whose average value is controlled externally, are called system parameters. Differ-
ent experimental circumstances correspond to different parameters being kept fixed.
In the theory of statistical physics, these cases correspond to different ensembles.
We shall see that adapting the simulation techniques for classical many-particle
systems (Monte Carlo and molecular dynamics) to these experimental situations is
a nontrivial problem – that is why we consider the ensemble theory in some detail
in this section.

The fundamental postulate, or assumption, of statistical mechanics pertains to
systems with fixed energy E, volume V and particle number N (in magnetic sys-
tems, instead of the volume V , the external magnetic field H is kept constant).
The fundamental postulate says that all states accessible to the system and hav-
ing a prescribed energy, volume and number of particles are equally likely to be
visited in the course of time (the ergodic hypothesis). This leads to an identifica-
tion of the time average Ā (7.1) of the physical quantity A with a uniform average
over all accessible states – the latter is denoted as 〈A〉. Denoting the states by X,

1 A notable exception is formed by the so-called mesoscopic systems which contain typically 102 to 105

particles.

7.1 Basic theory 171

we have

〈A〉 =
∑

{X|E} A(X)∑
{X|E}

=
∑

X A(X)δ[H(X)− E]∑
X δ[H(X)− E] = Ā. (7.2)

H(X) is the Hamiltonian which gives the energy for a point X in phase space.
The denominator ensures proper normalisation. The sum

∑
{X|E} denotes a sum

over all states X with a fixed energy E; in the unrestricted sums the delta-function
takes care of the restriction to the states with energy E (the restriction to a specific
volume and particle number is tacitly assumed). In the case of continuous degrees of
freedom, the sums will generally be replaced by integrals. In the case of a monatomic
liquid consisting of N moving particles with spherically symmetric interactions, for
example, the sum is replaced by the following integral over the positions ri and
momenta pi of the particles:

∑
X

→
(

1

h

)3N ∫
V

d3r1d3r2 . . . d
3rN

∫
d3p1d3p2 . . . d

3pN (7.3)

where h is Planck’s constant. The average (7.2) is called the ensemble average and
the set of states under consideration (fixed N , V and E) is called the microcanonical
ensemble or (NVE) ensemble (the (NHE) ensemble in the magnetic case). From
now on, the volume V of a system of moving particles can be replaced by the
external magnetic field H for magnetic systems unless stated otherwise.

The denominator in (7.2) counts the number of states with the prescribed energy.
In fact, quantum mechanics imposes a way of counting which for the case of
identical particles is quite different from the classical procedure: as the particles
are indistinguishable, configurations that can be obtained from each other by per-
muting the particles should be counted only once. This implies that the sum in the
denominator of (7.2) should be divided by N !.2 The number of states with energy
E is then given by

�(N , V , E) = 1

N !
∑

X

δ[H(X)− E] (7.4)

(for mixtures, the factor N ! is replaced by the product N1!N2! . . ., where the sub-
scripts label the different species). The entropy is defined in terms of�(N , V , E) as

S(N , V , E) = kB ln�(N , V , E) (7.5)

where kB is Boltzmann’s constant. The quantum counting factor N ! is necessary
in order to make the entropy thus defined an extensive variable, i.e. a variable
that scales linearly with system size. The thermodynamic quantities temperature T ,

2 This only holds for systems in which there is at most one particle per quantum state. Properly taking into
account more particles per state leads to quantum statistical distributions.

172 Classical equilibrium statistical mechanics

chemical potential µ and pressure P are given as derivatives of the entropy with
respect to the system parameters:

T =
(
∂S

∂E

)−1

N ,V
µ = −T

(
∂S

∂N

)
E,V

P = T

(
∂S

∂V

)
E,N

(7.6)

as can be readily seen from the first law of thermodynamics:3

dE = TdS − PdV + µdN . (7.7)

In experimental situations, it is often the temperature that is kept constant and
not the energy (for the latter to be constant, the system must be insulated thermally
and mechanically). In order to achieve constant temperature, the system under
consideration is coupled to a heat bath, a much larger system with which it can
exchange heat. It turns out that a time average for the system under consideration
is equal to a weighted average over states with fixed volume and particle number
(the energy is no longer restricted); the weighting factor is the so-called Boltzmann
factor exp[−H(X)/(kBT)]. Writing β = 1/(kBT), we have

〈A〉NVT = 1

N !Z
∑

X

A(X)e−βH(X); (7.8a)

Z(N , V , T) = 1

N !
∑

X

e−βH(X). (7.8b)

The factor Z ensures proper normalisation. It is called the partition function and
it is related to the free energy F:

F = −kBT ln Z(N , V , T) (7.9)

which, in terms of thermodynamic quantities, is given by

F = E − TS. (7.10)

In equilibrium, the free energy assumes its minimum under the constraint of fixed
volume and particle number. The average in (7.8) is called the canonical ensemble
average or (NVT) ensemble average. Note that the partition function can be written
as a sum over sets of states with fixed energy:

Z(N , V , T) =
∑

E

e−βE�(N , V , E), (7.11)

where �(N , V , E) is the number of states with energy E as defined already in the
microcanonical ensemble. The number of states�(N , V , E) is a rapidly increasing
function of E and the Boltzmann distribution is a rapidly decreasing function of E.

3 Often, the first law is stated without including changes in particle number dN .

7.1 Basic theory 173

The product of the two functions peaks sharply at some value Ē and the system
will be found to have an energy very close to this value most of the time. This
suggests that there is in practice not much difference between the canonical and
the microcanonical system in which the energy is kept rigorously fixed at Ē. This
is a manifestation of the so-called ensemble equivalence: because of the law of
large numbers, measurable physical quantities exhibit very small fluctuations –
hence fixing them to their average value leaves the system essentially unchanged.
For finite systems, the differences between the ensembles increase with decreasing
system size.

Using the definition of the entropy (7.5), we may write (7.11) as

Z(N , V , T) =
∑

E

e−β(E−TS) =
∑

E

e−βFE , (7.12)

where FE is the free energy E−TS with S evaluated in the microcanonical ensemble
with energy E, and we see that the sum is indeed dominated by the states for which
the free energy is minimal.

Again using the first law of thermodynamics, (7.7), we can derive the following
thermodynamic quantities from the free energy:

µ =
(
∂F

∂N

)
V ,T

P = −
(
∂F

∂V

)
N ,T

S = −
(
∂F

∂T

)
V ,N

. (7.13)

If the pressure P is kept constant and not the volume, as in a cylinder closed
by a movable piston, we obtain an average over the isothermal-isobaric or (NPT)
ensemble:

〈A〉NPT = 1

N !Q
∫

dV e−βPV
∑

X

e−βH(X)A(X); (7.14a)

Q(N , P, T) =
∫

dV e−βPV 1

N !
∑

X

e−βH(X) =
∫

dV e−βPV Z(N , V , T),

(7.14b)

where Q(N , P, T) is again called the partition function. We see that Q is related to
the canonical partition function Z in much the same way as Z was related to the
function � in the microcanonical ensemble – see Eq. (7.11). Q is related to the
Gibbs free energy or Gibbs potential G:

G = −kBT ln Q(N , P, T). (7.15)

G can be expressed in terms of thermodynamic quantities as

G = E − TS + PV , (7.16)

and it assumes its mimimum value when the system has reached equilibrium under
the condition of fixed temperature and pressure. For magnetic systems, the role of

174 Classical equilibrium statistical mechanics

the pressure P is taken over by the total magnetic moment M. The other relevant
thermodynamic quantities follow from the definition of G(N , P, T):

µ =
(
∂G

∂N

)
P,T

V =
(
∂G

∂P

)
N ,T

S = −
(
∂G

∂T

)
P,N

. (7.17)

If the volume is again fixed, but the number of particles is allowed to vary, we
obtain the grand canonical ensemble average:

〈A〉 = 1

ZG

∑
N

eβµN 1

N !
∑

X

e−βH(X)A(X) (7.18a)

ZG(µ, V , T) =
∑

N

eβµN 1

N !
∑

X

e−βH(X). (7.18b)

Here, µ is the chemical potential for the addition or removal of a particle.
ZG(µ, V , T) should not be confused with the canonical partition function
Z(N , V , T); it can be expressed in terms of the latter as

ZG(µ, V , T) =
∑

N

eβµN Z(N , V , T). (7.19)

ZG defines the grand canonical potential �G, analogous to similar definitions for
the other ensembles:

�G(µ, V , T) = −kBT ln ZG(µ, V , T). (7.20)

In equilibrium, this potential assumes its minimum value for fixed µ, T and V .
From the definition of ZG and from the expression for the average values in the
grand canonical ensemble, it follows that

�G(µ, V , T) = F − µN . (7.21)

The internal energy can be written in terms of the variables S, V and N and it
satisfies the Gibbs–Duhem equation [4]

E(S, V , N) = TS − PV + µN (7.22)

so that we have
�G(µ, V , T) = −PV . (7.23)

From the grand canonical potential we can derive thermodynamic quantities:

N = −
(
∂�G

∂µ

)
V ,T

P = −
(
∂�G

∂V

)
µ,T

S = −
(
∂�G

∂T

)
V ,µ

. (7.24)

Expectation values of thermodynamic quantities are calculated either as
ensemble averages or as integrals over phase space. As an example of an ensemble
average, consider the internal energy. The expectation value of this quantity in the

7.1 Basic theory 175

canonical ensemble is given by

〈E〉NVT =
∑

X e−βH(X)H(X)∑
X e−βH(X) (7.25)

and from this it is readily seen that

〈E〉NVT = −∂ ln Z

∂β
. (7.26)

The specifc heat at constant volume CV is defined as

CV =
(
∂E

∂T

)
N ,V

(7.27)

and it can therefore be related to the root mean square (rms) fluctuation of the energy:

CV = 1

kBT 2

∂2 ln Z

∂β2

= 1

kBT 2

[∑
X e−βH(X)H2(X)∑

X e−βH(X) −
(∑

X e−βH(X)H(X)∑
X e−βH(X)

)2



= 1

kBT 2
(〈E2〉NVT − 〈E〉2

NVT). (7.28)

Information about the microscopic properties of the system is given by correlation
functions, which can sometimes be measured experimentally, for example through
neutron scattering experiments [9]. In the next section we shall encounter several
examples of correlation functions.

In later chapters, we shall describe the molecular dynamics and Monte Carlo
simulation methods, which enable us to evaluate ensemble averages of different
physical quantities expressed in terms of the system coordinates. Such ensemble
averages are called mechanical averages. Free energies and chemical potentials are
not directly given as mechanical averages but as phase space integrals. Integrals
over phase space cannot be estimated directly in simulations, but fortunately dif-
ferences between free energies at two different temperatures can be formulated as
ensemble averages. Suppose, for example, that we know the free energy of system
at a temperature T , and we would like to know it at a different temperature T ′. The
difference βF(T)− β ′F(T ′) is then found as

exp[βF(β)− β ′F(β ′)] = Z(β ′)
Z(β)

=
∑

X exp[−β ′H(X)]∑
X exp[−βH(X)] = 〈exp[(−β ′ + β)H]〉β (7.29)

where 〈· · ·〉β denotes a canonical ensemble average evaluated at inverse temperature
β. Determination of this expectation value in a simulation suffers from bad statistics.

176 Classical equilibrium statistical mechanics

The reason is that in these simulations the system is pushed into a narrow region
around a hypersurface in phase space where the configurational energy is equal
to its average value, say Ē, at temperature β. In Eq. (7.29), we want to probe the
region where the configurational energy is equal to its average Ē′ at temperature
β ′ – hence this region will only be probed correctly if β and β ′ are fairly close, so
that the hypersurface with configurational energy Ē′ lies within the narrow region
around the Ē-hypersurface probed by the phase space integral. If this is not the case,
simulations can be performed for a number of temperatures between T and T ′; the
resulting free energy differences are then added to find the desired free energy
difference. Such is frequently done, although a slightly more subtle approach is
used in practice [10].

Another approach is to integrate the free energy numerically from one value of
the volume or temperature to another (thermodynamic integration). According to
Eqs. (7.13) and (7.26), we have [10]

F(T , V1) = F(T , V0)−
∫ V1

V0

P(T , V) dV (7.30a)

F(T1, V)

T1
= F(T0, V)

T0
+
∫ T1

T0

E(T , V)

T 2
dT . (7.30b)

This method can be used to calculate energy differences between systems at different
temperatures or with different volumes. Integration over a particular path in phase
space can be performed by carrying out simulations for a number of points on that
path in order to determine 〈P〉 or 〈E〉 and then performing a numerical integration of
(7.30). It is advisable to choose these points in accordance with the Gauss–Legendre
integration scheme – see Appendix A6. At a phase transition (see Section 7.3), the
free energy does not behave smoothly as a function of the system parameters.
Either the path must circumvent the transition line, or two integrations must be
performed, one for each phase, with starting points corresponding to appropriate
reference systems for which the free energy is known, for example at zero or infinite
temperature.

In Chapter 10 we shall consider additional methods for calculating free ener-
gies and chemical potentials. For a review of free energy calculation methods see
Ref. [10].

7.2 Examples of statistical models; phase transitions

7.2.1 Molecular systems

A model is defined by its degrees of freedom and by the Hamiltonian which assigns
an energy to every possible state of the system – that is, a specific set of values

7.2 Examples of statistical models; phase transitions 177

of the degrees of freedom. If we consider, for example, a system consisting of N
identical point particles, the degrees of freedom are given by all positions ri and all
momenta pi, i = 1, . . . , N of the particles. We shall denote the full sets of positions
and momenta by R and P, respectively. The Hamiltonian H is given as

H(R, P) =
N∑

i=1

p2
i

2m
+ VN (R). (7.31)

VN (R) denotes the total potential energy of all the particles with positions given
by the 3N-coordinate R. In simulations one often uses an approximation in which
VN (R) is written as a sum over pair potentials:

VN (R) = 1

2

N∑
i,j

i �=j

V2(|ri − rj|), (7.32)

where the sum is over all pairs i, j, except those with i = j. The factor 1/2 com-
pensates the double counting of pairs in the sum. Pair potentials are so popular
because usually the evaluation of all forces or all potentials is the most time-
consuming part of the program, and the time needed for this calculation increases
rapidly with the number of particles involved in the interaction. For pair potentials,
for example, there are N(N − 1)/2 interactions, for three-particle interactions we
would have O(N3) contributions etc.

A Lennard–Jones parametrisation for the pair potential is often adopted:

VLJ(r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]

. (7.33)

Such a potential has already been used in Chapter 2 for describing the interaction
between a hydrogen and a krypton atom.4 The 1/r6 tail is based on polarisation
effects of the interacting atoms and the 1/r12 repulsive is chosen for numerical
convenience. For argon, the Lennard–Jones description has been quite successful
[11]; it has been applied to the solid, liquid and gas phases.

The canonical partition function Z is given as

Z(N , V , T) = 1

h3N N !
∫

V
d3N R d3N P exp

[
−β

(
N∑

i=1

p2
i

2m
+ VN (R)

)]
. (7.34)

Irrespective of the form of VN , we can perform the (Gaussian) integration over the
momenta since they do not couple with the spatial coordinates, and we find

Z(N , V , T) = 1

N !
(

2mπ

βh2

)3N/2 ∫
V

d3N R exp[−βVN (R)]. (7.35)

4 Note that this form deviates from that given in Chapter 2. The present form is common in molecular
dynamics.

178 Classical equilibrium statistical mechanics

For systems consisting of rigid polyatomic molecules, the interaction potential is
usually taken to be the sum of atomic pair potentials, aside from rigidity constraints.
A tantalising problem is the satisfactory description of water in simulations using
ab initio interaction potentials [12].

Macroscopic quantities such as pressure, specific heat, etc, can be determined
relatively easily from simulations and can be compared with experimental results.
They give global information concerning the state of the system. The pressure can
be found in a simulation using the virial theorem [13]:

βP

n
= 1 − β

3N

〈 N∑
i=1

ri∇iVN (R)

〉
(7.36)

where 〈· · ·〉 denotes the usual ensemble average, but in a dynamic system the time
average can be used instead.

The specific heat at constant volume can easily be calculated in the canonical
ensemble using Eq. (7.28), which relates this quantity to the fluctuation of the
total energy. However, in the microcanonical ensemble, the total energy is fixed,
so its fluctuation vanishes at all times. Fortunately, it can be calculated from the
fluctuation of the kinetic energy from a formula derived by Lebowitz [14]:

〈δK2〉
〈K〉2 = 2

3N

(
1 − 3N

2CV

)
. (7.37)

More detailed information can experimentally be obtained via X-ray and neutron
scattering experiments. In particular, several correlation functions can be measured
experimentally and they can also be determined in simulations. The static pair
correlation function g(r, r′) is proportional to the probability of finding a particle
at r and simultaneously one at r′. In the canonical ensemble, it is given by the
following expression:

g(r, r′) = V2 1

N !h3N Z

∫
V

d3r3 · · · d3rN exp[−βVN (r, r′, r3, . . . , rN]. (7.38)

For a homogeneous system, this function depends on�r = r−r′ only and therefore
for large N it can be written as

g(�r) = V

N(N − 1)

〈∫
d3r′

N∑
i,j

i �=j

δ(r′ − ri)δ(r′ +�r − rj)

〉
. (7.39)

For large �r, the correlation function tends to 1, and often the ‘bare’ correlation
function h(�r), which is defined as h(�r) = g(�r)− 1, is used instead.

The pair correlation function contains information concerning the local structure
of the fluid. For an isotropic, homogeneous system, the pair correlation function
depends only on the distance �r = |r − r′|. Suppose we were to sit somewhere

7.2 Examples of statistical models; phase transitions 179

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140

g(
r)

r

Figure 7.1. The pair correlation function of argon at its triple point.

in the fluid and watch the surroundings for some time, then, on average, we would
see a homogeneous structure. If we were to move along with a particular particle,
however, and watch the scenery from this particle, we would find no particles close
to us because of the strong short-range repulsion. Then we have an increase in
density due to a layer of particles surrounding our particle, followed by a drop in
density marking the boundary between this layer and a second layer, and so on.
Because of the fluctuations, the layer structure becomes more and more diffuse for
increasing distances and the correlation function will approach a constant value
at large distances. A typical example of a pair distribution function in a fluid is
shown in Figure 7.1. For a discussion on the experimental determination of static
and dynamic correlation functions, see Ref. [13].

Another important correlation function is the velocity autocorrelation function,
which is a function of time. It is the expectation value of the dot product of the
velocity of a particular particle (‘tagged particle’) at time 0 with the velocity of the
same particle at time t:

cvi(t) = 〈vi(0) · vi(t)〉 (7.40)

for an arbitrary particle i. For a homogeneous system this is independent of i. Since
this correlation function is a dynamic quantity, it cannot be found as an ensemble
average, as the latter is suitable for evaluation of averages of static quantities only.
For identical particles, the velocity autocorrelation function is usually evaluated as
a combined time average and an average over the N particles in equilibrium:

cv(t) = 1

N
lim

T→∞

N∑
i=1

1

T

∫ T

0
dt′vi(t

′) · vi(t
′ + t). (7.41)

180 Classical equilibrium statistical mechanics

In 1970, Alder and Wainwright concluded from molecular dynamics simulations
for the hard sphere gas that this function decays algebraically as 1/tD/2 (D is the
dimension of the system) [16], in striking contrast to the ‘molecular chaos’ assump-
tion according to which the velocity autocorrelation should decay exponentially.
The long time tail implies that a particle moving in a fluid does not so easily ‘forget’
its initial motion. It turns out that the tagged particle causes a pressure rise ahead
and a pressure drop behind itself and the resulting pressure difference produces
vortices (in two dimensions) or a sideways vortex ring (if D = 3) and these persist
for a relatively long time. Remarkable quantitative agreement has been found with
a hydrodynamic calculation of a sphere moving in a fluid [15, 16].

7.2.2 Lattice models

Another model is a ‘magnetic’ one: the famous Ising model [17, 18]. The quotes are
put around the qualification ‘magnetic’ to indicate that the model does not describe
magnetic systems satisfactorily; it does however give a good description of atoms
adsorbed on surfaces and of two-component alloys. Furthermore, the Ising model
is an example of a lattice field theory (lattice field theories will be discussed in
Chapter 15). Last but not least: the two-dimensional Ising model on a square lattice
was the first model that was found to exhibit a genuine phase transition and was
solved exactly [18, 19, 20].

The Ising model is defined on a lattice and we shall confine ourselves to the two-
dimensional version on a square lattice of size L × L (in the thermodynamic limit
L goes to infinity). The lattice sites are labelled by a single index i, and with 〈i, j〉
we denote a pair of neighbouring sites, where it is assumed that the spins on the top
row of the lattice are connected to the corresponding ones on the bottom row and
similarly for the left and right columns of sites (periodic boundary conditions; see
Figure 7.2). On each site i, a ‘spin’ si is located. This can assume two different values,
which we shall take to be +1 and −1. The spins are the degrees of freedom, and the
Hamiltonian assigns an energy to each configuration {si} of the spins according to

H{si} = −J
∑
〈i,j〉

sisj − H
∑

i

si. (7.42)

J is a coupling constant. It couples only nearest neighbour spins: the first sum is
over nearest neighbour pairs on the lattice (taking periodic boundary conditions
into account). For positive J , the coupling term favours like nearest neighbour pairs
as this lowers the total energy: each spin wants to be surrounded by like spins on
neighbouring sites – this case is called ferromagnetic. For negative J-values the
model is called antiferromagnetic. The second term favours the spins to have a sign
equal to that of the external magnetic field H. The partition function of the Ising

7.2 Examples of statistical models; phase transitions 181

Figure 7.2. Periodic boundary conditions on the square lattice. All sites on the
left column are coupled to their counterparts on the right column, but only two of
these couplings are shown.

model is given by

Z =
∑
{si}

exp
[
βJ
∑
〈i,j〉

sisj + βH
∑

i

si

]
. (7.43)

Notice that the model is defined without any reference to dynamics. Dynamical
Ising models have been formulated [21] and these reflect somehow the behaviour
of real systems, but their form is not imposed by physical laws.

An interesting case is zero external magnetic field (H = 0), for which the model
has been solved analytically. The Hamiltonian is then invariant with respect to global
spin reversal. At absolute zero temperature, β → ∞, either of two configurations,
with all spins + or all spins −, are allowed. Suppose we start off with all spins +.
We are interested in the behaviour of the average value of the spins, which we
shall call magnetisation and which is denoted m. Flipping a spin with four equal
nearest neighbours induces a penalty via the Boltzmann factor being reduced by a
factor e−8βJ (remember the Boltzmann factor gives the weight, i.e. the probability
of occurrence in a time sequence) and for low temperature, as β is still large,
a particular spin turning over is therefore a very rare event. The relative occurrence
of a configuration with an arbitrary single spin turned over with respect to one
in which all spins are equal is given by L2e−8βJ . If we raise the temperature,
the probability of having one or more spins turned over increases and therefore the
magnetisation decreases (in absolute value). What will happen to the magnetisation
when increasing the temperature further? Let us first consider T → ∞, or β = 0.
In that case all configurations have the same Boltzmann factor of 1 and the coupling

182 Classical equilibrium statistical mechanics

0 0.5 1 1.5 2 2.5

M
ag

ne
tis

at
io

n

k T/JB

–1

–0.5

0

0.5

1

Figure 7.3. Phase diagram of the Ising model. There are two branches, one with
negative and one with positive magnetisation, corresponding to the spin-reversal
symmetry present in the model.

between the spins is no longer noticeable. Therefore, each spin will assume values
+1 and −1 with equal probability and the average magnetisation will vanish. Two
scenarios are possible for intermediate temperatures: either the magnetisation will
decay asymptotically with increasing temperature, or it will vanish at some finite
temperature. If the latter happens, we shall see a nonanalytic behaviour in the
magnetisation curve, which seems highly improbable as the Hamiltonian depends
analytically on all spins. Indeed for finite systems, all physical variables are analytic
functions of the system parameters, but for N → ∞, nonanalytic behaviour might
show up. This is precisely what happens! The magnetisation for the infinite system
vanishes at a finite temperature Tc given by J/kBTc ≈ 0.44 and this phenomenon
is called a phase transition [18, 19]. For reasons to be explained below, this phase
transition is often called ‘second order’, ‘critical’ or ‘continuous’. Figure 7.3 shows
the (m, T) phase diagram for zero magnetic field. Two branches are shown, one for
a system starting off with negative, and the other with positive magnetisation.

The behaviour of the Ising ferromagnet may be described in terms of the bal-
ance between entropy and energy. There is only one state with lowest energy (if
we restrict ourselves to positive magnetisation at low temperatures, see below), L2

states with one spin flipped, L2(L2 − 1)/2 states with two spins flipped and so on:
the number of states increases rapidly with energy. It also increases rapidly with
decreasing magnetisation for similar reasons. Therefore, there exist a huge num-
ber of disordered (zero magnetisation) states, having a relatively small Boltzmann

7.2 Examples of statistical models; phase transitions 183

factor, and a small number of ordered states, with a large Boltzmann factor. The
Boltzmann effect is reduced by increasing the temperature. At the point where
the numeric abundance (entropy effect) of the disordered states compensates for
the Boltzmann effect, energy and entropy of the domain walls separating the spin-
up from the spin-down phases are said to be in balance – this is the critical point,
where the average magnetisation reaches zero.

This entropy–energy balance can be quantified using an argument given by Peierls
[5]. A domain wall of length N , separating a + from a − region, represents an energy
penalty of 2JN , since each pair of opposite spins on both sides of the wall carries
an energy J , as opposed to equal neighbouring spins representing an energy −J .
We can estimate the number of possible domain wall configurations by realising
that at each segment (a unit step of the interface) a domain wall has the option
of turning left or right, or continuing straight on, leading to three possibilities.
However, a domain wall cannot intersect itself, so at some segments only two of
the three options are allowed. Therefore the number of domain wall configurations
lies between 2N and 3N , and we have for the entropy S:

kBT ln 2N < S < kBT ln 3N . (7.44)

The point where energy and entropy are in balance satisfies

kBTN ln 2 < 2NJ < kBTN ln 3, (7.45)

which leads to ln 2 < 2J/(kBT) < ln 3, or 0.3466 < J/(kBT) < 0.549, to be
compared with the exact value J/(kBT) ≈ 0.44.

A remark is appropriate here. The picture sketched so far is a dynamic one:
we start off with a particular state (all spins +) and consider what happens when
the temperature is increased. According to the postulate of statistical mechanics,
average values of physical quantities are given by ensemble averages, and we see
immediately that the average magnetisation is always zero, as the Hamiltonian is
symmetric with respect to flipping all spins. It is, however, believed that in any
realistic system the spins turn over one after another, or perhaps in small groups
at a time. Turning over the magnetisation requires a large number of spin flips
and the occurrence of a domain wall between two regions of different spin with
a length of the order of the linear system size. The probability of this happening
is exceedingly small and the system will never enter the opposite magnetisation
phase. This implies ergodicity violation since not all configurations are accessible
to the system. A nice way to get round this violation is to switch on a small but
positive magnetic field H which causes a difference between the energy of the
positive and negative magnetisation phase by an amount 2HL2, and therefore the
negative magnetisation phase no longer contributes to ensemble averages. After

184 Classical equilibrium statistical mechanics

the calculation has been completed, the limit H → 0 is taken. It is to be noted that
for a finite external magnetic field the phase transition disappears.5

7.3 Phase transitions

7.3.1 First order and continuous phase transitions

As we have already seen in Section 7.2, phase transitions may occur in thermody-
namic systems. These transitions can be of two different types, first order and second
order. The latter are also called critical or continuous transitions. In this section we
consider phase transitions in more detail, with emphasis on phenomena and tech-
niques which are of interest in numerical simulations. In particular we discuss the
finite-size scaling technique for studying second order transitions in simulations.
The description here is short and simplified and for more detailed accounts the
reader is referred to the books by Plischke and Bergersen [5], Reichl [3], Pathria
[22], Le Bellac [8] and the various volumes in the Domb and Green/Lebowitz
series [23].

The state of a system is usually characterised by a particular value of a phys-
ical quantity which is called the order parameter. This order parameter is used to
distinguish between different phases. In the case of a gas–liquid transition at fixed
pressure and temperature, it is the density which plays the role of the order parameter
and the transition to the gas phase is indeed characterised by the density greatly
decreasing. In magnetic systems, with the magnetic field and the temperature as
system parameters, the order parameter is the magnetisation m which distinguishes
the magnetic (m �= 0) from the nonmagnetic (m = 0) phase and which, as we have
seen above, is continuous at the zero-field Ising phase transition (the point where it
vanishes) but has a discontinuous derivative. The order parameter is a derivative of
the free energy (the density is expressed in terms of the volume, which is a derivative
with respect to pressure, and magnetisation is a derivative with respect to magnetic
field) and therefore a jump in the order parameter means a discontinuity in a first
derivative of the free energy – hence the name ‘first order’ for this type of transition.
If the order parameter is continuous at the phase transition, we speak of a continu-
ous, critical or second order transition. In fact, the discontinuity shows up ‘before
the second derivative’, as the free energy generally behaves as a broken power of
one of the external parameters, f ∼ (K − Kc)

α , where K is the external parameter
which assumes the value Kc at the critical point, and α lies between 1 and 2.

As we have seen in Section 7.1, any system in equilibrium is characterised by
some free energy assuming its minimum for given values of the system parameters,

5 Switching from a positive magnetic field to a negative one induces a change in sign of the magnetisation m
if T < Tc. This is a first order phase transition, induced by the magnetic field instead of the temperature.

7.3 Phase transitions 185

T < Tt

T = T

T < T

1st order 2nd order

c

c

T > Tc

t

t

T = T

T > T

Figure 7.4. Typical behaviour of the free energy as a function of the order para-
meter and temperature. The left hand side corresponds to the first order case, with
transitions temperature Tf , and the right hand side to the continuous case, with
critical transition temperature Tc.

and for this minimum the order parameter assumes a particular value. It is possible
to define a free energy for any fixed value of the order parameter by calculating
the partition function for exclusively those configurations that have the prescribed
value of the order parameter. As an example, we can define the free energy, F(m),
for the Ising model with fixed magnetic field in terms of a partition function, Z(m),
defined as

Z(m) =
∑
{si}

e−βHδ
(∑

i

si − Ldm
)

(7.46a)

F(m) = −kBT ln Z(m), (7.46b)

where d is the dimension of the system. Note the delta-function in the definition
of Z(m) restricting the sum to configurations with a fixed magnetisation m. It is
instructive to consider how this free energy as a function of the order parameter
changes with an external parameter (the temperature for example) across the trans-
ition for the two different types of phase transitions. Typical examples are shown
in Figure 7.4.

The equilibrium situation is characterised by the minimum of the free energy.
If we imagine the leftmost minimum in the first order case to correspond to the
liquid phase and the right hand one to the gas phase, we see that, away from the
transition temperature, one of the two phases is stable and the other one metastable.

186 Classical equilibrium statistical mechanics

The phase transition is characterised by the liquid phase going from stable to meta-
stable and the gas phase becoming stable. In the continuous case (right hand side
of Figure 7.4), there are two (or more) minima of equal depth, corresponding to as
many ordered phases, and these merge at the phase transition into one, disordered
phase; in the Ising model, the ordered phases are the positive and negative mag-
netisation phases, merging into a single, nonmagnetic, disordered phase. Close to
the phase transition the system can easily hop from one (weakly) ordered phase to
another, as the phases are separated by weak barriers and therefore fluctuations will
increase considerably: the phase transition is announced before it actually happens
by an increase in the fluctuations. This is unlike the first order case, in which the
order parameter jumps from one well into the other without this being announced
by an increase in the fluctuations.

Before focusing on second order transitions, we discuss some problems related
to detecting first order transitions in a simulation. From Figure 7.4 it is seen that,
in order for the actual transition to take place, the system should overcome a free-
energy barrier, and obviously the higher the barrier the longer the time needed for
this to happen. In the short time over which a typical system can be simulated, it will
not be able to overcome the barrier at or near the first order transition and we shall
observe a strong hysteresis: if, in the case of a liquid–gas transition, the system is
cooled down from the gas phase, it will remain in that phase well below the transition
temperature before it will actually decide to condense into the liquid phase. On the
other hand, if a fluid is heated, it will remain in the fluid state above the transition
temperature for quite some time before it enters the gas phase. In order to determine
the transition temperature it is necessary to obtain the free energy for both phases
so that the transition can be determined as the point where they become equal.
However, as mentioned already in Section 7.1, the free energy cannot be extracted
straightforwardly from molecular dynamics or Monte Carlo simulations, and the
special techniques mentioned there and those to be discussed in Chapter 10 must be
applied. In transfer matrix calculations (see Chapter 11), the free energy is directly
obtainable but this method is restricted to lattice spin models. Panagiotopoulos
[24, 25] has developed a method in which two phases of a molecular system can
coexist by adjusting their chemical potentials by the exchange of particles – see
Section 10.4.3.

*7.3.2 Critical phase transitions and finite-size scaling

Critical phase transitions are characterised by the disappearance of order caused
by different ordered phases merging into one disordered phase at the transition. In
contrast to first order transitions, critical phase transitions are ‘announced’ by an
important increase in the fluctuations. The Ising model on a square lattice described

7.3 Phase transitions 187

above is an ideal model for visualising what is going on close to a second order
phase transition.

An interesting object in connection with phase transitions is the pair correlation
function. As the Ising model in itself is not dynamic, only the static correlation
function is relevant. It is given by

g̃(m, n) = 〈smsn〉 = 1

Z

∑
{si}

smsn exp
[
βJ
∑
〈ij〉

sisj + βH
∑

i

si

]
. (7.47)

Instead of the pair correlation function defined in (7.47), the ‘bare’ correlation
function is usually considered:

g(i, j) = g̃(i, j)− 〈si〉2 (7.48)

which decays to zero if i and j are far apart. The physical meaning of the bare pair
correlation function is similar to that defined above for molecular systems. Suppose
we sit on a site i, then g(i, j) gives us the probability of finding the same spin value on
site j in excess of the average spin on the lattice. The correlation function defined
here obviously depends on the relative orientation of i and j because the lattice
is anisotropic. However, for large distances this dependence is weak and the pair
correlation function will depend only on the distance rij between i and j. The decay
of the bare correlation function below the transition temperature is given by

g(r) ∝ e−r/ξ , large r. (7.49)

ξ is called the correlation length: it sets the scale over which each spin has a
significant probability of finding like spins in excess of the average probability. One
can alternatively interpret ξ as a measure of the average linear size of the domains
containing minority spins. If we approach the transition temperature, more and more
spins turn over. Below the transition temperature, the system consists of a connected
domain (the ‘sea’) of majority spins containing ‘islands’ of minority spin. When
approaching the transition temperature, the islands increase in size and at Tc they
must grow into a connected land cluster which extends through the whole system in
order to equal the surface of the sea, which also extends through the whole system.
For higher temperature the system is like a patchwork of unconnected domains of
finite size. The picture described here implies that at the transition the correlation
length will become of the order of the system size. Indeed, it turns out that at the
critical phase transition the correlation length diverges and the physical picture [26]
is that of huge droplets of one spin containing smaller droplets of the other spin
containing still smaller droplets of the first spin and so on. This suggests that the
system is self-similar for a large range of different length scales: if we zoomed
in on part of a large Ising lattice at the phase transition, we would notice that the
resulting picture is essentially indistinguishable from the one presented by the lattice

188 Classical equilibrium statistical mechanics

as a whole: the differences only show up at the smallest scales, i.e. comparable to
the lattice constant. This scale invariance is exploited in renormalisation theory
[27, 28] which has led to a qualitative and quantitative understanding of critical
phase transitions.6

One of the consequences of the scale invariance at the critical phase transition is
that the form of the correlation function should be scale invariant, that is, it should
be essentially invariant under a scale transformation with scaling factor b, and it
follows from renormalisation theory that at the transition, g transforms under a
rescaling as

g(r) = b2(d−y)g(rb) (7.50)

(d is the system dimension). From this, the form of g is found as

g(r) = Constant

r2(d−y)
. (7.51)

The exponent y is called the critical exponent. It turns out that this exponent is
universal: if we change details in the Hamiltonian, for instance by adding next
nearest neighbour interactions to it, the temperature at which the transition takes
place will change, but the critical exponent y will remain exactly the same. Systems
which are related through such ‘irrelevant’ changes in the Hamiltonian are said to
belong to the same universality class. If the changes to the Hamiltonian are too
drastic, however, like changing the number of possible states of a spin (for example
3 or 4 instead of 2 in the Ising model), or if we add strong next-nearest neighbour
interactions with a sign opposite to the nearest neighbour ones, the critical behaviour
will change: we cross over to a different universality class.

It should be noted that the spin pair-correlation function is not the only correla-
tion function of interest. Other correlation functions can be defined, which we shall
not go into, but it is important that these give rise to new exponents. Different cor-
relation functions may have the same exponent, or their exponents may be linearly
dependent. The set of independent exponents defines the universality class. In the
case of the Ising model this set contains two exponents, the ‘magnetic’ one, yH ,
which we have encountered above, and the ‘thermal’ exponent yT (which is related
to a different correlation function).

The critical exponents not only show up in correlation functions, they also
describe the behaviour of thermodynamic quantities close to the transition. For
example, in magnetic systems, the magnetic susceptibility χm, defined as

χm =
(
∂m

∂H

)
T

, (7.52)

6 More recently, the more extended conformal symmetry has been exploited in a similar way to the scale
invariance alone. Conformal field theory has turned out a very powerful tool to study phase transitions in
two-dimensional systems [29–31].

7.3 Phase transitions 189

exhibits a singularity near the phase transition:

χm(T) ∝ |T − Tc|−γ (7.53)

where γ is also called the ‘critical exponent’; its value is related to the y-exponents
by γ = (−d + 2yH)/yT . For the specific heat cH , the correlation length ξ and the
magnetisation m we have similar critical exponents:

cH(T) ∝ |T − Tc|−α
ξ(T) ∝ |T − Tc|−ν (7.54a)

m(T) ∝ (−T + Tc)
β ; T < Tc

and, moreover, we have an exponent for the behaviour of the magnetisation with
varying small magnetic field at the transition temperature:

m(H, Tc) = H1/δ. (7.55)

For the case of the two-dimensional Ising model on a square lattice, we know the
values of the exponents from the exact solution:

α = 0, β = 1/8, γ = 7/4,

δ = 15, ν = 1. (7.56)

The value 0 of the exponent α denotes a logarithmic divergence:

cH ∝ ln |T − Tc|. (7.57)

The fact that there are only two y-exponents and the fact that the five exponents
expressing the divergence of the thermodynamic quantities are expressed in terms
of these indicates that there must exist relations between the exponents α, β etc.
These relations are called scaling laws – examples are:

α + 2β + γ = 2 and (7.58a)

2 − α = dν, (7.58b)

with d the dimension of the system. The Ising exponents listed above do indeed
satisfy these scaling laws.

In dynamical versions of the Ising model, the relaxation time also diverges with
a critical exponent. The correlation time is the time scale over which a physical
quantity A relaxes towards its equilibrium value A – it is defined by7

τ =
∫∞

0 t[A(t)− A]dt∫∞
0 [A(t)− A]dt

. (7.59)

7 In Section 7.4 we shall give another definition of the correlation time which describes the decay of the time
correlation function rather than that of the quantity A itself.

190 Classical equilibrium statistical mechanics

A

T

L

2L

3L

∞

Figure 7.5. Typical behaviour of a physical quantity A vs temperature close to the
critical point for various system sizes.

At the critical point the correlation time diverges according to

τ = ξ z. (7.60)

This divergence implies that close to the critical point the simulation time needed to
obtain reliable estimates for physical quantities increases dramatically. This phe-
nomenon is called critical slowing down. For most models with a Hamiltonian
containing only short-range couplings, the value of the exponent z is close to 2.
For the Ising model in two dimensions, the dynamic critical exponent has been
determined numerically – its value is z ≈ 2.125 [32].

For systems far from the critical point, the correlation length is small, and it is
easy to simulate systems that are considerably larger than the correlation length.
The values of physical quantities measured will then converge rapidly to those
of the infinite system. Close to the critical point, however, the correlation length
of the infinite system might exceed the size of the simulated system; hence the
system size will set the scale over which correlations can extend. This part of the
phase diagram is called the finite-size scaling region. It turns out that it is possible to
extract information concerning the critical exponents from the behaviour of physical
quantities with varying system size close to the critical point. Of course, for a finite
system, the partition function and hence the thermodynamic quantities are smooth
functions of the system parameters, so the divergences of the critical point are
absent. However, we can still see a signature of these divergences in the occurrence
of peaks, which in the scaling region (ξ � L) become higher and narrower with
increasing system size. Also, the location of the peak may be shifted with respect
to the location of the critical point. The general behaviour is shown in Figure 7.5.
These characteristics of the peak shape as a function of temperature are described

7.3 Phase transitions 191

in terms of additional exponents, the so-called finite-size scaling exponents:

• The shift in the position of the maximum with respect to the critical temperature
is described by

Tc(L)− Tc(∞) ∝ L−λ. (7.61)

• The width of the peak scales as

�T(L) ∝ L−�. (7.62)

• The peak height grows with the system size as

Amax(L) ∝ Lσm . (7.63)

The behaviour of a system is determined by two length scales: L/a and ξ/a, with ξ
the correlation length of the infinite system, which in the finite-size scaling region
is larger than the linear system size L. As in the critical region, the fluctuations
determining the behaviour of the system extend over large length scales; phys-
ical properties should be independent of a. This leaves L/ξ as the only possible
parameter in the system and this leads to the so-called finite-size scaling Ansatz.
Defining

ε ≡ T − Tc

Tc
, (7.64)

we can formulate the finite-size scaling Ansatz as follows:

AL(ε)

A∞(ε)
= f

[
L

ξ∞(ε)

]
. (7.65)

Suppose the exponent of the critical divergence of the quantity A is σ :

A∞ ∝ ε−σ . (7.66)

Using, moreover, the scaling form of the correlation length ξ ∝ ε−ν , we can write
the scaling Ansatz as

AL(ε) = ε−σ f (Lεν) (7.67)

which can be reformulated as

AL(ε) = Lσ/νφ(L1/νε) (7.68)

where we have replaced the scaling function, f , by another one, φ, by extracting a
factor (Lεν)σ/ν from f and then writing the remaining function in terms of (Lεν)1/ν

rather than (Lεν). Obviously, φ(x) will have a maximum φmax for some value
x = xmax with a peak width �x. From Eq. (7.68) we then see immediately that:

• The peak height scales as Lσ/ν , hence σm = σ/ν.
• The peak position scales as L−1/ν , hence λ = 1/ν.
• The peak width also scales as L−1/ν , hence � = 1/ν.

192 Classical equilibrium statistical mechanics

These are the finite-size scaling laws for any thermodynamic quantity which
diverges at the critical point as a power law. We see that if we monitor the peak
height, position and width as a function of system size, we can extract the correlation
length exponent ν and the exponent σ associated with A from the resulting data.

In reality this approach poses difficulties as the fluctuations increase near the
critical point and hence the time needed to obtain reliable values for the phys-
ical quantities measured also increases. This increase is stronger when the system
size increases – hence calculations for larger systems require more time, not only
because more computational effort is used per time step for a larger system, but
also because we need to generate more and more configurations in order to obtain
reliable results. An extra complication is that the fluctuations are not only huge,
but they correlate over increasing time scales, and the simulation time must be at
least a few times the relaxation time in order to obtain reliable estimates for the
physical quantities. In Chapter 15 we shall discuss various methods for reducing
the dynamic exponent z in Monte Carlo type simulations.

We have presented only the most elementary results of the finite-size scaling
analysis and the interested reader is invited to consult more specialised literature.
There exists a nice collection of key papers on the field [33] and a recent volume
on finite-size scaling [34].

7.4 Determination of averages in simulations

In Chapters 8 and 10 we shall encounter two simulation methods for classical many-
particle systems: the molecular dynamics (MD) method and the Monte Carlo (MC)
method. During a simulation of a many-particle system using either of these meth-
ods, we can monitor various physical quantities and determine their expectation
values as averages over the configurations generated in the simulation. We denote
such averages as ‘time averages’ although the word time does not necessarily denote
physical time. For a physical quantity A, the time average is

A = 1

M

M∑
n=1

An. (7.69)

If the system size and the simulation time are large enough, these averages will
be very close to the averages in a macroscopic experimental system. Usually, the
system sizes and simulation times that can be achieved are limited and it is important
to find an estimate of the error bounds associated with the measured average. These
are related to the standard deviation σ of the physical quantity A:

σ 2 = 〈A2〉 − 〈A〉2. (7.70)

The ensemble average 〈· · ·〉 is an average over many independent simulations.

7.4 Determination of averages in simulations 193

We can estimate the standard deviation as a time average:

σ 2 = A2 − A
2
. (7.71)

For a long enough simulation this reduces to the ensemble average, and the
expectation value of this estimate becomes independent of the simulation time.
Equation (7.71) estimates the standard deviation irrespective of time correlations
between subsequent samples generated by the simulation. However, the standard
deviation of the mean value of A calculated over M samples generated by the sim-
ulation, i.e. the statistical error, depends on the number of independent samples
generated in the simulation, and this is the total number of samples divided by the
correlation ‘time’ τ , measured in simulation steps.

In order to study the standard deviation of the mean (the statistical error), we first
analyse the time correlations. These manifest themselves in the time correlation
function:

cAA(k) = 〈
(An − 〈An〉)(An+k − 〈An+k〉)

〉 = 〈AnAn+k〉 − 〈An〉2. (7.72)

Note that the right hand side of this expression does not depend on n because of time
translation symmetry. For k = 0 this function is equal to σ 2, and time correlations
manifest themselves in this function assuming nonzero values for k �= 0. The time
correlation function can be used to determine the integrated correlation time τ ,
defined as

τ = 1

2

∞∑
n=−∞

cAA(n)

cAA(0)
(7.73)

where the factor 1/2 in front of the sum is chosen to guarantee that for a correlation
function of the form exp(−|t|/τ)with τ � 1, the correlation time is equal to τ . Note
that this definition of the time correlation is different from that given in Eq. (7.59).
The current one is more useful as it can be determined throughout the simulation,
and not only at the beginning when the quantity A decays to its equilibrium value.
A third definition is the exponential correlation time τexp:

τexp = −t/ ln

∣∣∣∣ cAA(t)

cAA(0)

∣∣∣∣ , large t. (7.74)

This quantity is the slowest decay time with which the system relaxes towards
equilibrium (such as happens at the start of a simulation when the system is not yet
in equilibrium), and it is in general not equal to the integrated correlation time.

Now let us return to the standard deviation of the mean value of A as determined
in a simulation generating M configurations (with time correlations). It is easy to
see that the standard deviation in the mean, ε, is given by

ε2 =
〈

1

M2

M∑
n,m=1

AnAm

〉
−
(〈

1

M

M∑
n=1

An

〉)2

= 1

M2

M∑
n,m=1

cAA(n − m). (7.75)

194 Classical equilibrium statistical mechanics

If we define l = n − m, then this can be rewritten as

ε2 = 1

M2

M∑
n=1

n−M∑
l=n−1

cAA(l). (7.76)

The lowest and highest values taken on by l are −(M − 1) and M − 1 respectively,
and some fixed value of l between these two boundaries occurs M − |l| times. This
leads to the expression

ε2 = 1

M

M−1∑
l=−(M−1)

(
1 − |l|

M

)
cAA(l)

large M−−−−→ 2
τ

M
cAA(0) = 2

τ

M
σ 2. (7.77)

We see that time correlations cause the error ε to be multiplied by a factor of
√

2τ
with respect to the uncorrelated case. The obvious procedure for determining the
statistical error is first to estimate the standard deviation and the correlation time,
using (7.71) and (7.73) respectively, and then calculate the error using (7.77).

In practice, however, a simpler method is preferred. The values of the physical
quantities are recorded in a file. Then the data sequence is chopped into a number
of blocks of equal size which is larger than the correlation time. We calculate the
averages of A within each block. For blocks of size m, the jth block average is then
given as

Aj = 1

m

m(j+1)∑
k=jm+1

Ak. (7.78)

The averages of the physical quantities in different blocks are uncorrelated and
the error can be determined as the standard deviation of the uncorrelated block
averages. This method should yield errors which are independent of the block size
provided the latter is larger than the correlation time and sufficiently small to have
enough blocks to calculate the standard deviation reliably. This method is called
data-blocking.

Exercises

7.1 In this problem we analyse the relation between the differential scattering cross
section for elastic X-ray scattering by a collection of particles and the structure factor
in more detail. Consider an incoming X-ray with wave vector k0, which is scattered
into k1 by particle number j at rj at time t′. When the wave ‘hits’ particle j at time t′,
its phase factor is given by

eik0rj−iωt′ .

(a) Give the phase of the scattered wave when it arrives at the detector located at r at
time t.

References 195

(b) We assume that the incoming rays have intensity I0. Show that the average total
intensity of waves with wave vector k1 arriving at the detector is given by

I(k1, r) = I0

〈
N∑

l,j=1

ei�k(rl−rj)

〉

with �k = k1 − k0.
(c) Show that this expression is equal to I0NS(�k), where S is the static structure

factor, defined in terms of the correlation function g as

S(k) = 1 + n
∫

d3r g(r)eikr.

(n is the particle density N/V .)

7.2 The magnetic susceptibility of the Ising model on an L × L square lattice is defined
by χ = ∂m/∂H, where m is the magnetisation and h the magnetic field.

(a) Show that the magnetic susceptibility can be written as

χ = 1

L2kBT

∑
i,j

(〈sisj〉 − 〈si〉2).

(b) A scaling exponent η associated with the magnetic correlation function (see
Eq. (7.48)) is defined by

g(r) ∝ r2−d−η.

Assuming that close to the critical point this form extends to a distance ξ , where ξ
is the correlation length, find the following scaling relation between γ , η and ν:

γ = ν(2 − η).

References

[1] T. L. Hill, Statistical Mechanics. New York, McGraw-Hill, 1956.
[2] K. Huang, Statistical Mechanics, 2nd edn. New York, John Wiley, 1987.
[3] L. E. Reichl, Equilibrium Statistical Mechanics. Englewood Cliffs, NJ, Prentice-Hall, 1989.
[4] F. Reiff, Fundamentals of Statistical and Thermal Physics. Kogakusha, McGraw-Hill, 1965.
[5] M. Plischke and H. Bergersen, Equilibrium Statistical Physics. Englewood Cliffs, NJ,

Prentice-Hall, 1989.
[6] J. Yeomans, Equilibrium Statistical Mechanics. Oxford, Oxford University Press, 1989.
[7] D. Chandler, Introduction to Modern Statistical Mechanics. New York, Oxford University Press,

1987.
[8] M. Le Bellac, F. Mortessagne, and G. G. Batrouni, Equilibrium and Non-equilibrium Statistical

Thermodynamics. Cambridge, Cambridge University Press, 2004.
[9] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, vols 1 and 2. Oxford,

Clarendon Press, 1984.
[10] D. Frenkel, ‘Free energy computation and first-order phase transitions,’ in Molecular Dynamics

Simulation of Statistical Mechanical Systems (G. Ciccotti and W. G. Hoover, eds.), Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97. Amsterdam,
North-Holland, 1986, pp. 151–188.

196 Classical equilibrium statistical mechanics

[11] A. Rahman, ‘Correlations in the motion of atoms in liquid argon,’ Phys. Rev., 136A (1964)
405–11.

[12] A. Rahman and F. Stillinger, ‘Molecular dynamics study of liquid water,’ J. Chem. Phys., 55
(1971) 3336–59.

[13] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd edn. New York, Academic
Press, 1986.

[14] J. L. Lebowitz, J. K. Percus, and L. Verlet, ‘Ensemble dependence of fluctuations with application
to machine calculations,’ Phys. Rev., 253 (1967), 250–4.

[15] B. J. Alder and T. E. Wainwright, ‘Enhancement of diffusion by vortex-like motion of classical
hard particles,’ J. Phys. Soc. Japan Suppl., 26 (1969), 267–9.

[16] B. J. Alder and T. E. Wainwright, ‘Decay of the velocity autocorrelation function,’ Phys. Rev.
A, 1 (1970), 18–21.

[17] M. E. Fisher, ‘The theory of equilibrium critical phenomena,’ Rep. Prog. Phys., 30 (1967),
615–730.

[18] L. Onsager, ‘Crystal statistics. I. A two-dimensional model with an order–disorder transition,’
Phys. Rev., 65 (1944), 117–49.

[19] T. D. Schultz, D. C. Mattis, and E. H. Lieb, ‘Two-dimensional Ising model as a soluble problem
of many fermions,’ Rev. Mod. Phys., 36 (1964), 856–71.

[20] R. J. Baxter, Exactly Solved Models in Statistical Mechanics. London, Academic Press, 1982.
[21] R. J. Glauber, ‘Time-dependent statistics of the Ising model,’ J. Math. Phys, 4 (1963), 294–307.
[22] R. Pathria, Statistical Mechanics, 2nd edn. Oxford, Butterworth–Heinemann, 1996.
[23] C. Domb and M. S. Green (vols. 1–7)/C. Domb and J. L. Lebowitz (vols. 7–19), Phase Transitions

and Critical Phenomena. New York, Academic Press, 1972–2000.
[24] A. Z. Panagiotopoulos, ‘Direct determination of phase coexistence properties of fluids by Monte

Carlo simulation in a new ensemble,’ Mol. Phys., 61 (1987), 813–26.
[25] A. Z. Panagiotopoulos, N. Quirke, and D. J. Tildesley, ‘Phase-equilibria by simulation in the

Gibbs ensemble – alternative derivation, generalization and application to mixture and membrane
equilibria,’ Mol. Phys., 63 (1988), 527–45.

[26] L. Kadanoff, ‘Scaling laws for Ising models near Tc,’ Physics, 2 (1966), 263–72.
[27] C. Domb and M. S. Green, eds., Phase Transitions and Critical Phenomena, vol. 6. New York,

Academic Press, 1976.
[28] S.-K. Ma, Modern Theory of Critical Phenomena. New York, Benjamin, 1976.
[29] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, ‘Infinite conformal symmetry in two

dimensional quantum field theory,’ Nucl. Phys. B, 241 (1984), 333–80.
[30] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, ‘Infinite conformal symmetry of

critical fluctuations in two dimensions,’ J. Stat. Phys., 34 (1984), 763–74.
[31] J. Cardy, ‘Conformal Invariance,’ Phase Transitions and Critical Phenomena, (C. Domb and J.

L. Lebauitz, eds). London, Academic Press, 1987, ch. 2, vol. 11.
[32] S. Tang and D. P. Landau, ‘Monte Carlo study of dynamic universality in two-dimensional Potts

models,’ Phys. Rev. B, 36 (1985), 567–73.
[33] J. Cardy, ed., Finite Size Scaling. Amsterdam, North-Holland, 1988.
[34] V. Privman, ed., Finite Size Scaling and Numerical Simulation of Statistical Systems. Singapore,

World Scientific, 1988.

8

Molecular dynamics simulations

8.1 Introduction

In the previous chapter we saw that the experimental values of physical quantities
of a many-particle system can be found as an ensemble average. Experimental
systems are so large that it is impossible to determine this ensemble average by
summing over all the accessible states in a computer. There exist essentially two
methods for determining these physical quantities as statistical averages over a
restricted set of states: the molecular dynamics and Monte Carlo methods. Imagine
that we have a random sample of, say, 107 configurations of the system which are
all compatible with the values of the system parameters. For such a large number
we expect averages of physical quantities over the sample to be rather close to the
ensemble average. It is unfortunately impossible to generate such a random sample;
however, we can generate a sample consisting of a large number of configurations
which are determined successively from each other and are hence correlated. This
is done in the molecular dynamics and Monte Carlo methods. The latter will be
described in Chapter 10.

Molecular dynamics is a widely used method for studying classical many-particle
systems. It consists essentially of integrating the equations of motion of the system
numerically. It can therefore be viewed as a simulation of the system as it develops
over a period of time. The system moves in phase space along its physical trajectory
as determined by the equations of motion, whereas in the Monte Carlo method it
follows a (directed) random walk. The great advantage of the MD method is that it
not only provides a way to evaluate expectation values of static physical quantities;
dynamical phenomena, such as transport of heat or charge, or relaxation of systems
far from equilibrium can also be studied.

In this section we discuss the general principles of the molecular dynamics
method. In the following sections more details will be given and special tech-
niques will be discussed. There exists a vast research literature on this subject and
there are some review papers and books [1–5].

197

198 Molecular dynamics simulations

Consider acollectionofN classicalparticles ina rectangularvolumeL1 ×L2 ×L3.
The particles interact with each other, and for simplicity we shall assume that the
interaction force can be written as a sum over pair forces, F(r), whose magnitude
depends only on the distance, r, between the particle pairs and which is directed
between them (see also the previous chapter). In that case the internal force (i.e. the
force due to interactions between the particles) acting on particle number i is given as

Fi(R) =
∑

j=1,N ;
j �=i

F(|ri − rj|)r̂ij. (8.1)

R denotes the position coordinates ri of all particles in the notation introduced in
Section 7.2.1 (P denotes the momenta); r̂ij is a unit vector directed along rj − ri,
pointing from particle i to particle j. In experimental situations there will be external
forces in addition to the internal ones – examples are gravitational forces and forces
due to the presence of boundaries. Neglecting these forces for the moment, we can
use (8.1) in the equations of motion:

d2ri(t)

dt2
= Fi(R)

mi
(8.2)

in which mi is the mass of particle i. In this chapter we take the particles identical
unless stated otherwise. Molecular dynamics is the simulation technique in which
the equations (8.2) are solved numerically for a large collection of particles.

The solutions of the equations of motion describe the time evolution of a real
system although obviously the molecular dynamics approach is approximate for
the following reasons.

• First of all, instead of a quantum mechanical treatment we restrict ourselves to a
classical description for the sake of simplicity. In Chapter 9, we shall describe a
method in which ideas of the density functional description for quantum
many-particle systems (Chapter 5) are combined with the classical molecular
dynamics approach. The importance of the quantum effects depends strongly on
the particular type of system considered and on the physical parameters
(temperature, density …).

• The forces between the particles are not known exactly: quantum mechanical
calculations from which they can be determined are subject to systematic errors
as a result of the neglect of correlation effects, as we have seen in previous
chapters. Usually these forces are given in a parametrised form, and the
parameters are determined either by ab initio calculations or by fitting the
results of simulations to experimental data. There exist systems for which the
forces are known to high precision, such as systems consisting of stars and
galaxies at large mutual distances and at nonrelativistic velocities where the
interaction is largely dominated by Newton’s gravitational 1/r2 force.

8.1 Introduction 199

Figure 8.1. Periodic boundary conditions for molecular dynamics. Each particle
interacts not only with every other particle in the system but also with all other
particles in the copies of the system. The arrows from the white particle point to
the nearest copies of the other particles in the system.

• Another approximation is inherent to most computer simulations aiming at a
description of the real world: the system sizes in such simulations are much
smaller than those of experimental systems. In the limit where the correlation
length is much smaller than the system size this does not matter too much, and
in the opposite regime, in which the correlation length exceeds the system size
we can use the finite-size scaling methods discussed in Chapter 5 in order to
extrapolate results for physical quantities in the finite system to those of the
infinite system (although second order transitions are seldom studied in
molecular dynamics because of the heavy demands on computing resources).
The finiteness of the system size is felt through the presence of the boundary.
The convention adopted in the vast majority of molecular simulations is to use
periodic boundary conditions (PBC) as it is assumed that for these boundary
conditions the behaviour of the system is most similar to that of a system of the
same size embedded in an infinite system. In fact, with periodic boundary
conditions the system of interest is surrounded by similar systems with exactly
the same configuration of particles at any time (see Figure 8.1). The interaction
between two particles i and j is then given by the following expression:

FPBC(ri − rj) =
∑

n

F



∣∣∣∣∣∣ri − rj +

3∑
µ=1

Lµnµ

∣∣∣∣∣∣

 (8.3)

200 Molecular dynamics simulations

where Lµ are vectors along the edges of the rectangular system volume and the
first sum on the right hand side is over all vectors n with integer coefficients nµ.
The force F is directed along the line connecting particle i and the image
particle rj −∑3

µ=1 Lµnµ according to the convention of Eq. (8.1). Of course,
calculating terms of this infinite sum until convergence is achieved is a
time-consuming procedure, and in the next section we shall consider techniques
for approximating this sum efficiently.

• The time average must obviously be evaluated over a finite time. For liquid
argon, which is the most widely studied system in molecular dynamics because
simple Lennard–Jones pair forces yield results which are in very good
agreement with experiment, the typical time step used in the numerical
integration of the equations of motion is about 10−14 seconds, which means that
for the ∼105 integration steps which can usually be carried out in a reasonable
amount of computer time, the total simulation is restricted to about
10−9 seconds. The correlation time of the system should therefore be much
smaller than this. There is also a limitation in time because of the finite size of
the system. This might in principle become noticeable when the particles have
travelled on average more than half the linear system size, but in practice such
effects occur at much longer time scales, of the order of the recurrence time, the
time after which the system returns to the initial configuration (in continuum
mechanics, this is called the Poincaré time).

• The numerical integration algorithm is not infinitely accurate. This forces us to
make some optimum choice between speed and accuracy: the larger the
integration time step, the more inaccurate the results of the simulation. In fact, the
system will follow a trajectory in phase space which deviates from the trajectory
it would follow in reality. The effect on the physical quantities as measured in the
simulation is of course related to this deviation in the course of time.

We may summarise by saying that MD is – in principle – a direct simulation
of a many-particle system but we have seen that, just as with any computational
technique in physics, MD simulations must be carried out with considerable care.
It is furthermore advisable to carry out reference tests for systems for which exact
results exist or for which there is an extensive literature for comparison.

8.2 Molecular dynamics at constant energy

In the previous section we sketched the molecular dynamics method briefly for the
simplest case in which the equations of motion for a collection of particles are solved
for forces depending on the relative positions of the particles only. In that case energy
and momentum are conserved.1 Trivially, the particle number and system volume are

1 The angular momentum is not conserved because of the periodic boundary conditions breaking the
spherical symmetry of the interactions.

8.2 Molecular dynamics at constant energy 201

conserved too, so the time averages of physical quantities obtained by this type of
simulation are equivalent to averages in the microcanonical or (NVE) ensemble. In
this section we describe the microcanonical MD method in more detail.

The algorithm of a standard MD simulation for studying systems in equilibrium
is the following:

• Initialise;
• Start simulation and let the system reach equilibrium;
• Continue simulation and store results.

We will now describe these main steps in more detail.
Initialise: The number of particles and the form of the interaction are specified.

The temperature is usually of greater interest than the total energy of the system
and is therefore usually specified as an input parameter. We shall see below how
the system can be pushed toward the desired temperature.

The particles are assigned positions and momenta. If a Lennard–Jones potential is
used, the positions are usually chosen as the sites of a Bravais-fcc lattice, which is the
ground state configuration of the noble gases like argon (although the Lennard–Jones
system is hexagonal close-packed in the ground state [6]). The fcc lattice contains
four particles per unit cell, and for a cubic volume the system contains therefore 4M3

particles, M = 1, 2, . . .This is the reason why MD simulations with Lennard–Jones
interactions are often carried out with particle numbers 108, 256, 500, 864, ….

The velocities are drawn from a Maxwell distribution with the specified temper-
ature. This is done by drawing the x, y and z velocity components for each particle
from a Gaussian distribution; for the x-component of the velocity this distribution
is exp[−mv2

x/(2kBT)]. In Appendix B3 it is described how random numbers with
a Gaussian distribution can be generated. After generating the momenta, the total
momentum is made equal to zero by calculating the average momentum p̄ per
particle, and then subtracting an amount p̄ from all the individual momenta pi.

Start simulation and let the system reach equilibrium: The particles being
released from fcc lattice positions, the system is generally not in equilibrium and
during the initial phase of the simulation it is given the opportunity to relax. We now
describe how the integration of the equations of motion is carried out and how the
forces are evaluated. Finally we shall explain how in this initial phase the desired
temperature is arrived at.

Numerical algorithms for molecular dynamics will be considered in detail in
Section 8.4. Suffice it here to mention briefly the most widely used algorithm
which is simple and reliable at the same time – the Verlet algorithm (see also
Appendix A7.1). The standard form of the Verlet algorithm for the integration of
the equation of motion of a single particle subject to a force F depending only on
the position of the particle reads

r(t + h) = 2r(t)− r(t − h)+ h2F[r(t)]/m (8.4)

202 Molecular dynamics simulations

where r(t) is the position of the particle at time t = nh (h is the time step; n is an
integer). From now on we choose units such that m = 1. The error per time step is of
order h4 and a worst case estimate for the error over a fixed time interval containing
many time steps is of order h2 (see Problem A3). To start up the algorithm we need
the positions of the particles at two subsequent time steps. As we have only the
initial (t = 0) positions and velocity at our disposal, the positions at t = h are
calculated as

r(h) = r(0)+ hv(0)+ h2

2
F[r(t = 0)] (m ≡ 1), (8.5)

with an error of order h3.
During the integration, the velocities can be calculated as

v(t) = r(t + h)− r(t − h)

2h
+ O(h2). (8.6)

When using periodic boundary conditions in the simulation, we must check for each
particle whether it has left the simulation cell in the last integration step. If this is
the case, the particle is translated back over a lattice vector Lµ to keep it inside
the cell (we shall see below that this procedure facilitates the common procedure
for evaluating the forces with periodic boundary conditions). The velocity must
obviously be determined before such a translation.

There exist two alternative formulations of the Verlet algorithm, which are exactly
equivalent to it in exact arithmetic but which are less susceptible to errors resulting
from finite numerical precision in the computer than the original version. The first
of these, the leap-frog form, introduces the velocities at time steps precisely in
between those at which the positions are evaluated:

v(t + h/2) = v(t − h/2)+ hF[r(t)], (8.7a)

r(t + h) = r(t)+ hv(t + h/2). (8.7b)

These steps are then repeated over and over. Note that they must always be applied
in the given order: the second step uses v(t + h/2) which is calculated in the first
step.

Another form is the so-called velocity-Verlet algorithm [7] which is also more
stable than the original Verlet form and which, via the definition

v(t) = r(t + h)− r(t − h)

2h
(8.8)

evaluates velocities and positions at the same time instances:

r(t + h) = r(t)+ hv(t)+ h2F(t)/2, (8.9a)

v(t + h) = v(t)+ h[F(t + h)+ F(t)]/2. (8.9b)

8.2 Molecular dynamics at constant energy 203

This form is most convenient because it is very stable with respect to errors due to
finite precision arithmetic, and it does not require additional calculations in order
to find the velocities. It should be noted that all formulations have essentially the
same memory requirements. It may seem that, as this algorithm needs two forces
the second step, we need two arrays for these, one containing F(t) and the other
F(t + h). However, the following form of the algorithm is exactly equivalent and
avoids the need for two force arrays:

ṽ(t) = v(t)+ hF(t)/2, (8.10a)

r(t + h) = r(t)+ hṽ(t), (8.10b)

v(t + h) = ṽ(t)+ hF(t + h)/2. (8.10c)

The new force F(t + h) is calculated between the second and third step.
The force acting on particle i results from the interaction forces between this

particle and all the other particles in the system – usually pair-wise interactions
are used. The calculation of the forces therefore takes a relatively long time as
this requires O(N2) steps. A problem in the evaluation of the force arises from
the assumption of periodic boundary conditions. These imply that the system is
surrounded by an infinite number of copies with exactly the same configuration
as in Figure 8.1. A particle therefore interacts not only with each partner j in the
system cell we are considering but also with the images of particle j in all the copies
of the system. This means that in principle an infinite number of interactions has
to be summed over. In many cases, the force decays rapidly with distance, and
in that case remote particle copies will not contribute significantly to the force. If
the force between the particles can safely be neglected beyond separations of half
the linear system size, the force evaluation can be carried out efficiently by taking
into account, for each particle in the system, only the interactions with the nearest
copy of each of the remaining particles (see Figure 8.1): each infinite sum over all
the copies is replaced by a single term! This is the minimum image convention. In
formula, for a cubic system cell the minimum image convention reads

rmin
ij = min

n
|ri − rj + nµLµ| (8.11)

with the same notation as in Eq. (8.3), but where the components of nµ assume
the values 0, ±1, provided all the particles are kept within the system cell, by
translating them back if they leave this cell. The potential is no longer analytic in
this convention, but discontinuities will obviously be unimportant if the potential
is small beyond half the linear system size.

Often it is possible to cut the interactions off at a distance rcut-off smaller than half
the linear system size without introducing significant errors. In that case the forces
do not have to be calculated for all pairs. However, all pairs must be considered to

204 Molecular dynamics simulations

check whether their separation is larger than rcut-off . In the same paper in which he
introduced the midpoint integration algorithm into MD, Verlet [8] proposed keeping
a list of particle pairs whose separation lies within some maximum distance rmax and
updating this list at intervals of a fixed number of steps – this number lies typically
between 10 and 20. The radius rmax is taken larger than rcut-off and must be chosen
such that between two table updates it is unlikely for a pair not in the list to come
closer than rcut-off . If both distances are chosen carefully, the accuracy can remain
very high and the increase in efficiency is of the order of a factor of 10 (the typical
relative accuracy in macroscopic quantities in a MD simulation is of order 10−4).

There exists another method for keeping track of which pairs are within a certain
distance of each other: the linked-cell method. In this method, the system is divided
up into (rectangular) cells. Each cell is characterized by its integer coordinates
IX,IY,IZ in the grid of cells. The cell size is chosen larger than the interaction range
which is about the size of rmax > rcut-off in the Verlet method. If we wanted a list
of particles for each cell, we could simply restrict the interactions to particle pairs
in the same, or in neighbouring cells. However, as particles will leave and enter the
cells, the bookkeeping of these lists becomes a bit cumbersome. This bookkeeping
can however be done very efficient by using a list of particle indices. The procedure
is reminiscent of the use of pointers in a linked list. We need two ingredients: we
must have a routine which generates a sort of table containing information about
which particle is in what cell, and we need to organise the force calculation such
that it uses this information.

To be specific, let us assume that there are M × M × M cells. The particles are
numbered 1 through N , so each particle has a definite index. We use an integer array
called ‘Header’ which is of size M × M × M: Header(IX,IY,IZ) tells us the highest
particle index to be found in cell IX,IY,IZ. We also introduce an integer array ‘Link’
which is of size N . The arrays Header and Link are filled in the following code:
dimension header(M,M,M), link(N)

Set Header (IX,IY,IZ) to 0
Set Link(I) to 0
FOR I = 1,N DO

IX = int(M*x(I)/L)+1
IY = int(M*y(I)/L)+1
IZ = int(M*z(I)/L)+1
link(i) = header(IX,IY,IZ)
header(IX,IY,IZ) = I

END FOR

Now, Header contains the highest index present in all cells. Furthermore, for particle
I, Link(I) is another particle in the same cell. To find all particles in cell IX, IY, IZ,

8.2 Molecular dynamics at constant energy 205

we look at Header(IX,IY,IZ) and then move down from particle I to the following
by taking for the next particle the value Link(I). Using this in the force calculation
leads to the pseudocode:

FOR all cells with indices (IX,IY,IZ) DO
{Fill the list xt, yt and zt with the particles of the central cell}

icnt = 0;
j = Header(IX,IY,IZ);
WHILE (j>0) DO

j = link(j);
icnt = icnt + 1;
xt(icnt) = x(j); yt(icnt) = y(j); zt(icnt) = z(j);
LocNum = icnt;

END WHILE
{Now, LocNum is the number of particles in the central cell}

FOR half of the neighbouring cells DO
Find particles in the same way as central cell
and append them to the list xt, yt, zt;

END FOR
Calculate Lennard–Jones forces between all particles in the central cell;
Calculate Lennard–Jones forces between particles in central and

neighbouring cells;
END FOR

Note that we loop over only half the number of neighbouring cells in order to avoid
double counting of particle pairs. The cell method is less efficient than the neighbour
list method as the blocks containing possible interaction candidates for each particle
substantially bigger than the spheres of the neighbour list. The advantage of the
present method lies in its suitability for parallel computing (see Chapter 16).

Cutting off the force violates energy conservation although the effect is small if
the cut-off radius is chosen suitably. To avoid this violation, the pair potential U(r)
can be shifted so that it becomes continuous at rcut-off . The shifted potential can be
written in terms of the original one as

Ushift(r) = U(r)− U(rcut-off). (8.12)

The force is not affected by this shift; it remains discontinuous at the cut-off and
this gives rise to inaccuracies in the integration. Applying a shift in the force in
addition to the shift in the potential yields [9, 10]

Uforce shift(r) = U(r)− U(rcut-off)− d

dr
U(rcut-off)(r − rcut-off) (8.13)

206 Molecular dynamics simulations

and now the force and the potential are continuous. These adjustments to the
potential can be compensated for by thermodynamic perturbation theory (see
Ref. [11]).

Electric and gravitational forces decay as 1/r and cannot be truncated beyond a
finite range without introducing important errors. These systems will be treated in
Section 8.7.

The time needed to reach equilibrium depends on how far the initial configuration
was from equilibrium, and on the relaxation time (see Section 7.4). To check whether
equilibrium has been reached, it is best to monitor several physical quantities such
as kinetic energy and pressure, and see whether they have levelled down. This can be
judged after completing the simulation by plotting out the values of these physical
quantities as a function of time. It is therefore convenient to save all these values
on disk during the simulation and analyse the results afterwards. It is also possible
to measure correlation times along the lines of Section 7.4, and let the system relax
for a period of, for example, twice the longest correlation time measured.

A complication is that we want to study the system at a predefined temperature
rather than at a predefined total energy because temperature is easily measurable
and controllable in experimental situations. Unfortunately, we can hardly forecast
the final temperature of the system from the initial configuration. To arrive at the
desired value of the temperature, we rescale the velocities of the particles a number
of times during the equilibration phase with a uniform scaling factor λ according to

vi(t) → λvi(t) (8.14)

for all the particles i = 1, . . . , N . The scaling factor λ is chosen such as to arrive at
the desired temperature TD after rescaling:

λ =
√
(N − 1)3kBTD∑N

i=1 mv2
i

. (8.15)

Note the factor N − 1 in the numerator of the square root: the kinetic energy is
composed of the kinetic energies associated with the independent velocities, but as
for interparticle interactions with PBC the total force vanishes, the total momentum
is conserved and hence the number of independent velocity components is reduced
by 3. This argument is rather heuristic and not entirely correct. We shall give a more
rigorous treatment of the temperature calculation in Section 10.7.

After a rescaling the temperature of the system will drift away but this drift will
become less and less important when the system approaches equilibrium. After a
number of rescalings, the temperature then fluctuates around an equilibrium value.
Now the ‘production phase’, during which data can be extracted from the simulation,
begins.

8.2 Molecular dynamics at constant energy 207

Continue simulation and determine physical quantities: Integration of the
equations of motion proceeds as described above. In this part of the simulation,
the actual determination of the static and dynamic physical quantities takes place.
We determine the expectation value of a static physical quantity as a time average
according to

A = 1

n − n0

n∑
ν>n0

Aν . (8.16)

The indices ν label the n time steps of the numerical integration, and the first n0

steps have been carried out during the equilibration. For determination of errors in
the measured physical quantities, see the discussion in Section 7.4.

Difficulties in the determination of physical quantities may arise when the para-
meters are such that the system is close to a first or second order phase transition
(see the previous chapter): in the first order case, the system might be ‘trapped’ in
a metastable state and in the second order case, the correlation time might diverge
for large system sizes.

In the previous chapter we have already considered some of the quantities of
interest. In the case of a microcanonical simulation, we are usually interested in the
temperature and pressure. Determination of these quantities enables us to determine
the equation of state, a relation between pressure and temperature, and the system
parameters – particle number, volume and energy (NVE). This relation is hard to
establish analytically, although various approximate analytical techniques for this
purpose exist: cluster expansions, Percus–Yevick approximation, etc. [11].

The pair correlation function is useful not only for studying the details of the
system but also to obtain accurate values for the macrosopic quantities such as the
potential energy and pressure, as we shall see below. The correlation function is
determined by keeping a histogram which contains for every interval [i�r, (i + 1)
�r] the number of pairs n(r) with separation within that range. The list can be
updated when the pair list for the force evaluation is updated. The correlation
function is found in terms of n(r) as

g(r) = 2V

N(N − 1)

[〈n(r)〉
4πr2�r

]
. (8.17)

Similar expressions can be found for time-dependent correlation functions – see
Refs. [2] and [11].

If the force has been cut off during the simulation, the calculation of average
values involving the potential U requires some care. Consider for example the
potential energy itself. This is calculated at each step taking only the pairs with
separation within the minimum cut-off distance into account; taking all pairs into
account would imply losing the efficiency gained by cutting off the potential. The
neglect of the tail of the potential can be corrected for by using the pair correlation

208 Molecular dynamics simulations

function beyond rcut-off :

〈U〉 = 〈U〉cut-off + 2π
N(N − 1)

V

∫ ∞

rcut-off

r2dr U(r)g(r) (8.18)

where 〈· · ·〉cut-off is the average restricted to pairs with separation smaller than
rcut-off . Of course, we can determine the correlation function for r up to half the
linear system size only because of periodic boundary conditions. Verlet [12] has
used the Percus–Yevick approximation to extrapolate g beyond this range. Often g
is simply approximated by its asymptotic value g(r) ≡ 1 for large r.

Similarly, the virial equation is corrected for the potential tail:

P

nkBT
= 1 − 1

3NkBT

〈∑
i

∑
j>i

rij
∂U(R)

∂rij

〉
cut-off

− 2πN

3kBTV

∫ ∞

rcut-off

r3 ∂U(r)

∂r
g(r)dr,

(8.19)
where g(r) can also be replaced by 1.

The specific heat can be calculated from Lebowitz’s formula, see Eq. (7.37).

8.3 A molecular dynamics simulation program for argon

In the previous section we described the structure of a MD program and here we give
some further details related to the actual implementation. The program simulates
the behaviour of argon. In 1964, Rahman [13] published a paper on the properties
of liquid argon – the first MD simulation involving particles with smoothly varying
potentials. Previous work by Alder and Wainwright [14] was on hard sphere fluids.
Rahman’s work was later refined and extended by Verlet [8] who introduced several
features that are still used, as we have seen in the previous section.

The Lennard–Jones pair potential turns out to give excellent results for argon:

U(r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]

. (8.20)

The optimal values for the parameters ε and σ are ε/kB = 119.8 K and σ =
3.405 Å respectively.

In the initialisation routine, the positions of a face centred cubic lattice are gen-
erated. For an L × L × L system containing 4M3 particles, the fcc lattice constant a
is a = L/M. It may be safer to put the particles not exactly on the boundary facets
of the system because as a result of rounding errors it might not always be clear
whether they belong to the system under consideration or a neighbouring copy.

The procedure in Appendix B3 for generating random numbers with a Gaussian
distribution should be used in order to generate momenta according to a Maxwell
distribution. First generate all the momenta with some arbitrary distribution width.
Then calculate the total momentum ptot and subtract a momentum p̄ = ptot/N from

8.3 A molecular dynamics simulation program for argon 209

each of the momenta in order to make the total momentum zero. Now the kinetic
energy is calculated and then all momenta are rescaled to arrive at the desired kinetic
energy.

When calculating the forces, the minimum image convention should be adopted.
It is advisable to start without using a neighbour list. For the minimum image
convention it should be checked for each pair (i, j) whether the difference of the x-
components xi −xj is larger or smaller than L/2 in absolute value. If it is larger, then
an amount L should be added to or subtracted from this difference to transform it to
a value which is smaller than L/2 (in absolute value). In many codes, this translation
is implemented as follows:

x → x − [x/L] ∗ L, (8.21)

where [] denotes the integer part. This procedure is then repeated for the y- and
z-components. Potential and force may be adjusted according to Eqs (8.12) and
(8.13).

The equations of motion are solved using the leap-frog or the velocity form of
the Verlet algorithm. A good value for the time step is 10−14 s which in units of
(mσ 2/ε)1/2 is equal to about 0.004. Using the argon mass as the unit of mass, σ as
the unit of distance and τ = (mσ 2/ε)1/2 as the unit of time, the x-component of the
force acting on particle i resulting from the interaction with particle j is given by

Fij
x = (xi − xj)(48r−14

ij − 24r−8
ij) (8.22)

with similar expressions for the y- and z-components.
After each step in the Verlet/leap-frog algorithm, each particle should be checked

to see whether it has left the volume. If this is the case, it should be translated over
a distance ±L along one or more of the Cartesian axes in order to bring it back into
the system in accordance with the periodic boundary conditions.

During equilibration, the velocities (momenta) should be rescaled at regular
intervals. The user might specify the duration of this phase and the interval between
momentum rescalings.

During the production phase, the following quantities should be stored in a file
at each time step: the kinetic energy, potential energy, and the virial∑

ij

rijF(rij). (8.23)

Furthermore, the program should keep a histogram-array containing the numbers
of pairs found with a separation between r and r + � for, say, � = L/200 from
which in the end the correlation function can be read off.

210 Molecular dynamics simulations

Table 8.1. Molecular dynamics data for
thermodynamic quantities of the Lennard–Jones liquid.

ρ(1/σ 3) T0(ε/kB) T βP/ρ U(ε)

0.88 1.0 0.990 (2) 2.98 (2) −5.704 (1)
0.80 1.0 1.010 (2) 1.31 (2) −5.271 (1)
0.70 1.0 1.014 (2) 1.06 (4) (5) −4.662 (1)

T0 is the desired temperature; T is the temperature as determ-
ined from the simulation; ρ is the density: ρ = N/V . All
values are in reduced units.

programming exercise

Write a program that simulates the behaviour of a Lennard–Jones liquid with
the proper argon parameters given above.

Check 1 To check the program, you can use small particle numbers, such as 32 or
108. Check whether the program is time-reversible by integrating for some time
(without rescaling) and then reversing velocities. The system should then return
to its initial configuration (graphical display of the system might be helpful).

Check 2 The definite check is to compare your results for argon with literature.
A good value for the equilibration time is 10.0 τ and rescalings could take place
after every 10 or 20 time steps. A sufficiently long simulation time to obtain
accurate results is 20.0 τ (remember the time step is 0.004 τ). In Table 8.1
you can find a few values for the potential energy and pressure for different
temperatures. Note that the average temperature in your simulation will not be
precisely equal to the desired value. In Figure 7.1, the pair correlation function
for ρ = N/V = 1.06 and T = 0.827 is shown.

It is interesting to study the specific heat (Eq. (7.37)) in the solid and in the gas
phase. You may compare the behaviour with that of an ideal gas, cV = 3kB/T
per particle, and for a harmonic solid, cv = 3kBT per particle (this is the Dulong–
Petit law).

Note that phase transitions are difficult to locate, as there is a strong hysteresis in
the physical quantities there. It is however interesting to obtain information about
the different phases. For T = 1, ρ = 0.8 the argon Lennard–Jones system is found
in the liquid phase, and for ρ = 1.2 and T = 0.5 in the solid phase. The gas
phase is found for example with ρ = 0.3 and and T = 3.0. It is very instructive
to plot the correlation function for the three phases and explain how they look.
Another interesting exercise is to calculate the diffusion constant by plotting the
displacement as a function of time averaged over all particles. For times smaller

8.4 Integration methods: symplectic integrators 211

than the typical collision time (time of free flight), you should find

〈x2〉 ∝ t2, (8.24)

and this crosses over to diffusive behaviour

〈x2〉 = Dt, (8.25)

with D the diffusion constant. In the solid phase, the diffusion constant is 0. In the
gas phase, the diffusive behaviour sets in at later times than in the fluid.

If the program works properly, keeping a Verlet neighbour list as discussed
in the previous section can be implemented. Verlet [8] used rcut-off = 2.5σ and
rmax = 3.3σ . A more detailed analysis of the increase in efficiency for various
values of rmax with rcut-off = 2.5σ shows that rmax = 3.0σ with the neighbour list
updated once every 25 integration steps is indeed most efficient [2, 15].

programming exercise

Implement the neighbourlist in your program and check whether the results
remain essentially the same. Determine the increase in efficiency.

8.4 Integration methods: symplectic integrators

There exist many algorithms for integrating ordinary differential equations, and a
few of these are described in Appendix A. In this section, we consider the particular
case of numerically integrating the equations of motion for a dynamical system
described by a time-independent Hamiltonian, of which the classical many-particle
system at constant energy is an example. Throughout this section we consider the
equation of motion for a single particle in one dimension. The discussion is easily
generalised to more particles in more dimensions.

The Verlet algorithm is the most popular algorithm for molecular dynamics and
we shall consider it in more detail in the next subsection. Before doing so, we
describe a few criteria which were formulated by Berendsen and van Gunsteren
[16] for integration methods for molecular dynamics. First of all, accuracy is an
important criterion: it tells us to which power of the time step the numerical traject-
ory will deviate from the exact one after one integration step (see also Appendix A).
Note that the prefactor of this may diverge if the algorithm is unstable (e.g. close to a
singularity of the trajectory). The accuracy is the criterion that is usually considered
in numerical analysis in connection with integration methods.

Two further criteria are related to the behaviour of the energy and other con-
served quantities of a mechanical system which are related to symmetries of the
interactions. Along the exact trajectory, energy is conserved as a result of the time-
translation invariance of the Hamiltonian, but the energy of the numerical trajectory
will deviate from the initial value and this deviation can be characterised by its drift,

212 Molecular dynamics simulations

a steady increase or decrease, and the noise, fluctuations on top of the drift. Drift is
obviously most undesirable. In microcanonical MD we want to sample the points in
phase space with a given energy; these points form a hypersurface in phase space –
the so-called energy surface. If the system drifts away steadily from this plane it is
obviously not in equilibrium.

It is very important to distinguish in all these cases between two sources of
error: those resulting from the numerical integration method as opposed to those
resulting from finite precision arithmetic, inherent to computers. For example, we
shall see below that the Verlet algorithm is not susceptible to energy drift in exact
arithmetic. Drift will however occur in practice as a result of finite precision of
computer arithmetic, and although different formulations of the Verlet algorithm
have different susceptibility to this kind of drift, this depends also on the particular
way in which numbers are rounded off in the computer.

Recently, there has been much interest in symplectic integrators. After con-
sidering the Verlet algorithm in some detail, we shall describe the concept of
symplecticity2 and its relevance to numerical integration methods.

8.4.1 The Verlet algorithm revisited

Properties of the Verlet algorithm

In this section we treat the Verlet algorithm

x(t + h) = 2x(t)− x(t − h)+ h2F[x(t)] (8.26)

in more detail with emphasis on issues which are relevant to MD. A derivation of
this algorithm can be found in Appendix A7.1. The error per integration step is
of the order h4. Note that we take the mass of the particle(s) involved equal to 1.
Unless stated otherwise, we analyse the one-dimensional single-particle version of
the algorithm. The momenta are usually determined as

p(t) = [x(t + h)− x(t − h)]/(2h)+ O(h2). (8.27)

Note that there is no need for a more accurate formula, as the accumulated error in
the positions after many steps is also of order h2. We shall check this below, using
also a more accurate expression for the momenta [16]:

p(t) = [x(t + h)− x(t − h)]/(2h)− h

12
{F[x(t + h)] − F[x(t − h)]} + O(h3).

(8.28)

This form can be derived by subtracting the Taylor expansions for x(t + h) and
x(t − h) about t, and approximating dF[x(t)]/dt by {F[x(t + h)] − F[x(t − h)]}/h.

2 Some authors use the term ‘symplecticness’ instead of ‘symplecticity’.

8.4 Integration methods: symplectic integrators 213

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 5 10 15 20 25 30 35 40 45

E
ne

rg
y

Time

E1

E3
E2

Figure 8.2. The energy of the harmonic oscillator determined using the various
velocity estimators described in the text. E1 is the energy using (8.29), E2 uses
(8.27) and E3 was calculated using (8.28).

In the leap-frog version, we have the velocities at our disposal for times halfway
between those at which the positions are given:

p(t + h/2) = [x(t + h)− x(t)]/h + O(h2). (8.29)

Each of the expressions (8.27–8.29) for the momentum gives rise to a different
expression for the energy.

We first analyse the different ways of calculating the total energy for the simple
case of the one-dimensional harmonic oscillator

H = (p2 + x2)/2 (8.30)

and we can use any of the formulae (8.27–8.29) for the momentum. In Figure 8.2
the different energy estimators are shown as a function of time for the harmonic
oscillator which is integrated using the Verlet algorithm with a time step h = 0.3.
This is to be compared with the period T = 2π of the motion x(t) = cos(t) (for
appropriate initial conditions). It is seen that the leap-frog energy estimator is an
order of magnitude worse than the other two. This is not surprising, since the fact
that the velocity is not calculated at the same time instants as the position results
in deviation of the energy from the continuum value of order h instead of h2 when
using (8.27). The energy estimator using third order momenta according to (8.28)
is better than the second order form. Note that the error in the position accumulates
in time to give O(h2) (see Problem A3), so that there is no point in calculating the
momenta with a higher order of accuracy, as this will not yield an order of magnitude
improvement. The fact that the error for the third order estimator is about a factor
of 3 better than that of the second order one for the harmonic oscillator does not
therefore indicate a systematic trend. More importantly, the error in both estimators

214 Molecular dynamics simulations

(8.27) and (8.28) does indeed scale as h2. In the following we determine momenta
according to Eq. (8.27). In the leap-frog version the momentum estimator is

p(t) = [p(t + h/2)+ p(t − h/2)]/2 + O(h2). (8.31)

The results for the various energy estimators can be obtained by solving the
harmonic oscillator in the Verlet algorithm analytically. The ‘Verlet harmonic
oscillator’ reads

x(t + h) = 2x(t)− x(t − h)− h2x(t). (8.32)

If we substitute x(t) = exp(iωt) into the last equation, we obtain

cos(ωh) = 1 − h2/2 (8.33)

and this defines a frequency ω differing by an amount of order h2 from the angular
frequency ω = 1 of the exact solution. The difference between the numerical and
the exact solution will therefore show a slow beat.

A striking property of the energy determined from the Verlet/leap-frog solution
is that it does not show any drift in the total energy (in exact arithmetic). This stabil-
ity follows directly from the fact that the Verlet algorithm is time-reversible, which
excludes steady increase or decrease of the energy for periodic motion. In a molecu-
lar dynamics simulation, however, the integration time, which is the duration of the
simulation, is much smaller than the period of the system, which is the Poincaré
time, that is the time after which the system returns to its starting configuration.
The error in the energy might therefore grow steadily during the simulation. It turns
out, however, that the deviation of the energy remains bounded in this case also, as
the Verlet algorithm possesses an additional symmetry, called symplecticity. Sym-
plecticity will be described in detail in Section 8.4.2. Here we briefly describe what
the consequences of symplecticity are for an integration algorithm. Symplecticity
gives rise to conserved quantities, and in particular, it can be shown that a discrete
analogue of the total energy is rigorously conserved (in exact arithmetic) [17]. It
turns out that this discrete energy deviates from the continuum energy at most an
amount of order hk, for some positive integer k. Therefore, the energy cannot drift
away arbitrarily and it follows that the noise remains bounded.

To illustrate this point we return to the harmonic oscillator. In this particular
case we can actually determine the conserved discrete energy. In the leap-frog
formulation:

p(t + h/2) = p(t − h/2)− hx(t); (8.34a)

x(t + h) = x(t)+ hp(t + h/2), (8.34b)

it is equal to [18]

HD = 1
2 [p(t − h/2)2 + x(t)2 − hp(t − h/2)x(t)]. (8.35)

8.4 Integration methods: symplectic integrators 215

The fact that this quantity is conserved can also be checked directly using (8.34b).
This energy is equal to 1/2−h2/8 for the solution cos(ωt)withω given in Eq. (8.33).
For general potentials, the discrete energy is not known.

As mentioned before, the absence of drift in the energy in the case of the harmonic
oscillator can be explained by the time-reversibility of the Verlet algorithm, and
comparisons with Runge–Kutta integrators for example, which are in general not
time-reversible for potentials such as the harmonic oscillator, do not convincingly
demonstrate the necessity for using a symplectic algorithm. Symplecticity does
however impose a restriction on the noise, but time-reversibility does not.

Symplectic integrators are generally recommended for integrating dynamical
systems because they generate solutions with the same geometric properties in
phase space as the solutions of the continuum dynamical system. The fact that the
deviation of the energy is always bounded is a pleasant property of symplectic
integrators. Symplectic integrators are considered in more detail in Section 8.4.2.

Finite precision of computer arithmetic obviously does not respect the symplectic
geometry in phase space. Hockney and Eastwood observed that when numbers are
rounded off properly in the computer, the system tends to heat up because the
rounding effects can be viewed as small random forces acting on the particles [19].
If real numbers are systematically truncated to finite precision numbers, the system
cools down slowly. Both effects are clearly signs of nonsymplectic behaviour.

Several classes of symplectic integrators with explicit formulas for different
orders of accuracy have been found. Runge–Kutta–Nystrom integrators (not to be
confused with ordinary Runge–Kutta algorithms) have been studied by Okunbor
and Skeel [20]. Yoshida [21] and Forest [22] have considered Lie-integrators. Their
approach follows rather naturally from the structure of the symplectic group, as we
shall see in Section 8.4.2.3

Let us make an inventory of relevant symmetry properties of integrators. First of
all, time-reversibility is important. If it is present in the equations of motion, as is
usually the case in MD, it is natural to require it in the integration method. Another
symmetry is phase space conservation. This is a property of the trajectories of the
continuum equations of motion – this property is given by Liouville’s theorem –
and it is useful to have our numerical trajectories obeying this condition too (note
that time-reversibility by itself does not guarantee phase space conservation). The
most detailed symmetry requirement is symplecticity, which will be considered in
greater detail below (Section 8.4.2). This incorporates phase space conservation and
conservation of a number of conserved quantities, the so-called Poincaré invariants.
The symplectic symmetry properties can also be formulated in geometrical terms

3 Gear algorithms [16, 23, 24] have been fashionable for MD simulations. These are predictor–corrector
algorithms requiring only one force evaluation per time step. Gear algorithms are not symplectic and they are
becoming less popular for that reason.

216 Molecular dynamics simulations

as we shall see below. Most important for molecular dynamics is the property
that the total energy fluctuates within a narrow range around the exact one. Some
comparison has been carried out between nonsymplectic phase space conserving
and symplectic integrators [25], and this gave no indication of the superiority of
symplectic integrators above merely phase-space conserving ones. As symplectic
integrators are not more expensive to use than nonsymplectic time-reversible ones,
their use is recommended as the safest option. Investigating the merits of the various
classes of integration methods for microcanonical MD is a fruitful area for future
research.

Frictional forces

Later we shall encounter extensions of the standard MD method where a fric-
tional force is acting on the particles along the direction of the velocity. The Verlet
algorithm can be generalised to include such frictional forces and we describe this
extension for the one-dimensional case which can easily be generalised to more
dimensions. The continuum equation of motion is

ẍ = F(x)− γ ẋ, (8.36)

and expanding x(h) and x(−h) around t = 0 in the usual way (see Appendix A7.1)
gives

x(h) = x(0)+ hẋ(0)+ h2[−γ ẋ(0)+ F(0)]/2 + h3...
x (0)/6 + O(h4) (8.37a)

x(−h) = x(0)− hẋ(0)+ h2[−γ ẋ(0)+ F(0)]/2 − h3...
x (0)/6 + O(h4). (8.37b)

Addition then leads to

x(h) = 2x(0)− x(−h)+ h2[−γ ẋ(0)+ F(0)] + O(h4) (8.38)

where ẋ(0) remains to be evaluated. If we write

ẋ(0) = [x(h)− x(−h)]/(2h)+ O(h2), (8.39)

and substitute this into (8.38), we obtain

(1 + γ h/2)x(h) = 2x(0)− (1 − γ h/2)x(−h)+ h2F(0)+ O(h4). (8.40)

A leap-frog version of the same algorithm is

x(h) = x(0)+ hp(h/2); (8.41a)

p(h/2) = (1 − γ h/2)p(−h/2)+ hF(0)

1 + γ h/2
. (8.41b)

If the mass m is not equal to unity, the factors 1±γ h/2 are replaced by 1±γ h/(2m).
It is often useful to simulate the system with a prescribed temperature rather

than at constant energy. In Section 8.5 we shall discuss a constant-temperature MD

8.4 Integration methods: symplectic integrators 217

method in which a time-dependent friction parameter occurs, obeying a first order
differential equation:

ẍ(t) = −γ (t)ẋ(t)+ F[x(t)] (8.42a)

γ̇ (t) = g[ẋ(t)]. (8.42b)

The solution can conveniently be presented in the leap-frog formulation. As the
momentum is given at half-integer time steps in this formulation, we can solve for
γ in the following way:

γ (h) = γ (0)+ hg[p(h/2)] + O(h2), (8.43)

and this is to be combined with Eqs. (8.41). Velocity-Verlet formulations (Eqs. (8.9))
for equations of motions including friction terms can be found straightforwardly.
This is left as an exercise to the reader – see also Ref. [26].

*8.4.2 Symplectic geometry; symplectic integrators

In recent years, major improvement has been achieved in understanding the merits
of the various methods for integrating equations of motion which can be derived
from a Hamiltonian. This development started in the early 1980s with the observa-
tions made independently by Ruth [27] and Feng [28] that methods for solving
Hamiltonian equations of motion should preserve the geometrical structure of
the continuum solution in phase space. This geometry is the so-called symplectic
geometry. Below we shall explain what this geometry is about, and what the prop-
erties of symplectic integrators are. In Section 8.4.3 we shall see how symplectic
integrators can be constructed. We restrict ourselves again to a two-dimensional
phase space (one particle moving in one dimension) spanned by the coordinates
p and x, but it should be realised that the analysis is trivially generalised to arbit-
rary numbers of particles in higher dimensional space with phase space points
(p1, . . . , pm, r1, . . . , rm).4 The equations of motion for the particle are derived from a
Hamiltonian which for a particle moving in a potential (in the absence of constraints)
reads

H(p, x) = p2

2
+ V(x). (8.44)

The Hamilton equations of motion are then given as

ṗ = −∂H(p, x)

∂x
(8.45a)

ẋ = ∂H(p, x)

∂p
(8.45b)

4 Although we use the notation ri for the coordinates, they may be generalised coordinates.

218 Molecular dynamics simulations

It is convenient to introduce the combined momentum–position coordinate z =
(p, x), in terms of which the equations of motion read

ż = J∇H(z) (8.46)

where J is the matrix

J =
(

0 −1
1 0

)
(8.47)

and ∇H(z) = (∂H(z)/∂p, ∂H(z)/∂x).5

Expanding the equation of motion (8.46) to first order, we obtain the time
evolution of the point z to a new point in phase space:

z(t + h) = z(t)+ hJ∇zH[z(t)]. (8.49)

The exact solution of the equations of motion can formally be written as

z(t) = exp(tJ∇zH)[z(0)] (8.50)

where the exponent is to be read as a series expansion of the operator tJ∇zH.
This can be verified by substituting Eq. (8.50) into (8.46). This is a one-parameter
family of mappings with the time t as the continuous parameter. The first order
approximation to (8.50) coincides with (8.49).

Now consider a small region in phase space located at z = (p, x) and spanned by
the infinitesimal vectors δza and δzb. The area δA of this region can be evaluated
as the cross product of δza and δzb which can be rewritten as6

δA = δza × δzb = δza · (Jδzb). (8.51)

It is now easy to see that the mapping (8.50) preserves the area δA. It is sufficient
to show that its time derivative vanishes for t = 0, as for later times the analysis
can be translated to this case. We have

dδA

dt

∣∣∣∣
t=0

= d

dt
{[etJ∇zH(δza)] · [JetJ∇zH(δzb)]}t=0

= [J∇zH(δza)] · (Jδzb)+ (δza) · [JJ∇zH(δzb)]. (8.52)

We can find H(δza,b) using a first order Taylor expansion:

H(δza) = H(z + δza)− H(z) = δza · ∇zH(z), (8.53)

5 In more than one dimension, the vector z is defined as (p1, . . . , pN , x1, . . . , xN), and the matrix J reads in
that case

J =
(

0 −I
I 0

)
(8.48)

where I is the N × N unit matrix.
6 Note that the area can be negative: it is an oriented area. In the language of differential geometry this area

is called a two-form.

8.4 Integration methods: symplectic integrators 219

and similar for H(δzb). This leads to the form

dδA

dt

∣∣∣∣
t=0

= −(LT δza) · (Jδzb)− (δza) · (JLTδzb) (8.54)

where L is the Jacobian matrix of the operator J∇zH:

Lij =
∑

k

Jik[∂2H(z)/∂zk∂zj] =
(−Hpx −Hxx

Hpp Hpx

)
. (8.55)

Here Hxx denotes the second partial derivative with respect to x etcetera. It is easy
to see that the matrix L satisfies

LTJ + JL = 0, (8.56)

where LT is the transpose of L, and hence from (8.54) the area δA is indeed
conserved.

We can now define symplecticity in mathematical terms. The Jacobi matrix S of
the mapping exp(tJ∇H) is given as S = exp(tL). This matrix satisfies the relation:

STJS = J . (8.57)

Matrices satisfying this requirement are called symplectic. They form a Lie group
whose Lie algebra is formed by the matrices L satisfying (8.56). General nonlinear
operators are symplectic if their Jacobi matrix is symplectic.

In more than two dimensions the above analysis can be generalised for any pair
of canonical variables pi, xi – we say that phase space area is conserved for any
pair of one-dimensional conjugate variables pi, xi. The conservation law can be
formulated in an integral form [29]; this is depicted in Figure 8.3. In this picture the
three axes correspond to p, x and t. If we consider the time evolution of the points
lying on a closed loop in the p, x plane, we obtain a tube which represents the flow
in phase space. The area conservation theorem says that any loop around the tube
encloses the same area

∮
pdx. In fact, there exists a similar conservation law for

volumes enclosed by the areas of pairs of canonical variables: these volumes are
called the Poincaré invariants. For the particular case of the volume enclosed by
areas of all the pairs of canonical variables, we recover Liouville’s theorem which
says that the volume in phase space is conserved. Phase space volume conservation
is equivalent to the Jacobi determinant of the time evolution operator in phase space
being equal to 1 (or −1 if the orientation is not preserved). For two-dimensional
matrices, the Jacobi determinant being equal to 1 is equivalent to symplecticity
as can easily be checked from (8.57). This is also obvious from the geometric
representation in Figure 8.3. For systems with a higher-dimensional phase space,
however, the symplectic symmetry is a more detailed requirement than mere phase
space conservation.

220 Molecular dynamics simulations

x

p

t

Figure 8.3. The area conservation law for a symplectic flow. The integral
∮

pdx
for any loop around the tube representing the flow of a closed loop in the p, x
plane remains constant. This integral represents the area of the projection of the
loop onto the xp plane. Note that the loops do not necessarily lie on a plane of
constant time.

We have seen that symplecticity is a symmetry of Hamiltonian mechanics in
continuum time; now we consider numerical integration methods for Hamiltonian
systems (discrete time). As mentioned above, it is not clear whether full sym-
plecticity is necessary for a reliable description of the dynamics of a system by a
numerical integration. However, it will be clear that the preservation of the sym-
metries present in continuum time mechanics is the most reliable option. The fact
mentioned above, that symplecticity implies conservation of the discrete version
of the total energy, is an additional feature in favour of symplectic integrators for
studying dynamical systems.

It should be noted that symplecticity does not guarantee time reversibility or
vice versa. Time reversibility shows up as the Hamiltonian being invariant when
replacing p by −p, and a Hamiltonian containing odd powers of p might still be
symplectic.

*8.4.3 Derivation of symplectic integrators

The first symplectic integrators were found by requiring that an integrator of some
particular form be symplectic. The complexity of the resulting algebraic equations
for the parameters in the integration scheme was found to increase dramatically with

8.4 Integration methods: symplectic integrators 221

increasing order of the integrator. Later Yoshida [21] and Forest [22] developed a
different scheme for finding symplectic integrators, and in this section we follow
their analysis.

Consider a Hamiltonian of the simple form:

H = T(p)+ U(x) (8.58)

(we still restrict ourselves to a particle in one dimension – results are easily
generalised). In terms of the variable z = (p, x) the equations of motion read

dz

dt
=
(

−∂H
∂x

,
∂H
∂p

)
=
(

−∂U(x)

∂x
,
∂T(p)

∂p

)

= J∇H(z) ≡ T̃(z)+ Ũ(z), (8.59)

where in the last expression the operator J∇H, which acts on z = (p, x), is split
into the contributions from the kinetic and potential energy respectively:

T̃(z) =
(

0,
∂T(p)

∂p

)
(8.60a)

Ũ(z) =
(

−∂U(x)

∂x
, 0

)
. (8.60b)

T̃ and Ũ are therefore also operators which map a point z = (p, x) in phase space
onto another point in phase space.

As we have seen in the previous section, the exact solution of (8.59) is given as

z(t) = exp(tJ∇H)[z(0)] = exp[t(T̃ + Ũ)][z(0)]. (8.61)

The term exp(tJ∇H) is a time evolution operator. It is a symplectic operator, as
are exp(tT̂) and exp(tÛ) since these can both be derived from a Hamiltonian (for
a free particle and a particle with infinite mass respectively).

An nth order integrator for time step h is now defined by a set of numbers ak , bk ,
k = 1, . . . , m, such that

m∏
k=1

exp(akhT̃) exp(bkhŨ) = exp(hJ∇H)+ O(hn+1). (8.62)

Since the operators exp(akhT̃) and exp(bkhŨ) are symplectic, the integrator (8.62)
is symplectic too. The difference between the integrator and the exact evolution
operator can be expressed in Campbell–Baker–Hausdorff (CBH) commutators: if
eC = eAeB then

C = A + B + [A, B]/2 + ([A, [A, B]] + [B, [B, A]])/12 + · · · (8.63)

where the dots represent higher order commutators. This formula can be derived
by writing exp(tA) exp(tB) = exp[t(A + B) + �], expanding the operator � in

222 Molecular dynamics simulations

powers of t and equating equal powers of t on the left and right hand sides of the
equality [30]. Applying this formula with A = hT̃ and B = hŨ to increasing orders
of commutators, we find

exp(hJ∇H) = exp(hT̃) exp(hŨ)+ O(h2) (8.64a)

exp(hJ∇H) = exp(hT̃/2) exp(hŨ) exp(hT̃/2)+ O(h3) (8.64b)

etc.,

but the extra terms are often tedious to find. As T̃ and Ũ appear in the exponent,
these expressions do not seem very useful. However, as it follows directly from
Eq. (8.60) that applying T̃ and Ũ more than once gives zero, we have simply

exp(ahT̃) = 1 + ahT̃ (8.65)

and similarly for exp(bhŨ). Therefore, the first order integrator is

p(t + h) = p(t)− h{∂U[x(t)]/∂x}; (8.66a)

x(t + h) = x(t)+ h{∂T [p(t + h)]/∂p} (8.66b)

which is recognised as the Verlet algorithm (although with a less accurate definition
of the momentum).

The second order integrator is given by

p(t + h/2) = p(t)− h{∂Ũ[x(t)]/∂x}/2; (8.67a)

x(t + h) = x(t)+ h{∂T̃ [p(t + h/2)]/∂p}; (8.67b)

p(t + h) = p(t + h/2)− h{∂Ũ[x(t + h)]/∂x}/2. (8.67c)

Applying this algorithm successively, the first and third step can be merged into one,
and we obtain precisely the Verlet algorithm in leap-frog form with a third order
error in the time step h. This error seems puzzling since we know that the Verlet
algorithm gives positions with an error of order h4 and momenta with an error of
order h2. The solution to this paradox lies in the interpretation of the variable p.
If at time t, p(t) is the continuous time derivative of the continuum solution x(t),
the above algorithm gives us x(t + h) and p(t + h) both with error h3. If however
p(t) is defined as [x(t + h) − x(t − h)]/(2h), the algorithm is equivalent to the
velocity-Verlet algorithm and hence gives the positions x(t + h) with an error of
order h4 and p(t + h) is according to its definition given with a h2 error. The way
in which initial conditions are given defines which case we are in.

Finding higher order algorithms is nontrivial as we do not know the form of
the higher order expansion terms of the operators exp(hT̃) and exp(hŨ). However,
Yoshida [21] proposed writing the fourth order integrator in the following form:

S2(αh)S2(βh)S2(αh) (8.68)

8.5 Molecular dynamics methods for different ensembles 223

where S2 is the second order integrator, and he fixed α and β by the requirement that
the resulting expression is equal to the continuum operator to fourth order. Higher
order integrators were found similarly. The general result can be written as

for k = 1 to n do

x(k) = x(k−1) − hak∂T [p(k−1)]/∂p (8.69)

p(k) = p(k−1) − hbk∂U[x(k)]/∂x

end

and the numbers ak and bk can be found in Yoshida’s paper. For the fourth order
case, they read

a1 = a4 = 1/[2(2 − 21/3)]; a2 = a3 = (1 − 21/3)a1 (8.70a)

b1 = b3 = 2a2; b2 = −21/3b1; b4 = 0. (8.70b)

From Yoshida’s derivation it follows that there exists a conserved quantity which
acts as the analog of the energy. The integrator is certainly not the same as the exact
time evolution operator, but it deviates from the latter only by a small amount.
Writing the integrator S(h) as

S(h) = exp(hAD) (8.71)

we have a new operator AD which deviates from the continuum operator A only by
an amount of order hn+1, as the difference can be written as a sum of higher order
CBH commutators. It will be shown in Problem 8.9 that for an operator of the form
exp(tAD) which is symplectic for all t, there exists a Hamiltonian HD which is the
analogue of the Hamiltonian in the continuum time evolution. This means that, if
we know HD (which is usually impossible to find, except for the trivial case of the
harmonic oscillator), we could either use the integrator (8.71) to give us the image
at time h, or the continuum solution of the dynamical system with Hamiltonian HD

for t = h: both mappings would give identical results. The Hamiltonian HD(z) is
therefore a conserved quantity of the integrator, and it differs from the energy by an
amount of order hn+1. The existence of such a conserved quantity is also discussed
in Refs. [17, 18, 31].

8.5 Molecular dynamics methods for different ensembles

8.5.1 Constant temperature

In experimental situations the total energy is often not a control variable as usually
the temperature of the system is kept constant. We know that in the infinite system
the temperature is proportional to the average kinetic energy per degree of freedom

224 Molecular dynamics simulations

with proportionality constant kB/2, and therefore this quantity is used in MD to
calculate the temperature, even though the system is finite (see Section 10.7 for a
discussion on temperature for a finite system). As the total energy remains con-
stant in the straightforward implementation of the molecular dynamics paradigm
as presented in the previous sections, the question arises how we can perform MD
simulations at constant temperature or pressure. We start with a brief overview
of the various techniques which have been developed for keeping the temperature
constant. Then we shall discuss the most successful one, the Nosé–Hoover method,
in greater detail.

Overview of constant temperature methods

Experience from real life is a useful guide to understanding procedures for keeping
the temperature at a constant value. In real systems, the temperature is usually
kept constant by letting the system under consideration exchange heat with a much
larger system in equilibrium – the heat bath. The latter has a definite temperature
(it is in equilibrium) and the smaller system that we consider will assume the
same temperature, as it has a negligible influence on the heat bath. Microscopically
the heat exchange takes place through collisions of the particles in the system
with the particles of the wall that separates the system from the heat bath. If, for
example, the temperature of the heat bath is much higher than that of the system
under consideration, the system particles will on average increase their kinetic
energy considerably in each such collision. Through collisions with their partners
in the system, the extra kinetic energy spreads through the system, and this process
continues until the system has attained the temperature of the heat bath.

In a simulation we must therefore allow for heat flow from and to the system in
order to keep it at the desired temperature. Ideally, such a heat exchange leads to a
distribution ρ of configurations according to the canonical ensemble, irrespective
of the number of particles:

ρ(R, P) = e−H(R,P)/(kBT), (8.72)

but some of the methods described below yield distributions differing from this by
a correction of order 1/Nk , k > 0. In comparison with the experimental situation,
we are not confined to allowing heat exchange only with particles at the boundary:
any particle in the system can be coupled to the heat bath.

Several canonical MD methods have been developed in the past. In 1980
Andersen [32] devised a method in which the temperature is kept constant by
replacing every so often the velocity of a randomly chosen particle by a velocity
drawn from a Maxwell distribution with the desired temperature. This method is
closest to the experimental situation: the velocity alterations mimic particle col-
lisions with the walls. The rate at which particles should undergo these changes

8.5 Molecular dynamics methods for different ensembles 225

in velocity influences the equilibration time and the kinetic energy fluctuations.
If the rate is high, equilibration will proceed quickly, but as the velocity updates
are uncorrelated, they will destroy the long time tail of the velocity autocorrela-
tion function. Moreover, the system will then essentially perform a random walk
through phase space, which means that it moves relatively slowly. If on the other
hand the rate is low, the equilibration will be very slow. The rate Rcollisions for which
wall collisions are best mimicked by Andersen’s procedure is of the order of

Rcollisions ∼ κ

kBn1/3N2/3
(8.73)

where κ is the thermal conductivity of the system, and n, N the particle density and
number respectively [32] (see Problem 8.9). Andersen’s method leads to a canonical
distribution for all N . The proof of this statement needs some theory concerning
Markov chains and is therefore postponed to Section 15.4.3, where we consider the
application of this method to lattice field theories.

For evaluating equilibrium expectation values for time- and momentum-
independent quantities, the full canonical distribution (8.72) is not required: a
canonical distribution in the positional coordinates

ρ(R) = e−U(R)/(kBT) (8.74)

is sufficient since the momentum part can be integrated out for momentum-
independent expectation values. For a sufficiently large system the total kinetic
energy of a canonical system will evolve towards its equilibrium value 3NkBT/2
and fluctuations around this value are very small. We might therefore force the
kinetic energy to have a value exactly equal to the one corresponding to the desired
temperature. This means that we replace the narrow distribution of the kinetic
energy by a delta-function

ρ(Ekin) → δ[Ekin − 3(N − 1)kBT/2]. (8.75)

The simplest way of achieving this is by applying a simple velocity rescaling pro-
cedure as described in the previous section (Eqs. (8.14) and (8.15)) after every
integration step rather than occasionally:

pi → pi

√
3/2(N − 1)kBT

Ekin
. (8.76)

This method can also be derived by imposing a constant kinetic energy via a Lag-
range multiplier term added to the Lagrangian of the isolated system [33]. It turns
out [34] that this velocity rescaling procedure induces deviations from the canonical
distribution of order 1/

√
N , where N is the number of particles.

Apart from the rescaling method, which is rather ad hoc, there have been attempts
to introduce the coupling via an extra force acting on the particles with the purpose

226 Molecular dynamics simulations

of keeping the temperature constant. This force assumes the form of a friction
proportional to the velocity of the particles, as this is the most direct way to affect
velocities and hence the kinetic energy:

mr̈i = Fi(R)− ζ(R, Ṙ)ṙi. (8.77)

The parameter ζ acts as a friction parameter which is the same for all particles and
which will be negative if heat is to be added and positive if heat must be drained
from the system. Various forms for ζ have been used, and as a first example we
consider [33, 35]

ζ(R, Ṙ) = dV(R)/dt∑
i ṙ2

i

. (8.78)

This force keeps the kinetic energy K = m
∑

i v2
i /2 constant as can be seen using

(8.77). From this equation, we obtain

∂K

∂ t
∝
∑

i

viv̇i = −
∑

i

vi[∇iV(R)− ζ(R, Ṙ)vi] = dV

dt
−
∑

i

ṙ2
i ζ(R, Ṙ) = 0.

(8.79)
It can be shown [34] that for finite systems the resulting distribution is purely
canonical (without 1/Nk corrections) in the restricted sense, i.e. in the coordinate
part only.

Another form of the friction parameter ζ was proposed by Berendsen et al.
[36] This now has the form ζ = γ (1 − TD/T) with constant γ , T is the actual
temperature T = ∑

i mv2
i /(3kB), and TD is the desired temperature. It can be

shown that the temperature decays to the desired temperature exponentially with
time at rate given by the coefficient γ . However, this method is not time reversible;
moreover, it can be shown that the Nosé method (see below) is the only method
with a single friction parameter which gives a full canonical distribution [37], so
Berendsen’s method cannot have this property. Berendsen’s method can be related
to a Langevin description of thermal coupling, in the sense that the time evolution
of the temperature for a Langevin system (see Section 8.8) can be shown to be
equivalent to that of a system with a coupling via ζ as given by Berendsen.

Nosé’s method in the formulation by Hoover [37] uses yet another friction
parameter ζ which is now determined by a differential equation:

dζ

dt
=
(∑

i

v2
i − 3NkBTD

)
/Q (8.80)

where Q is a parameter which has to be chosen with some care (see below) [38].
This way of keeping the temperature constant yields the canonical distribution for
positions and momenta, as will be shown in the next subsection.

The Nosé and the Andersen methods yield precise canonical distributions for pos-
ition and momentum coordinates. They still have important disadvantages, however.

8.5 Molecular dynamics methods for different ensembles 227

In the Andersen method, it is not always clear at which rate the velocities are to be
altered and it has been found [39, 40] that the temperature sometimes levels down
at the wrong value. The Nosé–Hoover thermostat suffers from similar problems.
In this method, the coupling constant Q in Eq. (8.80) between the heat bath and
the system must be chosen – this coupling constant is the analogue of the velocity
alteration rate in the Andersen method. It turns out [38] that for a Lennard–Jones
fluid at high temperatures, the canonical distribution comes out well, but if the tem-
perature is lowered [26], the temperature starts oscillating with an amplitude much
larger than the standard deviation expected in the canonical ensemble. It can also
occur that such oscillations are much smaller than the expected standard deviation,
but in this case the fluctuations on top of this oscillatory behaviour are much smal-
ler than in the canonical ensemble. Martyna et al. [41] have devised a variant of
the Nosé–Hoover thermostat which is believed to alleviate these problems to some
extent. Although the difficulties with these constant temperature approaches are
very serious, they have received rather little attention to date. It should be clear that
it must always be checked explicitly whether the temperature shows unusual beha-
viour; in particular, it should not exhibit systematic oscillations, and the standard
deviation for N particles in D dimensions should satisfy

�T =
√

2

ND
T (8.81)

where�T is the width of the temperature distribution and T is the mean value [26].
This equation follows directly from the Boltzmann distribution.

*Derivation of the Nosé–Hoover thermostat

In this section we shall discuss Nosé’s approach [34, 42], in which the heat bath is
explicitly introduced into the system in the form of a single degree of freedom s.
The Hamiltonian of the total (extended) system is given as

H(P, R, ps, s) =
∑

i

p2
i

2ms2
+ 1

2

∑
ij,i �=j

U(ri − rj)+ p2
s

2Q
+ gkT ln(s). (8.82)

g is the number of independent momentum-degrees of freedom of the system (see
below), and R and P represent all the coordinates ri and pi as usual. The physical
quantities R, P and t (time) are virtual variables – they are related to real variables
R′, P′ and t′ via R′ = R, P′ = P/s and t′ = ∫ t dτ/s. With these definitions we have
for the real variables P′ = dQ′/dt′.

228 Molecular dynamics simulations

First we derive the equations of motion in the usual way:

dri

dt
= ∂H
∂pi

= pi

ms2
(8.83a)

ds

dt
= ∂H
∂ps

= ps

Q
(8.83b)

dpi

dt
= −∂H

∂ri
= −∇iU(R) = −

∑
i<j

∇iU(ri − rj) (8.83c)

dps

dt
= −∂H

∂s
=
(∑

i p2
i

ms2 − gkBT

)/
s. (8.83d)

We have used the notation ∂H/∂pi = ∇piH, etc. The partition function of the total
system (i.e. including heat bath degree of freedom s) is given by the expression:

Z = 1

N !
∫

dps

∫
ds
∫

dP
∫

dR

× δ


∑

i

p2
i

2ms2 + 1

2

∑
ij,i �=j

U(rij)+ p2
s

2Q
+ gkBT ln(s)− E


 . (8.84)

Integrations
∫

dR and
∫

dP are over all position and momentum degrees of freedom.
We now rescale the momenta pi:

pi

s
= p′

i, (8.85)

so that we can rewrite the partition function as

Z = 1

N !
∫

dps

∫
ds
∫

dP′
∫

dR

× s3Nδ


∑

i

p′2
i

2m
+ 1

2

∑
ij,i �=j

U(rij)+ p2
s

2Q
+ gkBT ln(s)− E


 . (8.86)

We define the Hamiltonian H0 in terms of R and P′ as

H0 =
∑

i

p′2
i

2m
+ 1

2

∑
ij,i �=j

U(rij). (8.87)

8.5 Molecular dynamics methods for different ensembles 229

Furthermore we use the relation δ[f (s)] = δ(s − s0)/f ′(s) with f (s0) = 0 and set
g = 3N + 1, so that we can rewrite Eq. (8.86) as

Z = 1

N !
∫

dps

∫
ds
∫

dP′
∫

dR
s3N+1

(3N + 1)kBT

× δ

(
s − exp

[
−H0(P′, R)+ p2

s /2Q − E

(3N + 1)kBT

])

= 1

(3N + 1)kBT

1

N !
∫

dps

∫
dP′

∫
dR exp

[
−H0(P′, R)+ p2

s/2Q − E

kBT

]
.

(8.88)

The dependence on ps is simply Gaussian and integrating over this coordinate we
obtain

Z = 1

3N + 1

(
2πQ

kBT

)1/2

exp(E/kBT)Zc (8.89)

where Zc is the canonical partition function:

Zc = 1

N !
∫

dP′
∫

dR exp[−H0(P
′, R)/kBT]. (8.90)

It follows that the expectation value of a quantity A which depends on R and P is
given by

〈A(P/s, R)〉 = 〈A(P′, R)〉c (8.91)

where 〈· · ·〉c denotes an average in the canonical ensemble. The ergodic hypothesis
relates this ensemble average to a virtual-time average.

The Lagrangian equations of motion for the ri can be obtained by eliminating
the momenta from (8.83a):

d2ri

dt2 = − 1

ms2 ∇iV(R)− 2

s

dri

dt

ds

dt
. (8.92)

In this equation the ordinary force term is recognised with a factor 1/s2 in front
and with an additional friction term describing the coupling to the heat bath. The
factor 1/s2 is consistent with the relation between real and virtual-time dt′ = dt/s
given above. Together with the definitions P′ = P/s and p′

s = ps/s, this leads to

230 Molecular dynamics simulations

the equations of motion in real variables:

dr′
i

dt′ = p′
i

m
(8.93a)

dp′
i

dt′
= −∇iV(R)− sp′

sp
′
i/Q (8.93b)

ds

dt′
= s′2p′

s/Q (8.93c)

dp′
s

dt′
=
(∑

i

p
′2
i /m − gkBT

)
/s − s2p

′2
s /Q. (8.93d)

Although these equations are equivalent to the equations for the virtual variables,
there is a slight complication in the evaluation of averages. The point is that we
have used the ergodic theorem for the canonical Hamiltonian expressed in virtual
variables (P, R, t, s, ps) in order to relate virtual-time averages to ensemble averages.
The real time steps however are not equidistant and time averaging in real time is
therefore not equivalent to averaging in virtual-time. Fortunately the two can be
related. Expressing the real time t′ as an integral over virtual-time τ according to
t′ = ∫ t

0 dτ/s we obtain

lim
t′→∞

1

t′

∫ t′

0
A(P/s, R)dτ ′ = lim

t′→∞
t

t′
1

t

∫ t

0
A(P/s, R)dτ/s

=
[

lim
t′→∞

1

t

∫ t

0
A(P/s, R)dτ/s

]/(
lim

t′→∞
1

t

∫ t

0
dτ/s

)

= 〈A(P/s, R)/s〉/〈1/s〉. (8.94)

It can be verified (see Problem 8.9) that the latter expression coincides with the
canonical ensemble average if we put g equal to 3N instead of 3N + 1. This means
that if we carry out the simulation using Eqs. (8.93) with g = 3N , real-time averages
are equivalent to canonical averages.

Hoover [37] showed that by defining ζ = sp′
s/Q, Eqs. (8.93) can be reduced to

the simpler form

dr′
i

dt′ = p′
i

m
;

dp′
i

dt′ = Fi − ζp′
i; (8.95)

dζ

dt′
=
(∑

i p′2
i

m
− gkBT

)
/Q, (8.96)

and taking g equal to the number of degrees of freedom, i.e. 3N , he was able to show
that the distribution f (P, R, ζ) is phase space conserving, i.e. it satisfies Liouville’s
equation.

8.5 Molecular dynamics methods for different ensembles 231

The disadvantage of the real-time equations is that they are not Hamiltonian, in
the sense that they cannot be derived from a Hamiltonian. Although this might not
seem to be a problem, we prefer Hamiltonian equations of motion as they allow
for stable (symplectic) integration methods as discussed in Section 8.4. Winkler
et al. [43] have formulated canonical equations of motion in real-time but these are
subject to severe numerical problems when integrating the equations of motion for
large systems.

8.5.2 Keeping the pressure constant

In experimental situations not only the temperature is kept under control but also
the pressure. The partition function for the (NpT)-ensemble is given as

Q(N , p, T) =
∫

dV e−βpV 1

N !
∫

dR dP e−βH(R,P) =
∫

dV e−βpV Zc(N , V , T)

(8.97)
(see Chapter 7). We use a lower-case p for the pressure in order to avoid confusion
with the total momentum coordinate P. We now describe the scheme which is
commonly adopted for keeping the pressure constant but do not go into too much
detail as the analysis follows the same lines as the Nosé–Hoover thermostat, and
refer to the literature for details [32, 34, 37].

Andersen first presented this scheme. He proposed incorporating the volume into
the equations of motion as a dynamical variable and scaled the spatial coordinates
back to a unit volume:

r′
i = riV

1/3, (8.98)

where again the prime denotes the real coordinate – unprimed coordinates are those
of the virtual system. Moreover

p′
i = pi/(sV1/3). (8.99)

The canonical Hamiltonian is extended by two variables, the volume V and the
canonical momentum pV which can be thought of as the momentum of a piston
closing the system.7 The Hamiltonian has an extra ‘potential energy’ term pV and
a ‘kinetic’ term p2

V/2W (W is the ‘mass’ of the piston, and pV its momentum):

H(P, R, ps, s, pV , V) =
∑

i

p2
i

2mV2/3s2 + 1

2

∑
ij,i �=j

U[V1/3R]

+ p2
s

2Q
+ gkT ln(s)+ pV + p2

V/2W . (8.100)

7 Note that the system expands and contracts isotropically, so instead of a piston, the whole system boundary
moves.

232 Molecular dynamics simulations

The equations of motion now read:

dr
dt

= ∂H
∂pi

= pi

mV2/3s2
(8.101a)

ds

dt
= ∂H
∂ps

= ps

Q
(8.101b)

dpi

dt
= −∂H

∂ri
= −∇iU(V

1/3R) (8.101c)

dps

dt
= −∂H

∂s
=
(∑

i p2
i

mV2/3s2
− gkBT

)
/s (8.101d)

dV

dt
= ∂H
∂pV

= pV

W
(8.101e)

dpV

dt
= −∂H

∂V
=
(∑

i p2
i

mV2/3s2 −
∑

i

∇iU(V
1/3R) · ri

)
/(3V)− p. (8.101f)

It can be shown in the same way as in the thermostat case that the distribution of
configurations corresponds to that of the (NpT) ensemble:

ρ(P′, R′, V) = VN exp{−[H0(P
′, R′)+ pV]/kBT}. (8.102)

Hoover [37] proposed similar equations of motion which conserve phase space, but
they differ from this distribution by an extra factor V in front of the exponent [44].

The method described is restricted to isotropic volume changes and can therefore
not be used for studying structural phase transitions in solids. A method which
allows for anisotropic volume changes while keeping the pressure constant was
developed by Parrinello and Rahman [45].

8.6 Molecular systems

8.6.1 Molecular degrees of freedom

Interactions in molecular systems can be divided into intramolecular and inter-
molecular ones. The latter are often taken to be atom-pair interactions similar to
those considered in the previous sections. The intramolecular interactions (i.e. the
interactions between the atoms of one molecule) are determined by chemical bonds,
so not only are they strong compared with the intermolecular interactions (between
atoms of different molecules) but they also include orientational dependencies. We
now briefly describe the intramolecular degrees of freedom and interactions (see
also Figure 8.4).

First of all, the chemical bonds can stretch. The interaction associated with this
degree of freedom is usually described in the form of a harmonic potential for the

8.6 Molecular systems 233

stretch

torsion

bend

Figure 8.4. Different types of motion of atoms within a molecule.

bond length l:
Vstretch(l) = 1

2αS(l − l0)
2 (8.103)

where l0 is the equilibrium bond length.
Now consider three atoms bonded in a chain-like configuration A–B–C. This

chain is characterised by a bending or valence angle ϕ which varies around an
equilibrium value ϕ0 and the potential is described in terms of a cosine:

Vvalence(ϕ) = −αB[cos(ϕ − ϕ0)+ cos(ϕ + ϕ0)] (8.104)

where the equivalence of the angles ϕ0 and −ϕ0 is taken into account. Often, a
harmonic approximation cos(ϕ) ≈ 1 − ϕ2/2, valid for small angles, is used.

Finally there is an interaction associated with chain configurations of four atoms
A–B–C–D. The plane through the first three atoms A, B, C does not coincide in
general with that through B, C and D. The torsion interaction is similar to the bend
interaction, but the angle (called dihedral angle), denoted byϑ , is now that between
these two planes:

Vtorsion(ϑ) = −αT[cos(ϑ − ϑ0)+ cos(ϑ + ϑ0)]. (8.105)

This interaction is also often replaced by its harmonic approximation. Other inter-
actions and more complicated forms of these potentials can be used – we have only
listed the simplest ones.

Characteristic vibrations associated with the different degrees of freedom dis-
tinguished here can be derived from the harmonic interactions – the frequencies

234 Molecular dynamics simulations

vary as the square root of the α-coefficients. In general, the bond length vibrations
are the most rapid, followed by the bending vibrations. For an MD integration to
be accurate, the time step should be chosen smaller than the fastest degree of free-
dom. But as this degree of freedom will vibrate with a small amplitude, because
of the strong potential, we are using most of the computer time for those parts of
the motion that are not expected to contribute strongly to the physical properties
of the system. Moreover, if there is a clear separation between the time scales of
the various degrees of freedom of the system, energy transfer between the fast and
slow modes is extremely slow, so that it is difficult, if not impossible, to reach
equilibrium within a reasonable amount of time. In such a case it is advisable to
‘freeze’ the fast modes by keeping them rigorously fixed in time. In practice this
means that lengths of chemical bonds can safely be kept fixed, and perhaps some
bending angles. In a more approximate description it is also possible to consider
entire molecules as being rigid. In the next subsections we shall describe how to
deal with rigid and partly rigid molecules.

8.6.2 Rigid molecules

We consider molecules which can be treated as rigid bodies whose motion consists
of translations of the centre of mass and rotations around this point. The forces acting
between two rigid molecules are usually composed of atomic pair interactions
between atoms belonging to the two different molecules.8 The total force acting
on a molecule determines the translational motion and the torque determines the
rotational motion. In the next subsection, we shall describe a direct formulation of
the equations of motion of a simple rigid molecule – the nitrogen molecule. In the
following subsection we shall then describe a different approach in which rigidity
is enforced through constraints added to the Lagrangian.

Direct approach for the rigid nitrogen molecule

As a simple example consider the nitrogen molecule, N2. This consists of two nitro-
gen atoms, each of mass m ≈ 14 atomic mass units (a.m.u.) and whose separation
d is kept fixed in the rigid approximation. The coordinates of the molecule are the
three coordinates of the centre of mass and the two coordinates defining its orient-
ation. The latter can be polar angles but here we shall characterise the orientation
of the molecule by a unit direction vector n̂, pointing from atom 1 to atom 2 (see
Figure 8.5).

The motion of the centre of mass of the molecule is determined by the total force
Ftot acting on a particular molecule. This force is the sum of all the forces between

8 Sometimes, off-centre interactions (i.e. not centred on the atomic positions) are taken into account too but
we shall not consider these.

8.6 Molecular systems 235

ω

n̂

Figure 8.5. The nitrogen molecule. n̂ is a unit vector, ωωω is the rotation vector.

each of the two atoms in the molecule and the atoms of the remaining molecules. The
atomic forces can be modelled by a Lennard–Jones interaction with the appropriate
atomic nitrogen parameters σ = 3.31 Å, ε/kB = 37.3 K and d = 0.3296σ [46].
The equation of motion for the centre of mass RCM is then

R̈CM = Ftot, (8.106)

which can be solved in exactly the same way as in an ordinary MD simulation.
The motion of the orientation vector n̂ is determined by the torque N with respect

to the centre of the molecule, which is given in terms of the forces F(1) and F(2)

acting on atoms 1 and 2 respectively:

N = (d/2)n̂ × (F(1) − F(2)). (8.107)

The torque changes the angular momentum L of the molecule. This is equal to
Iωωω, where I is the moment of inertia md2/2 and ωωω is the angular frequency vector
whose norm is the angular frequency and whose direction is the axis around which
the rotation takes place (see Figure 8.5). Note that N is not necessarily parallel to
ωωω. The equation of motion for the angular momentum is L̇ = N or

Iω̇ωω = N . (8.108)

The angular frequency ωωω is in turn related to the time derivative of the direction
vector n̂:

˙̂n = ωωω × n̂. (8.109)

Combining Eqs. (8.108) and (8.109) leads to

˙̂n = ωωω × (ωωω × n̂)+ N × n̂/I = −ω2n̂ + N × n̂/I . (8.110)

This equation of motion leaves the norm of the direction vector n̂ invariant, as
it should – this follows directly from (8.109). In a numerical integration of the

236 Molecular dynamics simulations

equations of motion the norm of n̂ is not rigorously conserved; it can suffer from
numerical errors which may growing steadily with time. We shall now see how this
can be avoided.

Let us write down the leap-frog algorithm for the equation of motion (8.110)
for n̂:

p(t + h/2) = p(t − h/2)+ h[−ω2n̂(t)+ N (t)× n̂(t)/I] (8.111a)

n̂(t + h) = n̂(t)+ hp(t + h/2). (8.111b)

Here p represents the time-derivative of n̂ at times t = (n + 1/2)h. The problem
with this algorithm is that it depends on ω2 and this depends in turn on the time
derivative ˙̂n. A convenient way of finding ω2 is to use

p(t − h/2) = p(t)− h

2
(−ω2n̂ + N × n̂/I)+ O(h2), (8.112)

so that, using n̂(t) · p(t) = 0, we obtain

2p(t − h/2) · n̂(t) = hω2 + O(h2). (8.113)

Calling the left hand side of this equation λ, we have [2, 47]

λ = 2p(t − h/2) · n̂ (8.114a)

p(t + h/2) = p(t − h/2)+ h[n̂(t)× N (t)/I − λn̂(t)] (8.114b)

n̂(t + h) = n̂(t)+ hp(t + h/2). (8.114c)

The continuum equations of motion guaranteed conservation of the norm of the unit
vector n̂. The leap-frog algorithm will enforce this normalisation only up to an error
of h3. It is therefore sensible to normalise n̂ after every time step – the parameter
λ can then be viewed as the Lagrange multiplier associated with the constraint
|n̂|2 = 1. In the next section we shall discuss a simpler method for simulating
liquid nitrogen, using constraints in a different way.

For general molecules, we have an extra degree of freedom: the angle of rotation
around a molecular axis. This is the third Euler angle, which is usually denoted as
γ . The straightforward procedure for solving the equations of motion is to calculate
the principal angular velocityωωω in terms of the time derivatives of the Euler angles.
The Euler equation of motion gives the rate of change inωωω in terms of the torque. The
time derivatives of the Euler angles can then be found again fromωωω, and these can
be used to calculate the new atomic positions. There is however a problem when the
Euler angle θ = 0, as in that case the transformation fromωωω to the time derivatives
of the Euler angles becomes singular. Evans has discussed this problem and has
presented methods to avoid the instability resulting from this singularity [48]. The
most efficient one is to use the quaternion representation, in which the orientation
of the molecule is defined in terms of a four-dimensional unit vector rather than
three Euler angles. This method was implemented by Evans and Murad [49].

8.6 Molecular systems 237

Enforcing rigidity via constraints

Another method for treating rigid molecules is by imposing holonomic constraints,
i.e. constraints which depend only on positions and not on the velocities, through
an extension of the Lagrangian. The Lagrangian of the system without constraints
reads

L0(R, Ṙ) =
∫ t1

t0
dt
[∑

i

mi

2
ṙ2

i − 1

2

∑
i �=j

U(ri − rj)
]
. (8.115)

A constraint is introduced as usual through a Lagrange multiplier λ [50]. As the
constraint under consideration should hold for all times,λ is a function of t. A simple
example of a constraint is the following: particles 1 and 2 have a fixed separation d
for all times (this could be the separation of the two atoms in a nitrogen molecule).
Such a constraint on the separation is called bond constraint – it can formally be
written as

σ [R(t)] = [r1(t)− r2(t)]2 − d2 = 0. (8.116)

The Lagrangian for the system with this constraint reads

L(R, Ṙ) = L0(R, Ṙ)−
∫ t1

t0
dt λ(t){[r1(t)− r2(t)]2 − d2}. (8.117)

The integral over time is needed because the constraint holds for all times between
t0 and t1. The equations of motion are the Euler–Lagrange equations for this
Lagrangian. These equations will depend on the Lagrange parameters,λ, whose val-
ues are determined by the requirement that the solution must satisfy the constraint.

A slightly more complicated example is the trimer molecule CS2 [51]. The linear
geometry of this molecule is in principle imposed automatically by the correct bond
constraints between the three pairs of atoms. However, the motion of this molecule
is described by five positional degrees of freedom: two to define the orientation of
the molecule and three for the centre of mass position. The three atoms without
constraints have nine degrees of freedom and if three of these are eliminated using
the bond constraints, we are left with six degrees of freedom instead of the five
required. Therefore one redundant degree of freedom is included in this procedure,
which is obviously inefficient. A better procedure is therefore to fix only the distance
between the two sulphur atoms:

|rS(1) − rS(2) |2 = d2 (8.118)

and to fix the position of the C-atom by a linear vector constraint:

(rS(1) + rS(2))/2 − rC = 0, (8.119)

adding up to the four constraints required.
For a molecule, in general a number of atoms forming a ‘backbone’ set is identi-

fied and these are fixed by bond constraints (the two sulphur atoms in our example)

238 Molecular dynamics simulations

and the remaining ones are fixed by linear constraints of the form (8.119). In the case
of a planar structure we take three noncollinear atoms as a backbone. These atoms
satisfy three bond constraints and the remaining atoms are constrained linearly. In
a three-dimensional molecular structure, four backbone atoms are subject to six
bond constraints and the remaining ones to a linear vector constraint each. In the
constraint procedure, the degrees of freedom of the nonbackbone atoms are elim-
inated so that the forces they feel are transferred to the backbone. This elimination
is always possible for linear constraints such as those obeyed by the nonbackbone
atoms.

Let us now return to our CS2 example. First we write down the equations of
motion for all three atoms, following from the extended Lagrangian (the Lagrange
parameter for the bond constraint is called λ, that of the linear vector constraintµµµ):

mSr̈S(1) = F1 − 2λ(rS(1) − rS(2))−µµµ/2 (8.120a)

mSr̈S(2) = F2 + 2λ(rS(1) − rS(2))−µµµ/2 (8.120b)

mCr̈C = FC +µµµ. (8.120c)

The linear constraint (8.119) is now differentiated twice with respect to time, and
using the equations of motion we obtain

FC +µµµ = mC

2mS
(F1 + F2 −µµµ). (8.121)

We can thus eliminate µµµ in the equations of motion for the S-atoms and obtain,
with M = 2mS + mC:

mSr̈S(1) =
(

1 − mC

2M

)
F1 − mC

2M
F2 + mS

M
FC − 2λ(rS(1) − rS(2)); (8.122a)

mSr̈S(2) =
(

1 − mC

2M

)
F2 − mC

2M
F1 + mS

M
FC + 2λ(rS(1) − rS(2)). (8.122b)

These equations define the algorithm for the positions of the S-atoms, and the
position of the C-atom is fixed at any time by the linear constraint.

Note that we still have an unknown parameterλ present in the resulting equations:
this parameter is fixed by demanding that the bond constraint must hold for rS(1)

and rS(2) at all times (note that we have not yet used this constraint). It is not easy
to eliminate λ from the equations of motion as we have done with µµµ, as the bond
length constraint is quadratic. Instead, we solve for λ at each time step using the
constraint equation. We outline this procedure for our example. Suppose we have
the positions rS(1) and rS(2) at times t and t −h and that for both these time instances
the bond constraint is satisfied. According to the equations of motion (8.122) in the

8.6 Molecular systems 239

Verlet scheme, predictions for the positions at t + h are given by

rS(1) (t + h) = 2rS(1) (t)− rS(1)(t − h)+ h2
(

1 − mC

M

)
F1(t)

− h2 mC

M
F2 + h2 mS

M
FC(t)− 2h2λ(t)[rS(1)(t)− rS(2) (t)]; (8.123a)

rS(2) (t + h) = 2rS(2)(t)− rS(2)(t − h)+ h2
(

1 − mC

M

)
F2(t)

− h2 mC

M
F1 + h2 mS

M
FC(t)+ 2h2λ(t)[rS(1) (t)− rS(2)(t)]. (8.123b)

The predictions for the positions at t+h are linear functions of λ and if we substitute
them into the bond constraint (8.118), we obtain a quadratic equation for λ which
can be solved trivially. Of the two solutions, we keep the smallest value of λ. This
means that the bond constraint is now satisfied to computer precision for all times.
It should be noted that the value of λ in this procedure will deviate slightly from its
value in the exact solution of the continuum case, but the deviation remains within
the overall order h4 error of the integration scheme [52].

We have given the CS2 example here because it illustrates the general procedure
involving linear constraints which are all eliminated from the equations of motion,
thereby reducing the degrees of freedom to those of the backbone atoms (the two
sulphur atoms in our example). These are confined by quadratic bond constraints.
The Lagrange multipliers associated with the latter are kept in the problem and
fixed by the bond constraints themselves. After solving for the backbone, the linear
constraints fix the positions of the remaining atoms uniquely.

The nitrogen molecule which was discussed in the previous subsection using a
direct approach can be treated with the method of constraints. It is a simple problem
because there are no linear constraints which have to be used to remove redundant
degrees of freedom from the equations of motion, and we are left with the following
equations:

m1r̈1 = F1 + λ(r1 − r2) (8.124a)

m2r̈2 = F2 − λ(r1 − r2). (8.124b)

The Verlet equations lead again to linear predictions for r1 and r2 at the next time
step and substituting these into the bond constraint leads to a quadratic equation
which fixes the Lagrange multiplier λ. For an implementation, see Problem 8.9.

8.6.3 General procedure: partial constraints

In the previous section we have considered systems consisting of completely rigid
molecules. Now we discuss partially rigid molecules, consisting of rigid fragments
which can move with respect to each other. The motion of two fragments attached

240 Molecular dynamics simulations

by chemical bonds can be described in terms of stretching, bending and torsion, as
described in Section 8.6.2. In general, partial constraints cannot be treated using
the methods given previously. Trying to use the constraints to reduce the equa-
tions to a smaller set and formulating equations for the rigid fragments in terms of
quaternions is quite complicated. Ryckaert et al. [51–54] devised a simple and effi-
cient iterative method for treating arbitrary constraints which is now still the most
important method for MD with polyatomic molecules. Analogous to the method
of constraints for rigid molecules, the rigidity of the fragments can be imposed by
constraints, which are all expressed in Cartesian coordinates for simplicity. The
Lagrange multipliers are determined after each integration step by substituting the
new positions into the constraint equations.

The algorithm, called SHAKE, is formulated within the framework of the Verlet
algorithm. The forces experienced by the particles consist of physical and of con-
straint forces. The constraints are given by σk(R) = 0, where k = 1, . . . , M; M
is the number of constraints. We denote the physical force on particle i by Fi and
the constraint force is

∑M
k=1 λk∇iσk(R), where λk is the Lagrange multiplier which

is to be determined. At time step t = nh we have at our disposal the positions at
times t and t − h. These positions satisfy the constraint equations σk(R) = 0 to
numerical precision. The aim is to find the positions at time t + h, satisfying the
constraint equation. First we calculate the new positions r̃i(t + h) without taking
the constraints into account:

r̃i(t + h) = 2ri(t)− ri(t − h)+ h2Fi[ri(t)]. (8.125)

The final positions ri(t + h) can be written as

ri(t + h) = r̃i(t + h)−
M∑

k=1

λk∇iσk[R(t)]. (8.126)

The λk are found in an iterative procedure. We number the iterations by an index
l. In each iteration, a loop over the constraints k is carried out, and in each step of
this loop, the Lagrange parameter λk and all the particle positions are updated. The
positions are updated according to

rnew
i = rold

i − h2λ
(l)
k ∇iσk[R(t)]. (8.127)

The parameter λ(l)k is found from a first order expansion of σk(R), requiring that
this vanishes:

σk[Rnew] ≈ σk[Rold] − h2λ
(l)
k

∑
i

∇iσk[Rold]∇iσk[R(t)] = 0, (8.128)

leading to

λ
(l)
k = σk[Rold]

h2
{∑

i ∇iσk[Rold]∇iσk[R(t)]
} . (8.129)

8.7 Long-range interactions 241

Each step will therefore shift the positions more closely to the point where they all
satisfy the constraint. The iterative process is stopped when all the constraints are
smaller (in absolute value) than some small positive number.

The algorithm can be summarised as follows:

Calculate R̃(t + h) using (8.125);
Set Rold equal to R̃(t + h);
REPEAT

Calculate λ(l)k from (8.129);
FOR k = 1 TO M DO

Set Rold equal to Rnew

Update Rold to Rnew using (8.127);
END FOR

UNTIL Constraints are satisfied.

The SHAKE algorithm turns out to be quite efficient: for a system of 48 atoms with
112 constraints, typically 25 iterations are necessary in order to achieve convergence
of the constraints within a relative accuracy of 5 × 10−7 [52].

8.7 Long-range interactions

Coulombic and gravitational many-particle systems are of great interest because
they describe plasmas, electrolytic solutions, and celestial mechanical systems. The
interaction is described by a pair-potential which in three dimensions is proportional
to 1/r – in two dimensions it is ln r. The long range character of this potential poses
problems. First of all, it is not clear whether the potential can be cut off beyond some
finite range. One might hope that for a charge-neutral Coulomb system, screening
effects could justify this procedure. Unfortunately, for most systems of interest, the
screening length exceeds half the linear system size that can be achieved in practice,
so we cannot rely on this screening effect to justify cutting off the potential, as this
would essentially alter the form of the screening charge cloud. Also, when using
the minimum image convention with periodic boundary conditions, equally charged
particles tend to occupy opposite ends of a half diagonal of the system unit cell in
order to minimise their interaction energy, thus introducing unphysical anisotropies.
Therefore, we cannot cut off the potential and all pairs of interacting particles must
be taken into account when calculating the forces.

Connected with this is an essential difference in the treatment of periodic or
nonperiodic system cells. In the latter case, we simply use the 1/r potential (or
ln r in two dimensions), but in the periodic case we must face the problem that in
general the sum over the image charges in the periodic replicas does not converge.
This can be remedied by subtracting an offset from the potential (note that adding

242 Molecular dynamics simulations

or subtracting a constant to the potential does not alter the forces and hence the
dynamics of the system) leading to the following expression for the total configur-
ational energy for a collection of particles with charge (or mass) qi located at qi,
i = 1, . . . , N :

U =
∑

R

∑
i<j

qiqj

|ri − rj + R| −
∑
i<j

qiqj

∑′
R

1

R
. (8.130)

Here
∑

i<j denotes a sum over i and j running from 1 to N with the restriction i < j;
furthermore,

∑
R denotes a sum over the locations R of the system replicas, the

prime with the second sum denoting exclusion of R = 000. From now on we shall
restrict ourselves to charge-neutral systems with

∑
i qi = 0, for which the second

term in (8.130) vanishes. The system then has a dipole moment and the leading term
in computing the total energy in PBC is the result of the dipole–dipole interactions
between the replicas. Evaluating the sum over the replicas is a difficult problem
even for charge-neutral systems and it will be addressed in the next subsection. In
Section 8.7.2 we shall then see how the forces can be evaluated more efficiently
than in the conventional MD approach where we must sum over all pairs.

8.7.1 The periodic Coulomb interaction

The total configurational energy of the charge-neutral system is given by

U =
∑

R

∑
i<j

qiqj

|ri − rj + R| ;
∑

i

qi = 0. (8.131)

It is assumed here that the particles are point particles, that is, their charge distri-
bution is given by a delta-function ρi(r) = qiδ(r − ri). In most realistic cases
there will be additional short range interactions preventing the particles from
approaching each other too closely. We now apply a Fourier transform as defined
in Eqs. (4.104)–(4.105) to (8.131). We have

1

r
=
∫

d3k

(2π)3
4π

k2 eik·r. (8.132)

Substituting this into (8.131) and using

∑
R

eik·R = (2π)3

V

∑
K

δ3(k − K) (8.133)

where V is the volume of the system and K are reciprocal lattice vectors, we obtain

U = 1

V

∑
K �=000

∑
i<j

eiK·rij

K2
qiqj. (8.134)

8.7 Long-range interactions 243

Wehavenotyetmadeanyprogressaswehaveonlyreplacedthe infinitesumoverR by
another infinitesumoverK. Itmightseemthat thissumdivergesforsmallK,but this is
not thecase forcharge-neutral systems: thisneutrality is responsible for theexclusion
of the K = 000 term, and it ensures convergence of the small-K terms. Surprisingly,
the divergences in the original real-space sum (8.131) were associated with the long
rangecharacterof the forcewhereas thedivergence in (8.134) isdue to the short range
(large K) part. In reality, the ions have a finite size, which means that they will repel
eachotheratshortdistances.This implies that theCoulombinteractionhas tobe taken
into account for ranges beyond some small cut-off rcore only, and we can neglect the
K-values for K > 2π/rcore. Of course, this does not yield an exactly spherical cut-off
as the reciprocal lattice is cubic, but if the cut-off radius is sufficiently small this will
cause no significant errors. Moreover, the core radius can be chosen much smaller
than the range of repulsive interaction (which is always present in realistic models)
so that this error can be reduced arbitrarily.

In case one insists on having delta-function distributions, or if the cut-off radius
is so small that calculating the Fourier sum is still inconveniently demanding, it is
possible first to replace the delta-charges by artificial, extended charge distributions
with some finite radius and then correcting for this replacement. This is done in
the so-called Ewald summation technique. We shall not give a full derivation of
the Ewald summation method since it is quite lengthy – it is described elsewhere
[55, 56] – but sketch briefly the idea behind this technique. In the Ewald method,
the extended charge distribution is taken to be a Gaussian:

ρi(r) = qi

(α
π

)3/2
exp(−α|r − ri|2) (8.135)

where the normalisation factor is for the three-dimensional case. This charge distri-
bution results in a converging K-sum, and this extension is corrected for by adding
the potential resulting from the difference between the point-charge and Gaus-
sian distribution. Since this difference is neutral, it generates a rapidly decaying
potential, which can then be treated by the minimum image convention. The total
interaction potential for charges qi located at ri is then given as

UPBC = 2π

V

∑
K �=000

∣∣∣∣∣
∑

i

qie
iK·ri

∣∣∣∣∣
2

e−K2/(4α)

K2
+
∑
i<j

qiqj
erfc(

√
αrij)

rij
−
(α
π

)1/2 N∑
i=1

q2
i

(8.136)
where the function erfc is the complementary error function defined in (4.116):
erfc = 1 − erf. The first term of the Ewald sum converges rapidly due to the
exp[−K2/(4α)] term resulting from the Gaussian charge distribution. The second
term in the sum is short ranged, so it can be treated in a minimum image convention.
The forces can be found by differentiation. The Ewald sum can also be generalised
for dipolar interactions (Ewald–Kornfeld method).

244 Molecular dynamics simulations

In a careful treatment of the Ewald technique, the sum is carried out formally
by taking a large volume of some particular shape (e.g. a sphere) containing the
system replicas and then this shape is increased. The reason for this is that the
sum over the interactions is conditionally convergent, i.e. it depends on the order
in which the various contributions are taken into account. This is explained by the
fact that the system replicas all have a dipole moment and will hence build up a
surface charge at the boundary of the huge volume. The most natural boundary
condition (the one which is arrived at in more pedestrian derivations) is consistent
with the sphere being embedded in a perfectly conducting medium. For the sphere
embedded in a dielectric, a correction must be included [56]. It is important to be
aware of this when calculating (say) dielectric properties of a charged system.

8.7.2 Efficient evaluation of forces and potentials

As a result of the long range of the forces, all interacting pairs must be taken
into account in the calculation of forces or potentials. The straightforward imple-
mentation, considered in the previous sections of this chapter, also called the
particle–particle method (PP) because all pairs are considered explicitly, would
require O(N2) steps, but it turns out possible to reduce this to a more favourable
scaling. We shall briefly sketch two other methods, and then consider a third one,
the tree method in greater detail.

In the particle-mesh (PM) method, a (usually cubic) grid in space is defined. A
mass (or charge) distribution ρ is then defined by assigning part of each particle’s
mass (or charge) to its four neighbouring grid points according to some suitable
scheme. The potential can then be found by solving Poisson’s equation on the grid

∇2
DU(r) = −4πρ(r) (8.137)

where ∇2
D is the finite-difference version of the Laplace operator. Using fast Fourier

transforms (see Appendix A9), this calculation can be carried out in a number of
steps proportional to M log M where M is the number of grid points. Knowing
the potential, the force at any position can be found by taking the finite difference
gradient of the potential, after a suitable correction for the self-energy resulting
from the inclusion of the interaction of a particle with itself in this procedure.
This method obviously becomes less accurate for pairs of particles with a small
separation, as in that case the Coulomb/gravitation potential is not sufficiently
smooth to be represented accurately on the grid. Therefore it is sensible to treat
particles within some small range (for example a range comparable to the grid
constant) by the PP method. This can be done by splitting the force into a smooth
long range (LR) and a short range (SR) part:

F = FLR + FSR, (8.138)

8.7 Long-range interactions 245

...........

Figure 8.6. Hierarchical subdivision of the full simulation space (a square) into
children, grandchildren etc.

such that the short range force vanishes beyond some small range, and the long
range force can be calculated accurately on the grid. The splitting can be obtained
by considering the long range force as resulting from a particle whose charge
(or mass) is distributed over some finite range (homogeneous sphere, Gaussian
distribution, …). The short range force is then the potential resulting from the
difference between the point charge and the finite-width distribution (cf. the Ewald
method). The long range interactions are treated as in the PM method, and the
short range ones can be dealt with using the PP scheme. The resulting method is
called the particle–particle/particle–mesh (PPPM) or P3M method. For a detailed
description of the PM and PPPM methods, see Ref. [19].

We now describe the tree-code algorithm in some detail [57–60]. The amount of
computer time involved in the evaluation of the forces in this method is reduced to
O(N ln N) steps. We describe the Barnes–Hut[57] version in the formulation by van
Dommelen and Rundensteiner [61, 62] and restrict ourselves to two-dimensional
gravitational (or Coulomb) systems, with an interaction ln r between two particles
of unit mass (or charge) and separation r. The idea of the method is that the force
which a mass experiences from a distant cluster of particles can be calculated from
a multipole expansion of the cluster. The convergence of the multipole expansion
depends on the ratio of the distance from the cluster and its linear size.

The total system volume is hierarchically divided up into blocks. We start with
a square shape (level 0) which in a first step is divided into four squares of half the
linear size (level 1), and at the next step each of these squares is divided up into four
smaller ones etc. We speak of parents and children of squares in this hierarchy –
see Figure 8.6. Now consider some square S at level n. It is not justified to apply
the multipole expansion to nearest neighbour squares as particles in neighbouring

246 Molecular dynamics simulations

N

N

N N

N

N

N

N

I I I I

I

I

I

II

I II

I

I

I

II

I

I

I

I I

II

I I

I

S

Figure 8.7. Interaction list of a square S at level n. The squares at level n are
separated by thin lines, their parents (at level n − 1) by heavy lines. For the square
labelled by S, the squares in the interaction list of a square are denoted by I. The
nearest neighbours are labelled by N.

squares might be very close so that the multipole expansion would require far too
many terms. These squares will be dealt with at a higher level, so we apply this
approximation in each step to at least next nearest squares and skip squares lying in
regions that have been treated at previous levels. Therefore, the squares with which
the particles in S will interact at the present level are those (1) which are not nearest
neighbours of S and (2) whose parent was a nearest neighbour of the parent of S.
These squares form the interaction list of S. Figure 8.7 shows which squares are in
the interaction list of S. It will be clear that all the interactions will be taken into
account when proceeding in this way.

More specifically, at level n we carry out two steps.

1. We calculate the multipole moments of each square of the present level.
2. For each particle, we calculate the interactions with the interaction list of the

square to which it belongs using the multipole expansion for the particles in the
cells.

This process is carried through over nmax = (log2 N)/2 steps so that for N being an
integer power of 4, the squares at the lowest level contain on average one particle.
Empty squares are ‘pruned’ from the tree, that is, they are not divided up any more.

Let us now calculate the number of steps needed in this procedure. We assume that
we carry out the multipole expansion up to order M. This number is independent of
the number of particles N . At level n, the first step, in which the multipole moments
are calculated, requires N × M steps. The second step requires N × M × K steps,

8.8 Langevin dynamics simulation 247

where K is the average size of the interaction list, which is at most 27. K and M
are fixed numbers, there are O(ln N) levels, so the total number of steps scales as
O(N ln N).

For two dimensions, the multipole moment expansion is very simple if the space
is viewed as a complex plane with particles at positions z = x + iy. The potential
is then given as the real part of ln(z) and this can easily be expanded in a Taylor
expansion around the centre of the cell. For a cluster centred at the origin and
consisting of particles of charge qi at positions zi, the potential at the point z is
given by

U(z) =
Nc∑

i=1

qi ln(z − zi) = a0 ln z −
M∑

k=1

ak

zk
+ O

(
R

z

)M+1

(8.139)

where R is the linear size of the cluster containing Nc particles and the moment
expansion coefficients ak are given by

a0 =
∑

i

qi and ak =
Nc∑

i=1

qizk
i

k
, k ≥ 1. (8.140)

For the field written as a complex number E at the point z we have

E(z) =
M∑

k=0

ak

zk+1
+ O(R/z)M+1. (8.141)

From Figure 8.7 it can be seen that a worst case estimate for R/z is 2/3. In practice,
fewer than 20 multipole coefficients are necessary to obtain machine accuracy (32
bits).

In fact, it turns out to be possible to reduce the amount of work needed for the
force evaluation to O(N). The resulting method is called the fast multipole method
(FMM) – see Refs. [62] and [63].

8.8 Langevin dynamics simulation

Most realistic physical systems are tractable only in a model, in which the inter-
esting features of the system are highlighted and in which the less relevant parts
are either eliminated or treated in an approximate way. In this spirit we have for
example eliminated molecular degrees of freedom in Section 8.6 by considering
(parts of) molecules to be rigid. Another example of this approach is the Langevin
dynamics technique, the subject of the present section. Consider a solution contain-
ing polymers or ions which are much heavier than the solvent molecules. As the
kinetic energy is on average divided equally over the degrees of freedom, the ions
or polymers will move much more slowly than the solvent molecules. Moreover,

248 Molecular dynamics simulations

because of their large mass, they will change their momenta only after many col-
lisions with the solvent molecules and the picture which emerges is that of the
heavy particles forming a system with a much longer time scale than the solvent
molecules. This difference in time scale can be employed to eliminate the details of
the degrees of freedom of the solvent particles and represent their effect by forces
that can be treated in a simple way. This process can be carried out analytically
through a projection procedure (see chapter 9 of Ref. [11] and references therein)
but here we shall sketch the method in a heuristic way.

How can we model the effect of the solvent particles without taking into account
their degrees of freedom explicitly? When a heavy particle is moving through
the solvent, it will encounter more solvent particles at the front than at the back.
Therefore, the collisions with the solvent particles will on average have the effect
of a friction force proportional and opposite to the velocity of the heavy particle.
This suggests the following equation of motion for the heavy particle:

m
dv
dt
(t) = −γ v(t)+ F(t) (8.142)

where γ is the friction coefficient and F the external or systematic force, due to
the other heavy particles, walls, gravitation, etc. It has been noted in Section 7.2.1
that the motion of fluid particles exhibits strong time correlations and therefore the
effects of their collisions should show time correlation effects. Time correlations
affect the form of the friction term which, in Eq. (8.142), has been taken to be
dependent on the instantaneous velocity but which in a more careful treatment
should include contributions from the velocity at previous times through a memory
kernel:

m
dv
dt
(t) = −

∫ t

−∞
dt′ γ (t − t′)v(t′)+ F(t). (8.143)

In order to avoid complications we shall proceed with the simpler form (8.142). In
the following we shall restrict ourselves to a particle in one dimension; the analysis
for more particles in two or three dimensions is similar.

Equation (8.142) has the unrealistic effect that if the external forces are absent,
the heavy particle comes to rest, whereas in reality it executes a Brownian motion.
To make the model more realistic we must include the rapid variations in the force
due to the frequent collisions with solvent particles on top of the coarse-grained
friction force. We then arrive at the following equation:

m
dv

dt
(t) = −γ v(t)+ F(t)+ R(t) (8.144)

where R(t) is a ‘random force’. Again, the time correlations present in the fluid
should show up in this force, but they are neglected once more and the force is

8.8 Langevin dynamics simulation 249

subject to the following conditions.

• As the average effect of the collisions is already absorbed in the friction, the
expectation value of the random force should vanish:

〈R(t)〉 = 0. (8.145)

• The values of R are taken to be uncorrelated:

〈R(t)R(t + τ)〉 = 0 for τ > 0. (8.146)

• The values of R are distributed according to a Gaussian:

P[R(t)] = (2π〈R2〉)−1/2 exp(−R2/2〈R2〉). (8.147)

All these assumptions can be summarised in the following prescription for the
probability for a set of random forces to occur between t0 and t1:

P[Ri(t)]t0<t<t1 ∝ exp

(
− 1

2q

∫ t1

t0
dt R2

i (t)

)
(8.148)

with q a constant to be determined.
Below we consider the numerical integration of the equations of motion for the

heavy particles, and in that case it is convenient to assume that the random force is
constant over each time step: at step n, the value of the random force is Rn. For this
case, the correlation function for the Rn reads

〈RnRm〉 =
∫

dRndRn+1 · · · dRm exp(−1/2q
∑m

l=n R2
l�t)RnRm∫

dRndRn+1 · · · dRm exp(−1/2q
∑m

l=n R2
l �t)

(8.149)

which yields the value 0 for n �= m, in accordance with the previous assumptions.
For n = m we find the value q/�t, so we arrive at

〈RnRm〉 = q

�t
δnm. (8.150)

For the continuum case �t → 0 (8.150) converges to the δ-distribution function

〈R(t)R(t + τ)〉 = qδ(τ). (8.151)

We now return to the continuum form of the Langevin equation (8.144). This
can be solved analytically and the result is

v(t) = v(0) exp(−γ t/m)+ 1

m

∫ t

0
exp[−(t − τ)γ /m]R(τ)dτ . (8.152)

Because the expectation value of R vanishes we obtain

〈v(t)〉 = v(0) exp(−γ t/m) (8.153)

which is to be expected for a particle subject to a friction force proportional and
opposite to the velocity.

250 Molecular dynamics simulations

The expectation value of v2 is determined in a similar way. Using (8.151) and
(8.144) we find

〈[v(t)]2〉 = v2
0 exp(−2γ t/m)+ q

2γm
(1 − e−2γ t/m), (8.154)

which for large t reduces to

〈[v(∞)]2〉 = q

2γm
. (8.155)

According to (8.152), v depends linearly on the random forces R(t) and as the
latter are distributed according to a Gaussian, the same will hold for the velocity.
The width is given by (8.155), so we have

P[v(t)] =
(
γm

πq

)1/2

exp[−mv(t)2γ /q] (8.156)

for large t. This is precisely the Maxwell distribution if we write

q = 2kBTγ , (8.157)

so this equation defines the value of q necessary to obtain a system with temperature
T . In Chapter 12 we shall discuss Langevin types of equations in a more formal
way, using the Fokker–Planck equation.

The velocity autocorrelation function can also be obtained from (8.152):

〈v(0)v(t)〉 = 〈v(0)2〉e−γ t/m. (8.158)

The absence of a long time tail in this correlation function reflects the oversim-
plifications in the construction of the Langevin equation, in particular the absence
of correlations in the random force and the fact that the frictional force does not
depend on the ‘history’ of the system.

The results presented here are easily generalised to more than one dimension.
However, including a force acting between the heavy particles causes problems if
this force exhibits correlations with the random force, and Eq. (8.157) is no longer
valid in that case. Such correlation effects are often neglected and the systematic
force is simply added to the friction and the Langevin term.

A further refinement is the inclusion of memory kernels in the forces, similar to
the approach in Eq. (8.143). In that case, the random force is no longer uncorrelated –
it is constructed with correlations in accordance with the fluctuation-dissipation
theorem [64]:

〈R(0)R(t)〉 = 〈v2〉γ (t). (8.159)

However, this equation is again no longer valid if external forces are included. The
approach with memory kernels has led to a whole industry of so-called generalised
Langevin-dynamics simulations [64–67].

8.9 Dynamical quantities: nonequilibrium molecular dynamics 251

The systematic interaction force between the particles in the solvent will affect
the friction which these particles are subject to through hydrodynamic effects.
This coupling is usually neglected, but a method including these effects has been
proposed and implemented [68]. We mention the dissipative particle dynamics
(DPD) method which is based on these ideas [69].

An algorithm for simple Langevin dynamics can be formulated starting from the
methods given in Section 8.4.1. Suppose the random force is constant during one
integration step. Denoting the force during the interval [0, h] by R+ and that during
the interval [−h, 0] by R−, the random force can directly be included into (8.40):

x(h)[1 + γ h/2] + x(−h)[1 − γ h/2] = 2x(0)+ h2[F(0)+ R+/2 + R−/2].
(8.160)

Therefore, at each step a new value of the random force during the new interval
must be drawn from a Gaussian random generator, and this force is to be used
together with the random force generated at the previous step in order to predict
the new position. This is, however, not always a satisfactory procedure. Normally,
the integration time step h is determined by the requirement that the systematic
force F can be assumed to be reasonably constant over a time interval h. This
means that the time over which we take the random force to be constant depends
on the smoothness of the systematic force. In fact we would prefer to allow for
a rapidly varying random force combined with a large time step allowed by the
systematic force. This turns out to be possible. Using the statistical properties of
the random force, equations of motion can be obtained which are somewhat similar
to the ones given here, but with more complicated correlations between the random
contributions at subsequent steps – for details see Ref. [70].

It is straightforward to develop a Langevin program for a molecule in a fluid or a
gas, using the simple algorithm presented here. For molecules containing chains of
at most three chemically bonded atoms, torsion is absent, which reduces the number
of forces considerably. Examples are molecules with a tetrahedron conformation,
such as CH4 (methane) and CF4, and two-dimensional molecules. In Problem 8.9
the construction of a Langevin molecule for methane is considered.

8.9 Dynamical quantities: nonequilibrium molecular dynamics

In the molecular dynamics method, the equations of motion of a classical
many-body system are integrated numerically. There is no reason to restrict the
applicability of this method to systems in equilibrium. MD is the method of choice
for dynamic phenomena in equilibrium or nonequilibrium systems. We speak of
nonequilibrium molecular dynamics (NEMD). We consider two examples very
briefly here.

252 Molecular dynamics simulations

There exists a relation between time correlation functions and transport coeffi-
cients via the dynamic fluctuation-dissipation theorem [71, 72]. The physical idea
behind this theorem is that, in an equilibrium system, particles diffuse and the
dynamics of this diffusion tells us something about their ability to transport for
example heat or charge. Therefore we can measure transport coefficients by study-
ing the diffusion of the positions or velocities through the system. A disadvantage
of measuring transport quantities in this way is that diffusion is often rather slow in
equilibrium so that accurate results for transport coefficients are sometimes hard to
obtain. Therefore it is useful to apply a field and measure the response to the action
of that field directly by keeping track of the motion of the particles (a thermostat
must be used in order to prevent the energy from increasing steadily as a result of
the interaction with the external field). A complication may arise in connection with
periodic boundary conditions, as in that case surface effects may be induced if the
applied force is not compatible with the periodicity. Therefore perturbing forces
are often chosen sinusoidal with a period compatible with the PBC. An example is
provided by the determination of the shear viscosity, caused by fluid layers moving
in parallel directions, with different speed, rubbing against each other. The shear
viscosity can be measured [73, 74] by applying a force in the x-direction which
varies with the coordinate z according to

F(z) = F0 cos(kz)x̂ (8.161)

where k = 2π/L, and L is the linear size of the cubic volume. The shear viscosity η
can then be measured via the mean velocity in the x-direction of the particles with
a given coordinate z:

vx(z) = ρ/(k2η)F0 cos(kz) (8.162)

and this average velocity can easily be determined. In order to improve the estimate
one can determine the shear viscosity with various kn = 2πn/L to extrapolate to
k → 0.

A second example of NEMD is the transfer of energy between different degrees
of freedom. This is of interest in detonation waves. A detonation which traverses
a medium of explosive molecules continuously ‘recharges’ itself by new unstable
molecules falling apart, thereby releasing fragments with high velocities. For an
unstable molecule to be disrupted it is necessary for the translational energy impar-
ted by a collision with a fast fragment to be transferred to bond length vibrations. For
diatomic molecules, the two different degrees of freedom can easily be separated.
Holian et al. [39, 40] have carried out MD simulations in which the translational
and vibrational degrees of freedom were given different temperatures by coupling
them to different heat baths which were then turned off or replaced by a single bath
(at the higher temperature). In this way it was possible to determine energy transfer
rates between the different modes.

Exercises 253

Exercises

8.1 [C] For coding the leap-frog method (Eq. (8.7)) two arrays are needed, one
containing the velocities at times t = (n + 1/2)h, and one for the positions at t = nh.
The same holds for the velocity-Verlet algorithm.

At first sight it might seem that the Verlet algorithm would need more memory:
arrays containing the positions at times t = nh, t = (n − 1)h and t = (n + 1)h.
However, the value xi[(n − 1)h] can be overwritten by xi[(n + 1)h]. Use this to code
the Verlet algorithm such that only two arrays are needed. Test it for a number of
particles moving in one dimension and subject to the harmonic oscillator potential.

8.2 The neighbour list proposed by Verlet [8] needs updating every 10–20 integration
steps and this update requires of the order of N2 steps for a system containing N
particles. Another bookkeeping device consists of partitioning the system into cubic
volumes and keeping track of which particles are to be found in each of these
volumes. Consider a two-dimensional L × L system for convenience. We split this
up into P × P squares of linear size L/P. P is chosen such that the potential can be
cut off safely beyond L/P. Suppose we have for each square a list of particles within
that volume. These lists will change whenever a particle leaves a square and moves
to a neighbouring one. The force evaluation now includes only particle pairs whose
members are either in the same or in neighbouring cells.

(a) How many particles are on average to be found in one square?
(b) How many pair forces are on average taken into account in this ‘cell method’?
(c) Calculate the gain in speed with respect to the method in which all pair

interactions are taken into account, assuming that the particles are distributed
more or less homogeneously over the volume.

8.3 The first molecular dynamics simulations were carried out by Alder and Wainwright
for hard spheres [14]. The discontinuity in the potential calls for a different approach
than that used for smooth potentials. The state of the system is given by the positions
ri and velocities vi (i labels the particles) at some time ti which is usually the time of
the last collision experienced by i. We must calculate the velocity changes for the
next pair undergoing a collision.

We consider the elastic collision between two hard spheres, i and j, which are
moving with velocities vi and vj. At time t their positions are ri and rj. After the
collision, velocities are v′

i and v′
j respectively. The sphere diameter is σ .

(a) Show, using energy and momentum conservation, that the changes in velocities
of the two particles are given by

�vi = v′
i − vi = −�vj = rij(vij · rij)

σ 2

where vij = vi − vj and rij = ri − rj at the collision.

For each pair of particles we need to know the time at which they will collide
(note that because of PBC each pair will indeed collide at some time unless the

254 Molecular dynamics simulations

velocities have very peculiar values). The collision time for pair i, j is found by

|rij + tvij| = σ .

This is a quadratic equation which yields two solutions for the collision time t. The
first time after the current time must be chosen and recorded as the collision time of
pair ij.

The simulation is now constructed as follows. At the beginning, the particles are
released from a lattice with velocities according to a Boltzmann distribution. For all
N(N − 1)/2 pairs, the collision times are calculated and stored in a sorted list. The
first element of this list contains the first collision to take place. For this collision we
calculate the new velocities and positions. Then each pair containing at least one of
the two collision partners is removed from the list. Their new collision times are
calculated and added again to the list in such a way that the latter remains sorted
with respect to the collision times.

(b) How does the simulation time scale with the number of particles?
(c) Explain why the kinetic energy of the hard sphere system is rigorously constant.

In order to calculate pressures we must adapt the virial theorem to this system.
The virial theorem for smooth forces reads

βP

ρ
= 1 + 1

3NkBT

〈
N∑

i=1

ri · Fi

〉
.

The problem is that the force acts over an infinitely small time during which it
has an infinite value. Show that for this case the virial theorem reads

βP

ρ
= 1 + 1

N〈v2〉t
∑

collisions

vij · rij,

where the sum is over the collisions taking place within the sampling time t.

8.4 (a) Show that the Verlet algorithm can be written in the form:(
p(t + h/2)
x(t + h)

)
=
(

p(t − h/2)+ hF[x(t)]
x(t)+ hp(t − h/2)+ h2F[x(t)]

)
.

(b) Find the Jacobian matrix of this map and show that the Verlet algorithm is
symplectic.

8.5 Consider a time-evolution operator acting on vectors in two dimensions, which is
described by the symplectic operator exp(tAD):

z(t) = exp(tAD)z(0),

z = (p, x) = (z1, z2).

(a) Show that symplecticity implies that

∂A1

∂p
= −∂A2

∂x
.

Exercises 255

(b) Find a necessary condition to write AD as J∇zHD. Show that this condition is
equivalent to that found in (a).

(c) Show that HD is a conserved quantity.

8.6 In this problem we consider Andersen’s method for keeping the temperature
constant during a MD simulation. In particular we want to find the momentum
refresh rate R for which the method mimics wall collisions best. The refresh rate is
defined such that the average number of velocity updates during a time �t is equal
to R�t. Suppose the wall of the system is at temperature T , but the system itself is at
a temperature T +�T .

(a) Show that the rate at which heat is absorbed by the system is given by

�Q

�t
∼ κV1/3�T ,

where κ is the thermal conductivity, defined by ∇T = κj, where j is the heat
flowing through a unit area per unit time.

(b) Show that the rate at which heat is transferred to a system without walls in
Andersen’s method is equal to

�Q

�t
∼ RNkB�T .

(c) Derive from the two equations obtained the optimal rate:

Ropt ∼ κ

n1/3kBN2/3

where n = N/V .

8.7 [C] In this problem we consider a program for simulating nitrogen molecules in
microcanonical MD using the method of constraints. The equations of motion are
given in Section 8.6.2 (Eqs. (8.124)). The Lagrange parameters λ occuring in these
equations are determined by requiring the constraint to be satisfied by the positions
as predicted in the Verlet algorithm. These positions are given in the form

ri(t + h) = ai + biλ.

The list of particles is grouped into pairs of atoms forming one nitrogen molecule:
atoms 2l − 1 and 2l belong to the same molecule. The integration is carried out in a
loop over the pairs l – each pair has its own Lagrange parameter λl . For reasonable
time step sizes the roots λl of the constraint equation are real. The smallest of these
(in absolute value) is to be chosen. The forces can be calculated as usual, taking only
interactions between atoms belonging to different molecules into account.
Parameters for the Lennard–Jones interaction are ε = 37.3 K, σ = 3.31 Å and
d = 0.3296σ .

Periodic boundary conditions are implemented with respect to the centre of mass
of the molecules. If a molecule leaves the system cell it is translated back into it (as a
whole) according to PBC. Note that determining the momentum from the positions

256 Molecular dynamics simulations

at t + h and t − h after such a translation can cause severe errors: this should be done
before moving the molecule back into the cell.

(a) Implement this algorithm for liquid nitrogen.
The program can be checked by verifying whether the kinetic energies

associated with translational and vibrational degrees of freedom satisfy
equipartition. The total kinetic energy Ktot can be determined as in the argon case
by taking all atomic velocities into account. From this, the temperature can be
determined as NkBT = 4/5Ktot where N is the number of molecules. The
translational kinetic energy Ktrans can be calculated by taking into account the
molecular velocities (sums of velocities of the two atoms) and the temperature
can be found from this as NkBT = 3/2Ktrans. The average temperatures should be
the same for both procedures.

Check whether this requirement is satisfied.
(b) The virial theorem applies as usual: molecular forces should be used and the

separation occurring in this theorem is the separation between the centres of mass
of the molecules. The correction term is evaluated using g ≡ 1 for the correlation
function beyond the cut-off distance, where it is assumed that g is independent of
distance but also of the angular configuration of the molecular pairs.

(c) Calculate the pressure also using the atomic forces (including the constraint
forces), and compare the result with (b).

(d) Calculate the pressure for various temperatures and densities. Cheung and
Powles give extensive data on thermodynamic quantities [46]. The table below
gives some of the data (in reduced units) obtained by Cheung and Powles.

ρ T P U

0.6964 2.86 8.35 −17.16
0.6964 1.72 1.29 −18.68
0.6220 2.70 2.50 −15.82
0.6220 2.17 0.27 −16.30

8.8 [C] In this problem, we consider the implementation of the Andersen method for
simulating a system in the canonical ensemble. Remember that the preferred energy
estimator for the Verlet/leap-frog algorithm is

E =
∑

i

[pi(t + h/2)+ pi(t − h/2)]2

8
+ V [R(t)],

where R is the combined position coordinate of the system which consists of particles
of mass m = 1. In view of the form of this estimator, it seems sensible to update the
momenta at the same time instances for which we calculate the positions, and it is
convenient to define the ith component of the momentum coordinate at time t:

pi(t) = [pi(t + h/2)+ pi(t − h/2)]/2.

Exercises 257

(a) Using the leap-frog/Verlet algorithm, show that

pi(t + h/2) = pi(t)+ hFi/2.

The refreshed momenta pi(t) are drawn from a Maxwell–Boltzmann distribution,
and the momenta at time t + h/2, which are needed in the Verlet/leap-frog
algorithm are then calculated using this last formula.

(b) Implement the Andersen update algorithm for argon and compare the results with
the microcanonical program.

(c) Now suppose that the momenta are refreshed at every step. Show that in that case
we have

ri(t + h) = ri(t)+ h2Fi/2 + hζi(t),

where ζi(t) is the ith random momentum component generated according to the
Maxwell–Boltzmann distribution. This is a kind of Langevin equation. Discuss
the difference with the Langevin equation described in Section 8.8.

8.9 [C] In this problem we consider the implementation of the Nosé–Hoover thermostat
in the microcanonical MD simulation for Lennard–Jones argon described in
Section 8.3. The extension is straightforward – the equations are given in
Section 8.5.1. You can verify now that the behaviour of the Nosé–Hoover thermostat
is often nonergodic. For T = 1.5 and ρ = 0.8 the behaviour is as it should be for
coupling constant Q = 1. You can check that the standard deviation in the
temperature is in accordance with Eq. (8.81). For lower temperatures, like T = 0.85,
ρ = 1.067, the temperature exhibits large oscillations. The period of these
oscillations depends on Q [26].

8.10 (a) Verify that when we take g = 3N instead of g = 3N + 1 in the derivation of the
Nosé–Hoover thermostat, the probability density for configurations (P, R) turns
out to be:

ρ(P, R) = 1

3N

(
2πQ

kBT

)1/2

exp

[−H0(P, R)(3N + 1)

3NkBT

]
.

(b) For this choice, verify that quantities sampled in a simulation yield averages as
given in Eq. (8.94).

8.11 [C] In this problem, a code for evaluating the potential felt by the particles in a
two-dimensional Coulomb (or gravitational) system is developed, using the
tree-code method of Section 8.7.2.

Although experienced programmers would be tempted to start building tree
structures using pointers and recursive programming for this problem, it can be dealt
with using more pedestrian methods. The point is that the squares can be coded by
two integers NX, NY which are considered as bit-strings. The first of these contains
information about the x-coordinate of the square and the second about the
y-coordinate. They are ordered linearly: the leftmost column of squares has NX = 0,
the rightmost column NX = 2n − 1 etc., and a similar coding is adopted for the
rows. If squares are neighbours, their respective NX and NY-codes should differ at
most by 1 (and they should not be equal). The codes of the parents can be found

258 Molecular dynamics simulations

simply by shifting the bits of NX and NY one position to the right (least significant
direction) and it can therefore easily be checked in the program whether the parents
of the squares under consideration are neighbours or not.

The calculation of the multipole moments in each box (Eq. (8.140)) is best done
in a loop over the particles, recording its contribution to all the multipole coefficients
of the to which square it belongs. Also, the calculation of the interactions
(Eq. (8.139)) can be done in a loop over the particles, by executing for each particle
a loop over the interaction list of the square to which it belongs.

Proceeding this way, it is not necessary to keep for each square a list of the
particles belonging to it. However, at the finest level, the interactions between
particles within the same square and between particles in neighbouring boxes must
be calculated directly so only for the last step do we need such a list for each square.
If you want to economise on memory, you might create a linked list for each square
containing the indices of the particles in it, but for a test you may use static arrays.

Compare the results for the tree code with those of a direct calculation, varying
the number of terms in the multipole expansion.

8.12 [C] In this problem we consider a simulation of a methane molecule using the
Langevin approach. Methane consists of a carbon atom sitting at the centre of a
tetrahedron whose vertices are occupied by four H atoms. The C–H bond has a
preferred interatomic distance of 2.104a0. The stretch-potential associated with the
bond length varies as

Vstretch = 1
2κ(l − l0)

2; l0 = 2.104a0.

The force constant κ has the value κ = 0.30 (in atomic units). This force acts on
both the carbon and the hydrogen atoms and is directed along the C–H bond.

The preferred H–C–H angle is 109◦ and the potential for this bending angle is

Vbend = −λ cos(ϕ − ϕ0)
2; ϕ0 = 109◦,

with a force constant λ = 0.74. This force lies in the H–C–H plane, and acts on the
two H atoms and on the C atom. The forces on the H-atoms are perpendicular to the
C–H bonds, and the bending force on the C atom is directed along the bisecting line
of the H–C–H angle.

These two ‘force fields’, bending and stretching, specify the force on each of the
atoms. To find the forces, given the position rC of the carbon atom and the four
positions rH of the hydrogen atoms, you calculate first the forces on the hydrogen
atoms only. The stretch forces can easily be found by calculating the vector
rCH = rH − rC. The bending force is slightly more difficult. Denoting the two
hydrogen atoms of a H–C–H chain as H1 and H2, calulate rCH1 and rCH1. Then
calculate the dot product between these two vectors. From this, the cosine of the
bending angle can be found. Moreover, the direction of the force can be found from
the cross-product of rCH1 and rCH1: the bending force on H1 is then perpendicular to
this cross product and to the vector rCH1, and similarly for H2. Knowing the forces
on the hydrogen atoms, you can calculate their sum. The force on the carbon atom is

References 259

then simply the opposite of this, as the sum of all the interparticle forces adds up
to zero.

(a) [C] Write routines for calculating the forces on the atoms and use these in an
ordinary (microcanonical) MD simulation of the atom. To check the program,
you can put the H-atoms on the vertices of a tetrahedron with the C-atom in the
centre. If you release the molecule from this conformation with a CH-distance
slightly smaller or larger than the equilibrium distance of 2.104a0, the molecule
should stretch and contract isotropically in an oscillatory fashion.

(b) [C] Keep the temperature of the molecule constant by rescaling the velocities
after each time step. Determine the average total energy of the molecule.

(c) [C] Add a Langevin thermostat to the simulation, for example by rescaling the
velocities after every time step. Use the algorithm given in the last section for
solving the equations of motion with friction. Add a Langevin random force,
drawn from a Gaussian distribution with a width

σ 2 = q/h

to the interparticle force. Check that the temperature is given by

T = 1/(2γ).

The temperature is determined from the kinetic energy – we have

T = 15

2
kBT .

Determine the average total energy and compare the result with the program
of (b).

References

[1] D. W. Heermann, Computer Simulations in Statistical Physics. Heidelberg, Springer, 1986.
[2] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Oxford, Oxford University

Press, 1989.
[3] W. G. Hoover, Computational Statistical Mechanics. Amsterdam, Elsevier, 1991.
[4] D. C. Rapaport, The Art of Molecular Dynamics Simulation. New York, Cambridge University

Press, 1996.
[5] G. Ciccotti and W. G. Hoover, eds., Molecular Dynamics Simulation of Statistical-Mechanical

Systems Proceedings of the International School of Physics “Enrico Fermi”, Varenna 1985,
vol. 97. Amsterdam, North-Holland, 1986.

[6] T. Kihara and S. Koba, ‘Crystal structures and intermolecular forces of rare gases,’ J. Phys. Soc.
Jpn, 7 (1952), 348–54.

[7] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, ‘A computer simulation method
for the calculation of equilibrium constants for the formation of physical clusters of molecules:
application to small water clusters,’ J. Chem. Phys., 76 (1982), 637–49.

[8] L. Verlet, ‘Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of
Lennard–Jones molecules,’ Phys. Rev., 159 (1967), 98–103.

[9] S. D. Stoddard and J. Ford, ‘Numerical experiments on the stochastic behavior of a Lennard–
Jones gas system,’ Phys. Rev. A, 8 (1973), 1504–12.

260 Molecular dynamics simulations

[10] J. G. Powles, W. A. B. Evans, and N. Quirke, ‘Non-destructive molecular dynamics simulation
of the chemical potential of a fluid,’ Mol. Phys., 38 (1982), 1347–70.

[11] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids 2nd edn. New York, Academic Press,
1986.

[12] L. Verlet, ‘Computer ‘experiments’ on classical fluids. II. Equilibrium correlation functions,’
Phys. Rev., 165 (1968), 201–14.

[13] A. Rahman, ‘Correlations in the motion of atoms in liquid argon,’ Phys. Rev., 136A (1964),
405–11.

[14] B. J. Alder and T. E. Wainwright, ‘Phase transition for a hard sphere system,’ J. Chem. Phys.,
27 (1957), 1208–9.

[15] S. M. Thompson, ‘Use of neighbour lists in molecular dynamics,’ CCP5 Quarterly, 8 (1983),
20–8.

[16] H. J. C. Berendsen and W. F. van Gunsteren, ‘Practical algorithms for molecular dynamics sim-
ulations,’ in Molecular Dynamics Simulation of Statistical Mechanical Systems (G. Ciccotti
and W. G. Hoover, eds.), Proceedings of the International School of Physics “Enrico Fermi”,
Varenna 1985, vol. 97. Amsterdam, North-Holland, 1986, pp. 43–65.

[17] J. M. Sanz-Serna, ‘Symplectic integrators for Hamiltonian problems: an overview,’ Acta
Numerica, 1 (1992), 243–86.

[18] K. Feng and M.-Z. Qin, ‘Hamiltonian algorithms for Hamiltonian systems and a comparative
numerical study,’ Comput. Phys. Commun., 65 (1991), 173–87.

[19] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, 2nd edn. Bristol,
Institute of Physics Publishing, 1988.

[20] D. I. Okunbor and R. D. Skeel, ‘Explicit canonical methods for Hamiltonian systems,’ Math.
Comput., 59 (1992), 439–55.

[21] H. Yoshida, ‘Construction of higher order symplectic integrators,’ Phys. Lett. A, 150 (1990),
262–8.

[22] E. Forest, ‘Sixth-order Lie group integrators,’ J. Comp. Phys., 99 (1992), 209–13.
[23] C. W. Gear, ‘The numerical integration of ordinary differential equations of various orders,’

report ANL7126, Argonne National Laboratory, 1966.
[24] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Englewood

Cliffs, NJ, Prentice-Hall, 1971.
[25] D. I. Okunbor, ‘Energy conserving, Liouville and symplectic integrators,’ J. Comput. Phys., 120

(1995), 375–8.
[26] B. L. Holian, A. F. Voter, and R. Ravelo, ‘Thermostatted molecular dynamics: How to avoid the

Toda demon hidden in Nosé–Hoover dynamics,’ Phys. Rev. E, 52 (1995), 2338–47.
[27] R. D. Ruth, ‘A canonical integration technique,’ IEEE Trans. Nucl. Sci., 30 (1983), 2669–71.
[28] K. Feng, ‘On difference schemes and symplectic geometry,’ in Beijing Symposium on Differential

Geometry and Differential Equations: Computation of Partial Differential Equations (K. Feng,
ed.). Beijing, Science Press, 1985, p. 45.

[29] J. D. Meiss, ‘Symplectic maps, variational principles and transport,’ Rev. Mod. Phys., 64 (1992),
795–848.

[30] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, vols. 1 and 2. New York/Paris,
John Wiley/Hermann, 1977.

[31] A. Auerbach and S. P. Friedman, ‘Long-time behaviour of numerically computed orbits: small
and intermediate timestep analysis of one-dimensional systems,’ J. Comp. Phys., 93 (1991),
189–223.

[32] H. C. Andersen, ‘Molecular dynamics at constant temperature and/or pressure,’ J. Chem. Phys.,
72 (1980), 2384–94.

[33] J. M. Haile and S. Gupta, ‘Extensions of molecular dynamics simulation method. II. Isothermal
systems,’ J. Chem. Phys., 79 (1983), 3067–76.

References 261

[34] S. Nosé, ‘A unified formulation of constant temperature molecular-dynamics methods,’ J. Chem.
Phys., 81 (1984), 511–19.

[35] W. G. Hoover, A. J. C. Ladd, R. B. Hickman, and B. L. Holian, ‘Bulk viscosity via nonequilibrium
and equilibrium molecular dynamics,’ Phys. Rev. A, 21 (1980), 1756–60.

[36] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and B. Haak, ‘Molecular
dynamics with coupling to an external bath,’ J. Chem. Phys., 81 (1984), 3684–90.

[37] W. G. Hoover, ‘Canonical dynamics: equilibrium phase-space distributions,’ Phys. Rev. A, 31
(1985), 1695–7.

[38] K. Cho and J. D. Joannopoulos, ‘Ergodicity and dynamical properties of constant-temperature
molecular dynamics,’ Phys. Rev. A, 45 (1992), 7089–97.

[39] B. L. Holian, ‘Simulations of vibrational relaxation in dense molecular fluids,’ in Molecular
Dynamics Simulation of Statistical Mechanical systems (G. Ciccotti and W. G. Hoover, eds.),
Proceedings of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97.
Amsterdam, North-Holland, 1986, pp. 241–59.

[40] B. L. Holian, ‘Simulations of vibrational-relaxation in dense molecular fluids,’ J. Chem. Phys.,
84 (1986), 3138–46.

[41] G. J. Martyna, M. L. Klein, and M. Tuckerman, ‘Nosé–Hoover chains – the canonical ensemble
via continuous dynamics,’ J. Chem. Phys., 97 (1992), 2635–43.

[42] S. Nosé, ‘A molecular dynamics method for simulations in the canonical ensemble,’ Mol. Phys.,
52 (1984), 255–68.

[43] R. G. Winkler, V. Kraus, and P. Reineker, ‘Time reversible and phase-space conserving molecular
dynamics at constant temperature,’ J. Chem. Phys., 102 (1995), 9018–25.

[44] W. G. Hoover, ‘Constant pressure equations of motion,’ Phys. Rev. A, 34 (1986), 2499–500.
[45] M. Parrinello and A. Rahman, ‘Polymorphic transitions in single crystals: a new molecular

dynamics method.,’ J. Appl. Phys., 52 (1981), 7182–90.
[46] P. S. Y. Cheung and J. G. Powles, ‘The properties of liquid nitrogen. IV. A computer simulation,’

Mol. Phys., 30 (1975), 921–49.
[47] D. Fincham, ‘More on rotational motion of linear molecules,’ CCP5 Quarterly, 12 (1984), 47–8.
[48] D. J. Evans, ‘On the representation of orientation space,’ Mol. Phys., 34 (1977), 317–25.
[49] D. J. Evans and S. Murad, ‘Singularity-free algorithm for molecular dynamics simulation of

rigid polyatomics,’ Mol. Phys., 34 (1977), 327–31.
[50] H. Goldstein, Classical Mechanics. Reading, Addison-Wesley, 1980.
[51] G. Ciccotti, M. Ferrario, and J. P. Ryckaert, ‘Molecular dynamics of rigid systems in cartesian

coordinates,’ Mol. Phys., 47 (1982), 1253–64.
[52] J. P. Ryckaert, ‘The method of constraints in molecular dynamics,’ in Molecular Dynamics

Simulation of Statistical Mechanical Systems (G. Ciccotti and W. G. Hoover, eds.), Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97. Amsterdam,
North-Holland, 1986, pp. 329–40.

[53] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, ‘Numerical integration of the cartesian equa-
tions of motion of a system with constraints: molecular dynamics of n-alkanes,’ J. Comput.
Phys., 23 (1977), 327–41.

[54] J. P. Ryckaert, ‘Special geometrical constraints in the molecular dynamics of chain molecules,’
Mol. Phys., 55 (1985), 549–56.

[55] J.-P. Hansen, ‘Molecular dynamics simulation of Coulomb systems,’ in Molecular Dynamics
Simulation of Statistical Mechanical Systems (G. Ciccotti and W. G. Hoover, eds.), Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97. Amsterdam,
North-Holland, 1986, pp. 89–119.

[56] S. W. De Leeuw, J. W. Perram, and E. R. Smith, ‘Simulation of electrostatic systems in periodic
boundary conditions. I. Lattice sums and dielectric constants,’ Proc. R. Soc. London, A373
(1980), 27–56.

262 Molecular dynamics simulations

[57] J. Barnes and P. Hut, ‘A hierarchical O(N log N) force-calculation algorithm,’ Nature, 324
(1986), 446–9.

[58] L. Hernquist, ‘Performance characteristics of tree codes,’ Astrophysi. J. Suppl., 64 (1987),
715–34.

[59] A. W. Appel, ‘An efficient program for many-body simulation,’ Siam. J. Sci. Stat. Comput., 6
(1985), 85–103.

[60] J. G. Jernigan, ‘Direct N-body simulations with a recursive center of mass reduction and regular-
ization,’ in Dynamics of Star Clusters (J. Goodman and P. Hut, eds.) IAU Symposium, vol. 113,
Dordrecht, Reidel, 1985, pp. 275–84.

[61] L. van Dommelen and E. A. Rundensteiner, ‘Fast, adaptive summation of point forces in the
two-dimensional Poisson equation,’ Siam. J. Sci. Stat. Comput., 83 (1989), 286–300.

[62] L. Greengard, ‘The numerical solution of the N-body problem,’ Comp. Phys., 4 (1990), 142–52.
[63] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems. Cambridge, MIT

Press, 1988.
[64] G. Ciccotti and J. P. Ryckaert, ‘Computer simulation of the generalized Brownian motion. I. The

scalar case,’ Mol. Phys., 40 (1980), 141–9.
[65] S. Toxvaerd, ‘Solution of the generalised Langevin equation,’ J. Chem. Phys., 82 (1985),

5658–62.
[66] F. J. Vesely and H. A. Posch, ‘Correlated motion of 2 particles in a fluid. 1. Stochastic equation

of motion,’ Mol. Phys., 64 (1988), 97–109.
[67] L. G. Nillson and J. A. Prado, ‘A time-saving algorithm for generalised Langevin-dynamics

simulations with arbitrary memory kernels,’ Mol. Phys., 71 (1990), 355–67.
[68] D. L. Ermak and J. A. McCammon, ‘Brownian dynamics with hydrodynamic interactions,’ J.

Chem. Phys., 69 (1978), 1352–60.
[69] P. J. Hoogerbrugge and J. M. V. A. Koelman, ‘Simulating microscopic hydrodynamic phenomena

with dissipative particle dynamics,’ Europhys. Lett., 19 (1992), 155–60.
[70] W. F. van Gunsteren and H. J. C. Berendsen, ‘Algorithms for Brownian dynamics,’ Mol. Phys.,

45 (1982), 637–47.
[71] R. Kubo, H. Ichimura, and T. Usui, Statistical Mechanics, An Advanced Course. Amsterdam,

North-Holland, 1965.
[72] M. Plischke and H. Bergersen, Equilibrium Statistical Physics. Englewood Cliffs, NJ, Prentice-

Hall, 1989.
[73] E. M. Gosling, I. R. McDonald, and K. Singer, ‘On the calculation by molecular dynamics of

the shear viscosity,’ Mol. Phys., 26 (1973), 1475–84.
[74] G. Ciccotti and G. Jacucci, ‘Direct computation of dynamical response by molecular dynamics:

the mobility of a charged Lennard–Jones particle,’ Phys. Rev. Lett., 35 (1975), 789–92.

9

Quantum molecular dynamics

9.1 Introduction

In the previous chapter we considered systems of interacting particles. They were
treated as classical particles for which the interaction potential is known. We had to
solve the classical equations of motion to simulate the behaviour of such a system at
some nonzero temperature. Had we added frictional forces, the system would have
evolved towards the ground state. In this chapter we discuss methods for simulating
interacting atoms and molecules using quantum mechanical calculations. In fact, we
consider the nuclei on a classical level but use quantum mechanics for the electronic
degrees of freedom. Again, we can use this approach either to simulate a system of
interacting particles at a finite temperature, or to find the ground state (minimum
energy) configurations of solids and of molecules.

In Chapters 4 to 6 we studied methods for solving the electronic structure of
molecular and solid state systems with a static configuration of nuclei (Born–
Oppenheimer approximation). Knowledge of the electronic structure includes
knowledge of the total energy. Therefore, by varying the positions of the nuc-
lei, we can study the dependence of the total energy on these positions. The energy
E(R1, R2, . . . , RN) as a function of the nuclear positions Ri is called the potential
surface. As a simple example, consider the hydrogen molecule. We assume that
the molecule is not rotating, so that the nuclear motion is a vibration along the
molecular axis. The only relevant parameter describing the relative positions of
the two nuclei is their separation X. The force between the nuclei is then given
by F = −∂E(X)/∂X (see Figure 9.1). These forces are usually parametrised and
the parameters are fixed by comparison with quantum mechanical calculations for
a few configurations, or by comparison with experimental results. This paramet-
rised form can then be used to calculate the motion of the nuclei on a classical
level, for example to find the equilibrium conformation of the molecule, which is
the configuration of nuclei that minimises the total energy. This is called the method
of force fields; it is often used by chemists.

263

264 Quantum molecular dynamics

E
ne

rg
y

(a
.u

.)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

X

–1.13

–1.125

–1.12

–1.115

–1.11

–1.105

–1.1

–1.095

–1.09

–1.085

–1.08

–1.075

Hartree – Fock data
parabola – best fit

Morse – best fit

Figure 9.1. The effective potential of the hydrogen nuclei in the hydrogen molecule
as a function of the separation X. A harmonic (parabolic) potential and a Morse
potential are fitted to the bottom of the well.

The parametrisation of the forces is often carried out for small deviations of
the configuration from the equilibrium conformation, so that the potential energy
can be approximated quite accurately by harmonic potentials, such as stretching,
bending, and torsional potentials, encountered in Section 8.6.1. The motion can
then be decomposed into normal modes, by defining new coordinates in terms of
which the system can be described as a collection of uncoupled harmonic oscil-
lators. This problem then has an analytic quantum mechanical solution, leading to
discretised energy levels which can be compared with experiment. So, although
the force field method treats the nuclear motion classically, we can obtain quantum
mechanical solutions for the nuclear motion from it (within a Born–Oppenheimer
approach).

In our example of the hydrogen molecule we can fit the bottom of the potential
well shown in Figure 9.1 by a harmonic potential. Since the well is rather asymmet-
ric, a more reliable fit is provided by the Morse potential, for which the spectrum is
also known analytically (see Problem A4). For the harmonic approximation κX2/2,
the angular frequency ω = √

κ/m and the spectral levels are given as �ω(n+1/2).
For the hydrogen molecule, the mass to be used is the reduced mass, which is
about half the proton mass (i.e. 918.8 electron masses if we neglect the mass of
the two electrons), and we find κ = 0.3850 (in atomic units) so that the frequency

9.1 Introduction 265

becomes νvibr = 13.64 × 1013 Hz, to be compared with the experimental value
νvibr = 12.48 × 1013Hz [1]. 1

The harmonic approximation works well for low energies. It is used for stretch,
bend and torsional energies; see also Section 8.6.1. For higher energies, anharmonic
terms can be included in the potentials – see the Morse potential in the hydrogen
example. For energies much higher than the spacing between the energy levels,
quantum effects do not affect physical properties and a fully classical description
is appropriate.

For interacting molecules the force field procedure becomes unfeasible because
we would have to calculate energies and variations in energies for all possible rel-
ative positions and orientations for pairs or sets of two and more molecules, which
becomes exceedingly tedious and (computer) time-consuming. Therefore, in these
systems, the intramolecular interactions are modelled by force fields and the inter-
molecular interactions by atomic pair-interactions as we have seen throughout the
previous chapter. Although this approach yields rather accurate results, in particu-
lar when the density is not too high, the use of these pair-potentials is not justified
for dense systems. Moreover, the energy differences between different atomic con-
formations are often very small, so that high accuracy is needed for predicting
equilibrium structures.

To achieve accuracy in these cases, it is necessary to calculate forces and energies
from quantum electronic structure calculations; if this is unfeasible for all pos-
sible configurations, we take the more economical approach of calculating forces
and energies only for those configurations which actually occur in the simulation.
We must therefore perform an electronic structure calculation at every molecular
dynamics time step, and derive the force on the nuclei from that calculation. The
word force is emphasised because the methods described in the first few chapters of
this book aimed at calculating the energies and not the forces. Of course, it would
be possible to derive the forces from the energies by studying the variations in the
latter with nuclear positions but that would require an exceedingly large number of
energy calculations. It is better therefore to try to find methods for calculating the
forces directly.

The energy of a system of electrons in its ground state ψG for a fixed configur-
ation of nuclei S = (R1, . . . , RM), where Rn is the position of the nth nucleus, is
given by2

E = 〈ψG|H(S)|ψG〉
〈ψG|ψG〉 . (9.1)

1 In atomic units, the unit of frequency is αc/a0 = 4.13414 × 1014 Hz; α is the fine structure constant.
2 We use the letter S in order to avoid confusion with R = (r1, . . . , rN).

266 Quantum molecular dynamics

The (classical) force on nucleus n is given as the negative gradient ∇n of the energy
with respect to the Rn:

Fn = −∇nE(S) = −∇n

[〈ψG|H(S)|ψG〉
〈ψG|ψG〉

]
. (9.2)

It should be noted that there is not only the explicit S-dependence in the
Hamiltonian, but the ground state is evaluated for the Hamiltonian with a particular
configuration S. Therefore the ground state also depends on S.

The Hellmann–Feynman theorem [2, 3], which we discussed for the single-
parameter case in Section 5.3, states that we can neglect this dependence: if ψG is
an eigenstate of the Hamiltonian H(S), we have

(〈ψG|ψG〉)2∇nE

= [〈(∇nψG)|H|ψG〉 + 〈ψG|(∇nH)|ψG〉 + 〈ψG|H|(∇nψG)〉
]〈ψG|ψG〉

− 〈ψG|H|ψG〉[〈(∇nψG)|ψG〉 + 〈ψG|(∇nψG)〉
]
, (9.3)

where we have omitted the S-dependence of the Hamiltonian. Except for the term
including 〈ψG|(∇nH)|ψG〉, all the terms on the right hand side cancel: this follows
directly from the fact that HψG = EGψG and from the fact that H is Hermitian. So
we are left with

∇nE = 〈ψG|(∇nH)|ψG〉
〈ψG|ψG〉 . (9.4)

In practice we do not know the exact ground state, but we have only a variational
approximation to it. Therefore, in actual calculations, the Hellmann–Feynman
theorem does not predict the actual forces exactly and the variation of the (approxim-
ated) ground state wave function should be taken into account as well. Nevertheless,
the Hellmann–Feynman theorem is used quite often for predicting ground state
configurations, because the inclusion of other contributions is cumbersome.

9.2 The molecular dynamics method

In principle, all the ingredients for a molecular dynamics simulation using forces
calculated from the quantum electronic structure are at our disposal. However, at
each step in the MD simulation, a full electronic structure calculation is required, so
the method consumes a lot of computer time. In 1985, Car and Parrinello proposed
a method in which not only the nuclear positions, but also the electronic states are
calculated using MD algorithms. This results in a description of the system in which
the electronic structure does not, in general, relax completely to the ground state of
the actual configuration of nuclei; however, the calculated electronic structure will
follow the exact one rather closely. We start the description of the Car–Parrinello

9.2 The molecular dynamics method 267

method by recalling the energy functionals of the Hartree–Fock and the density
functional theory (see Chapters 4 and 5).

The ground state Hartree–Fock wave function for N electrons can be written as
the Slater determinant

�G(R) = det[ψk(xi)] = 1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
...

ψ1(xN) ψ2(xN) · · · ψN (xN)

∣∣∣∣∣∣∣∣∣
, (9.5)

where the ψk are one-electron spin-orbitals; xi is the combined spin and orbital
coordinate of particle i. The spin-orbitals should satisfy the orthonormality
requirements

〈ψk|ψl〉 = δkl. (9.6)

The energy is given in terms of the ψk as

EHF =
∑

k

〈ψk|h|ψk〉 + 1

2

∑
kl

[〈ψkψl|g|ψkψl〉 − 〈ψkψl|g|ψlψk〉]. (9.7)

h is the one-electron Hamiltonian and g is the electron–electron Coulomb repulsion
(see Chapter 4). Minimisation of this expression with respect to the ψk subject to
the constraint (9.6) requires the Fock equation to be satisfied:

Fψk =
∑

l

	klψl (9.8)

with

Fψk =
[
−1

2
∇2 −

∑
n

Zn

|r − Rn|

]
ψk(x)+

N∑
l=1

∫
dx′ |ψl(x′)|2 1

|r − r′|ψk(x)

−
N∑

l=1

∫
dx′ ψ∗

l (x
′) 1

|r − r′|ψk(x′)ψl(x). (9.9)

After a unitary transformation of the set {ψk} (see Section 4.5.2 and Problem 4.7),
Eq. (9.8) transforms into

Fψk = εkψk . (9.10)

Using Fψk = δEHF/δψk, we can rewrite this as

δEHF

δψk(x)
= εkψk(x). (9.11)

The eigenvalues εk are the Fock levels; the energy can be calculated from these.

268 Quantum molecular dynamics

In density functional theory the energy can be written as a function of the ground
state density, which in turn is written in terms of the basis functions as

n(r) =
N∑

k=1

|ψk(r)|2, (9.12)

assuming that the states are ordered according to increasing energy. We have seen
already in Chapter 5 that there is no direct expression of the total energy as a
function of the density, as the form of the kinetic energy functional of the density
is unknown. The energy can however be obtained indirectly via the solutions ψk of
the Kohn–Sham equations:

−1

2
∇2ψk(r)+ Veff(r)ψk(r) = εkψk(r) (9.13)

where

Veff(r) = Vion(r)+
∫

d3r′ n(r′)
|r − r′| + Vxc[n](r). (9.14)

The exchange correlation potential Vxc on the right hand side is the derivative of
the exchange correlation energy Exc with respect to n(r).

In terms of the ψk , the total DFT energy is written as

EDFT = −
∑

k

1

2
〈ψk|∇2|ψk〉 +

∑
k

〈ψk|Vion|ψk〉

+ 1

2

∫
d3r d3r′ n(r)n(r′)

|r − r′| + Exc[n](r). (9.15)

The Kohn–Sham equations can be written as

δEDFT

δψk(r)
= εkψk(r), (9.16)

i.e. the same form as (9.11).
Summarising, the total energy, which is the electronic energy (either EDFT or

EHF) plus the electrostatic energy of the nuclei, can be written as a functional
depending on the orbitals ψk and of the nuclear coordinates, collected together in
the variable S:

Etot = Etot({ψk}, S), (9.17)

where the orbitals ψk form an orthonormal set. In both the Hartree–Fock and the
density functional theory approach we minimise this energy with respect to the
orbitals ψk, according to the variational principle. Usually, a finite basis set {χr} is
used, in terms of which the orbitals are given as

ψk(r) =
∑

r

Crkχr(r), (9.18)

9.2 The molecular dynamics method 269

so that the energy can be written in terms of the Crk and S:

Etot = Etot({Crk}, S). (9.19)

As the basis functions are often centred on the atomic nuclei, they may contain an
explicit S-dependence. Car and Parrinello used the form (9.17) (or (9.19)) with the
constraint (9.6) as a starting point for finding the equilibrium conformation (i.e.
the minimal energy conformation) by locating the minimum of the total energy as
a function of the ψk (or the Crk) and the nuclear coordinates S. This means that
the electronic structure does not have to be calculated exactly for each conforma-
tion of nuclei, as both the electronic orbitals and the nuclear positions are varied
simultaneously in order to locate the minimum.

The minimisation problem of the energy can now be considered as an abstract
numerical problem, and any minimisation algorithm can in principle be applied.
One possible approach is the simulated annealing method [4], which requires only
the energy to be calculated – no force calculations are needed. However, Car and
Parrinello assigned, aside from the time dependence of the nuclear coordinates,
a fictitious time dependence to the electronic wave functions (or, in a linear vari-
ational calculation, the Crk), and constructed a dynamical Lagrangian including the
electronic wave functions and the nuclear coordinate S with their time derivatives
as the variables. This leads to a classical mechanics problem with the energy (9.17)
acting as a potential. If a friction term is then added to the equations of motion
of this classical system, the degrees of freedom will come to rest after some time,
with values corresponding to the minimum of the classical potential, which is the
energy of the quantum system at the equilibrium configuration of the nuclei. It is
also possible to put the frictional force equal to zero in order to simulate the system
at a nonzero temperature.

The Lagrangian of the classical system reads

L({ψk}, S) = µ

2

∑
k

ψ̇2
k +

∑
n

Mn

2
Ṙ2

n − Etot(ψk , S)+
∑

kl

	kl〈ψk|ψl〉. (9.20)

µ is some small mass (see below), and Mn is the actual mass of the nth nucleus, with
position Rn. The last term on the right hand side is necessary to ensure orthonor-
mality of the ψk; the 	kl must always be calculated from this requirement. Car
and Parrinello suggested that this Lagrangian can be used not only for finding the
minimum of the total energy, but also for performing real molecular dynamics
simulations at finite temperature. It will be clear that in general, when the nuclei
move, the method might not have produced the minimal energy of the electrons
before the next nuclear displacement: the calculated electronic structure will ‘lag
behind’ the nuclear motion. Although this retardation effect will occur in reality
(the Born–Oppenheimer approximation neglects the fact that the electrons do not

270 Quantum molecular dynamics

have the opportunity to adapt themselves to the changing nuclear configuration at
any time), there is no reason to believe that the retardation effect implied by the
Car–Parrinello Lagrangian is related to real physical behaviour.

The details of the kinetic energy of the electrons do not matter: what matters
is the fact that the mass µ used in this kinetic energy should be small enough
to enable the electronic wave function to adapt reasonably well to the changing
nuclear configurations. This mass should therefore be much smaller than the nuclear
masses. The choice of the massµ is determined by a trade-off between accuracy and
efficiency. If we include friction in the equations of motion, the particular values
of neither electronic nor nuclear masses matter, as we shall always end up with
zero kinetic energy, at the minimum of the total energy of the system (which is
the potential of the Car–Parrinello Lagrangian), although different choices of these
masses lead to different rates of convergence towards the energy minimum.

Let us write down the equations of motion for the Car–Parrinello Lagrangian. We
must take the orthogonality constraint (9.6) into account using Lagrange parameters
	kl(t). The Euler–Lagrange equations now read

µψ̈k = −∂Etot

∂ψk
+ 2

∑
l

	klψl(r) (9.21)

and

MnR̈n = −∂Etot

∂Rn
+
∑

kl

	kl
∂〈ψk|ψl〉
∂Rn

. (9.22)

The last term on the right hand side of the last equation vanishes if the basis functions
do not depend on the nuclear positions S. As we know the total energy in both DFT
and HF in terms of the orbitalsψk and Rn, the energy derivatives occurring in these
equations can be evaluated – see the next section.

Instead of assigning a kinetic energy to the orbitals ψk , leading to Eq. (9.21), we
can assign a kinetic energy to the expansion coefficients Crk . In that case, Eq. (9.21)
becomes

µC̈rk = −∂Etot

∂Crk
+ 2

∑
l

	kl

∑
s

SrsCsl. (9.23)

If µ is allowed to depend on r and k, this equation can be made equivalent to (9.21)
but, as argued above, the details of the kinetic energy do not matter that much
as long as the electronic degrees of freedom can adapt themselves to the nuclear
positions.

If a frictional term is added to the equations of motion, the solution will become
stationary after some time, and the left hand side vanishes. Equation (9.21) then
becomes an equation similar to the Fock and the Kohn–Sham equations ((9.11) and
(9.16)), except for the eigenvalues εk being replaced by the matrix elements 	kl.
This is precisely the same difference as we have encountered in the diagonalisation

9.2 The molecular dynamics method 271

of the Fock matrix (see Section 4.5.2 and above): for ψ̈k = 0, Eq. (9.21) reduces to
an eigenvalue equation after an appropriate unitary transformation of the set {ψk}
and of the Lagrange parameters 	kl.

The values of the Lagrange parameters 	kl depend on time: they must be cal-
culated at each MD step such that they guarantee the orthonormality constraint
(9.6). This calculational procedure is related to the particular integration scheme
used (the Verlet algorithm in our case). In Section 8.6.2 we have encountered this
problem already. Car and Parrinello have used the iterative SHAKE algorithm of
Ryckaert et al. [5] (see Section 8.6.3) to solve for the	kl. We return to the problem
of calculating the 	kl in more detail below.

If the nuclear equilibrium configuration is searched for, starting from an initial
configuration which might be far off the equilibrium, we are likely to end up in
a local energy minimum instead of the global minimum. In this case, we might
use the simulated annealing method [4] which allows the system to hop over local
energy barriers to arrive at the global minimum.

It is interesting to compare the equations obtained here with the time-dependent
Hartree–Fock (TDHF) equations. These are obtained from a variational treatment
of the time-dependent Schrödinger equation using Slater determinants constructed
from time-dependent spin-orbitals. The time-dependent Schrödinger equation can
be derived as the stationarity condition of the functional

S =
∫

dt
∫

dX �∗(X, t)

(
i�
∂

∂t
− H

)
�(X, t) (9.24)

with X = (x1, . . . , xN). By taking for �(R, t) a Slater determinant with time-
dependent orbitals ψk(x, t), the stationarity condition leads to the following
equation for the spin-orbitals [6]:

i�
∂

∂t
ψk(x, t) = Fψk(x, t). (9.25)

The TDHF equations lead to a conservation law for the overlap matrix Skl(t) =
〈ψk(t)|ψl(t)〉. Hence, if we choose an orthonormal set to start off with at t = 0, the
set will remain orthonormal in the course of time.

In comparison with the MD equation of motion for the electrons, Eq. (9.21),
we see that the second derivative with respect to time is replaced by a first order
one, and that there is no Lagrange parameter as a result of the overlap matrix being
conserved.

Time-dependent Hartree–Fock is used for studying the quantum dynamics of
scattering processes, for example in nuclear physics and in studies of scattering of
electrons from atoms.

272 Quantum molecular dynamics

9.3 An example: quantum molecular dynamics for the hydrogen molecule

In this subsection we work out an application of the Car–Parrinello method to the
hydrogen molecule in some detail. Our example is based on the Hartree–Fock calcu-
lation of the hydrogen molecule considered in Chapter 4, in particular Problem 4.9.
There are two spin-orbitals with opposite spin and the same orbital part. Therefore,
the wave function is completely specified by the form of this orbital. We use the
GTO basis set of Problem 4.9 with eight basis s-functions χr , four on each atom.

The molecular dynamics method can be restricted to the electronic structure part
of the total energy, keeping the nuclear positions fixed. We do this first; later we
shall extend the method to include nuclear displacements.

9.3.1 The electronic structure

The energy can be written as

Etot = 2
∑

rs

CrhrsCs +
∑
rstu

CrCsCtCu〈rt|g|su〉 + 1

X
. (9.26)

Note that there is no index k as the two electrons occupy only one orbital. The Fock
matrix F is given by

Frs = hrs +
∑

tu

CtCu〈rt|g|su〉 (9.27)

(all sums over indices r, s, t, u run over the basis states, so in our case from 1 to 8).
The normalisation condition for the orbital is∑

rs

CrSrsCs = 1. (9.28)

Therefore, the equation of motion for the Cr (without friction) is given by
µ

4
C̈r = −

∑
s

hrsCs −
∑
stu

CsCtCu〈rt|g|su〉 − λ
∑

s

SrsCs

= −
∑

s

(Frs + λSrs)Cs. (9.29)

We shall use the Verlet algorithm for solving the equations of motion. In this
form, they read for µ = 4:

Cr(t + h) = 2Cr(t)− Cr(t − h)− h2
∑

s

(Frs + λSrs)Cs(t). (9.30)

Suppose we know the Cr(t) and the Cr(t − h). The solution to the equation of
motion proceeds in two stages. First we calculate

C̃r(t + h) = 2Cr(t)− Cr(t − h)− h2
∑

s

FrsCs(t). (9.31)

9.3 An example: quantum molecular dynamics for the hydrogen molecule 273

5 10 15 20 25 30 35 40 45

E
ne

rg
y

–2.1

–2.05

–2

–1.95

–1.9

–1.85

–1.8

0 50

Time steps

Figure 9.2. Evolution of the energy in a Car–Parrinello simulation of the electronic
structure of the hydrogen molecule with separation X = 1 between the nuclei, with
frictional forces included.

Now we must add an amount −λSrsCs(t) to this solution, where λ is determined
by the requirement that the normalisation condition (9.28) holds:∑

rs

C̃r(t + h)SrsC̃s(t + h)− 2λ
∑
rst

SrsC̃r(t + h)SrtCs(t)

+ λ2
∑
rstu

SrsCs(t)SrtStuCu(t) = 1. (9.32)

This is a quadratic equation in λ, of which the lowest positive root is needed. The
Verlet solution of the equation of motion is now fully defined.

Modifying the HF program of Chapter 4 to calculate the electronic structure is
relatively easy, as the Fock matrix and the overlap matrix are calculated already in
this program.

programming exercise

Take the program of Problem 4.9 and replace the self-consistency iteration by
a molecular dynamics algorithm with friction, using the Verlet algorithm.

A frictional force −γ Ċr is included using the algorithm given in
Section 8.4.1 in order to let the system evolve towards the ground state.

Check A reasonable value for the time step is 0.1 (in atomic units) and for the
frictional constant γ the value 1 (in atomic units) is chosen. In Figure 9.2, the
energy as a function of the ‘time’ is shown. It is seen that for a nuclear separation

274 Quantum molecular dynamics

of X = 1 the energy tends to −2.078 547 6 a.u., the same value as was found in
Problem 4.9.

9.3.2 The nuclear motion

In this section we describe the inclusion of the nuclear forces in the equations of
motion and apply this to the vibration of the hydrogen molecule. Essentially, what
we have to do is to calculate the derivative of the total energy with respect to the
nuclear separation X. The results obtained using the Car–Parrinello HF method
are exactly equivalent to those obtained by the force field method as we have a
pair potential only; we describe it here only to illustrate the method. There are
two contributions to this derivative. First of all, the energy contains a Coulomb
interaction 1/X between the two nuclei and the electron Hamiltonian contains
Coulomb attractions between the electrons and the nuclei, which depend on X . There
is, however, yet another contribution from the dependence of the basis functions
χr on X: remember the basis functions are centred on the nuclei, so varying the
positions of the latter changes the matrix elements of the Fock matrix and the
overlap matrix. In the following we shall not distinguish explicitly between all
these contributions, but it is useful to know that contributions to the forces due
to the variation of the basis functions with the nuclear positions are called Pulay
forces [7]. If the basis functions do not depend on the nuclear coordinates, as is
the case with plane wave basis sets, which are often used in conjunction with
pseudopotentials, Pulay forces are absent. We shall now calculate the derivatives
of the matrix elements of the Fock matrix and the overlap matrix with respect to
the nuclear separation in the hydrogen molecule.

Expressions for the various matrix elements were given in Section 4.8. We use
notations similar to those used in that section. The overlap matrix was given as

Sα,A;β,B = 〈1s, α, A|1s,β, B〉 =
(

π

α + β

)3/2

exp

[
− αβ

α + β
|RA − RB|2

]
, (9.33)

and we see that if both basis functions are centred on the same nucleus (A = B), this
matrix element does not depend on X. For two basis functions centred on different
nuclei, |RA − RB| = X, and we find

d

dX
〈1s,α, A|1s,β, B〉 = −2

αβ

α + β
XSα,A;β,B. (9.34)

The matrix elements of the kinetic energy operator for two orbitals centred on
the same atom are again independent of X, and for the elements between basis
functions on different nuclei we have, using σ = αβ/(α + β) (see Section 4.8):

〈1s,α, A

∣∣∣∣−1

2
∇2
∣∣∣∣ 1s,β, B〉 = [3σ − 2σ 2X2]Sα,A;β,B. (9.35)

9.3 An example: quantum molecular dynamics for the hydrogen molecule 275

Taking the derivative with respect to X we find

d

dX
〈1s, α, A

∣∣∣∣−1

2
∇2
∣∣∣∣ 1s,β, B〉

= −4σ 2XSα,A;β,B + [3σ − 2σ 2X2] d

dX
Sα,A;β,B. (9.36)

The Coulomb matrix element is given by

〈1s,α, A

∣∣∣∣∣
∑

c

1

rc

∣∣∣∣∣ 1s, β, B〉 = θ
∑

c

Sα,A;β,BF0(tc) (9.37)

with θ = 2
√
(α + β)/π , tc = (α + β)(PC)2 where P is the point

RP = αRA + βRB

α + β
, (9.38)

PQ = RP − RQ, and C is the position of the nucleus. The sum
∑

c is over the two
nuclei. F0 was given in Section 4.8 – its derivative is given by

F ′
0(t) = e−t − F0(t)

2t
(9.39)

for t �= 0, and F ′
0(0) = −1/3. Taking the derivative, we obtain for two basis

functions centred on the same nucleus:

d

dX
〈1s,α, A

∣∣∣∣∣
∑

c

1

rc

∣∣∣∣∣ 1s,β, B〉 = 2θSα,A;β,BF ′
0(t)X(α + β) (9.40)

with t = (α + β)X.
For basis functions centred on different nuclei, we have

d

dX
〈1s,α, A

∣∣∣∣∣
∑

c

1

rc

∣∣∣∣∣ 1s, β, B〉 = θ
d

dX
(Sα,A;β,B)

∑
c

[F0(t1)+ F0(t2)]

+ 2
θ

α + β
Sα,A;β,B[F ′

0(t1)α
2 + F ′

0(t2)β
2]X. (9.41)

where

t1 = α2X2

α + β
; (9.42a)

t2 = β2X2

α + β
. (9.42b)

Finally the four-electron matrix element is given by

〈α, A; γ , C|g|β, B; δ, D〉 = ρSα,A;β,BSγ ,C;δ,DF0(t) (9.43)

276 Quantum molecular dynamics

with

t = (α + β)(γ + δ)

α + β + γ + δ
(PQ)2, (9.44)

with RP as given above and

RQ = γRC + δRD

γ + δ
, (9.45)

and

ρ = 2

√
(α + β)(γ + δ)

π(α + β + γ + δ)
. (9.46)

From this form it follows directly that

d

dX
〈α, A; γ , C|g|β, B; δ, D〉 = ρ

(
d

dX
Sα,A;β,B

)
Sγ ,C;δ,DF0(t)

+ ρSα,A;β,B

(
d

dX
Sγ ,C;δ,D

)
F0(t)

+ ρSα,A;β,BSγ ,C;δ,DF ′
0(t)

(α + β)(γ + δ)

α + β + γ + δ

2(PQ)2

X
(9.47)

where we have used the fact that (PQ) is proportional to X in order to obtain the
last term on the right hand side.

Using these matrix elements, it is possible to construct the derivatives of the
Fock matrix and of the overlap matrix with respect to X, and this gives the force on
X which is needed in the Verlet algorithm. Note that the nuclear kinetic energy is
given by

Ekin,nucl = Mn

2

[(
Ẋ

2

)2

+
(

Ẋ

2

)2
]

= Mn

4
Ẋ2. (9.48)

Therefore, in the equation of motion for X , half the proton mass (that is, the reduced
mass of the two nuclei) has to be used.

Only the ratio of the masses occurring in the electronic and nuclear kinetic energy
is relevant – changing the time step h corresponds to an overall rescaling of the
masses. In fact, because the mass occurs in the equation of motion in combination
with an acceleration (or, in the kinetic energy, with a velocity squared), rescaling
the mass by a factor b and time with a factor

√
b does not change the calculated

motion.

programming exercise

Extend the program of the previous subsection to include the nuclear motion.

9.3 An example: quantum molecular dynamics for the hydrogen molecule 277

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

0 50 100 150 200 250 300

X

Time

Figure 9.3. The change of the separation X between the nuclei of a hydrogen
molecule as a function of time. The number of nuclear integration steps is shown
along the X-axis. The nuclear integration step size is 4.3 (in atomic units). The
integration step for the electrons was 0.1. Twelve thousand electron integration
steps were carried out. The electrons experience a friction with damping constant
γ = 1, and the nuclei are damped with a friction constant of 5.

Check 1 Take the nuclear mass e.g. 1000 times larger than the electron mass.
The nuclei will move very slowly in comparison with the electrons because they
are so much heavier. If friction is included, the nuclei should end up with zero
velocity at their equilibrium spacing, which is at X = 1.3881a0 (within the HF
approximation and using exclusively s-basis functions). This is to be compared
with the experimental value of 1.401a0. The behaviour of X as a function of time
is shown in Figure 9.3.

Check 2 If friction is not included, the nuclei will oscillate around their equilib-
rium separation. Use 1836.15 for the proton mass. The frequency for an initial
separation of 1.35 Bohr radii is found to be 13.5× 1013 Hz, to be compared with
the value 13.64 × 1013 Hz obtained above from fitting a parabola to the bottom
of the effective potential well in Figure 9.1, and with the experimental value,
which is 12.48×1013 Hz. The parabola was characterised by a ‘spring constant’
κ = 0.385. The behaviour of X as a function of time is shown in Figure 9.4.
Check that the results in Figure 9.4 comply with this value (note that the time
step in this figure is 4.3 in reduced units).

It is possible and advisable to use fewer integration steps for the nuclear equation
of motion than for the electronic one: the nuclei move much more slowly than the

278 Quantum molecular dynamics

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

0 50 100 150 200 250 300

X

Time

Figure 9.4. The change of the separation X between the nuclei of a hydrogen
molecule as a function of time. The number of nuclear integration steps is shown
along the X-axis. The nuclear integration step size is 4.3 (in atomic units). The
integration step for the electrons was 0.1. Twelve thousand electron integration
steps were carried out. The electrons experience a friction with damping constant
γ = 1 during the first 4000 steps; the nuclei experience no friction.

electrons, and a nuclear displacement is computationally expensive because the
overlap, Hamilton and Fock matrices have to be calculated again. As the nuclei
are moving much more slowly than the electrons this does not affect the overall
accuracy significantly, provided the number of electronic integration steps carried
out between two nuclear displacements is smaller than O(√Mn/µ) (see also above).

9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques

In the previous sections, we have discussed the ‘bare-bones’ Car–Parrinello method
and applied it to a simple system. There is much more to it – quantum molecu-
lar dynamics is still a very active field within computational condensed matter
research – and the interested reader is referred to the review papers by Payne et al.
[8], and Marx and Hutter [9] for details. In this section we describe some elements
of the Car–Parrinello method in more detail, and briefly describe a variant of it,
using conjugate gradients (see Appendix A4) for minimising the electronic energy.

9.4.1 Orthogonalisation of the electronic orbitals

The orthogonalisation of the electronic orbitals is maintained through the Lagrange
multipliers 	kl, whose values therefore vary with time. The procedure to calculate

9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques 279

these values depends on the particular integration algorithm used, which is usu-
ally the Verlet algorithm. In the previous section you have seen how this is done
in the case of one orbital, where only the normalisation matters – for more orbitals,
understanding the different procedures is quite subtle.

In the following we shall use the notation

ε =
∑

k

〈ψk|H|ψk〉 (9.49)

for the total energy for a set of orthonormal orbitals ψk . H stands for the Fock
matrix in HF, and in DFT it is the Kohn–Sham Hamiltonian. Let us write down the
Verlet equations of motion for the electronic orbitals:

ψk(t + h) = 2ψk(t)− ψk(t − h)− 2h2

µ
(Hψk −

∑
l

	klψl). (9.50)

The – as yet unknown – multipliers 	kl are symmetric, 	kl = 	lk , and therefore
represent N(N +1)/2 independent values, which are determined by the N(N +1)/2
orthonormality conditions. Hence the Lagrange multipliers are uniquely defined.
It might therefore be surprising that several different orthogonalisation algorithms
exist [8,10]. The reason is that a unitary transformation of the set of orbitals leaves
the set orthonormal: the set {ψ ′

k} defined by

ψ ′
k =

∑
l

Uklψl (9.51)

is orthonormal. Moreover, a unitary transformation leaves the charge density
unchanged – remember the DFT energy depends on the density and not on the
individual orbitals. Also, the Slater determinants forming the basis functions in the
Hartree–Fock theory are invariant under unitary transformations (see Problem 4.7).
It should be noted that such a transformation of the set ψk is accompanied by a
similarity transform of the Lagrange parameters:

	′
kl =

∑
mn

U†
km	mnUnl (9.52)

as can be verified directly from the equation of motion (9.21). Different orthonorm-
alisation algorithms result in sets of orbitals which span the same space of functions
but which are slightly rotated with respect to each other.

Such a rotation may have a tremendous effect on the performance of the Verlet
algorithm. To see this, consider a permutation of the orbitals (which is a special
case of a unitary transformation), carried out between two time steps. This per-
mutation does not affect the density but it may have a disastrous effect on the
integration of the equations of motion: the (fictitious) velocities of the permuted
orbitals increase suddenly to values of O(h−1), because the permutation disrupts

280 Quantum molecular dynamics

the smooth evolution of the orbitals! However, if the rotation is always close to the
unit transformation,

U = 1 + h2A (9.53)

where A is a Hermitian transformation of order one, varying smoothly with time,
the Verlet algorithm will still work: apart from the motion governed by the equation
of motion, the algorithm might induce some extra forces which cause the orbitals to
rotate smoothly in Hilbert space, and this latter motion can be dealt with perfectly
by the Verlet algorithm. It is difficult to see whether orthogonalisation algorithms
satisfy these requirements and it is therefore easiest to construct the algorithm such
that it is equivalent to the unambiguous time evolution resulting from the Verlet
algorithm (without extra rotation) to a precision of at least order h4, which is the
overall precision of the Verlet algorithm.

A method which is based on the Verlet algorithm and which solves the 	kl in
(9.50) by the orthogonality requirements is the iterative algorithm called SHAKE
by Ryckaert et al. [5], which was mentioned in Section 8.6.3. This algorithm was
used in the original work of Car and Parrinello [11]. It is straightforward and does
not introduce rotations of the set of orbitals. Moreover, it orthogonalises the states to
arbitrary precision (depending on the number of iterations performed). For details
we refer to the cited literature.

Most other methods first predict the form of the (orthonormal)ψk at the next time
step with some precision and then perform an additional orthonormalisation of these
predicted orbitals by constructing orthonormal linear combinations of them. The
idea behind this is that if the prediction is accurate, only a few orthonormalisation
iterations are needed. As the Verlet algorithm prescribes an orthonormalisation by
mixing in the ψk(t) through the Lagrange multipliers (see Eq. (9.50)), and not the
ψk(t + h), such a final re-orthonormalisation can only be justified if the changes
involved are of order h4 which is the overall accuracy of the Verlet algorithm for
a single step. Therefore these algorithms must first predict the new values to order
O(h4) and the re-orthonormalisation should yield the new states lying close to the
old states. Note that after each step orthonormality is of then satisfied to machine
precision whereas the error in the integration algorithm is of order h4.

Let us now consider one such algorithm in detail. Over a time step h, the orbitals
ψk shift by an amount of order h owing to the fact that they have a velocity. The
acceleration, which is caused by the force due to the derivative of the total energy
and by the force due to the Lagrange multiplier terms, then gives an additional shift
of order h2. The Hamiltonian force term occurring in the Car–Parrinello equations
of motion is given by −Hψk . First we neglect this force term for simplicity and
find Lagrange multipliers which guarantee orthonormality in the absence of forces.

9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques 281

The equation of motion then reads

µψ̈k =
∑

l

	klψl (9.54)

and the second derivative of the constraint equations gives

〈ψ̈k|ψl〉 + 〈ψk|ψ̈l〉 + 2〈ψ̇k|ψ̇l〉 = 0, (9.55)

so that, using the orthonormality of the orbitals, we find

	kl = −µ〈ψ̇k|ψ̇l〉. (9.56)

Of course we do not know the exact time derivative of the wave function, but we
can use the Taylor expansion

ψ̇k(t) = ψk(t)− ψk(t − h)

h
+ h

2
ψ̈k(t)+ O(h2), (9.57)

and take for the approximate time derivative of the wave function at time t:

˙̃
ψk(t) = ψk(t)− ψk(t − h)

h
. (9.58)

From the time derivative of the constraint equation it follows that〈
dψk

dt

∣∣∣∣ψl

〉
= 0, all k and l (9.59)

and using this result, it is easy to show by a Taylor expansion of the ψk(t − h) that

〈 ˙̃
ψk(t)| ˙̃

ψl(t)〉 = 〈ψ̇k(t)|ψ̇l(t)〉 + O(h2). (9.60)

As the Lagrange multipliers occur in the Verlet algorithm with a factor h2 in front
of it, the accuracy of order h2 with which we obtain their values by using this
procedure is sufficient (that is, O(h4)).

Next we include the Hamiltonian force −Hψk into the problem. A similar ana-
lysis as above (Eqs. (9.54–9.56)) leads to the following equation for the Lagrange
multipliers:

	kl = 2〈ψk|H|ψl〉 − µ〈ψ̇k|ψ̇l〉. (9.61)

The term 〈ψk|H|ψl〉 can easily be calculated in the program. If we use these Lag-
range parameters in the Verlet algorithm we obtain a set of orbitals which is accurate
to order h4 and is therefore in particular orthonormal to order h4. Next we must
apply an orthonormalisation algorithm which leaves the orthonormal set close to
the near-orthonormal one. One possibility is an iterative algorithm used by Car and
Parrinello [12]:

ψ ′
k = ψk − 1

2

∑
l �=k

〈ψl|ψk〉ψl (9.62)

282 Quantum molecular dynamics

which is repeated until the orbitals do not change any more. By inspection of this
algorithm it is seen that if the orbitals are orthonormal up to order h4, they will
change to an extent within that order over a time step. The same holds for the
Gram–Schmidt orthonormalisation, which is given by the algorithm

ψ ′
k = ψk −

∑
l<k

〈ψl|ψk〉ψl. (9.63)

In contrast to the previous algorithm, the Gram–Schmidt algorithm depends on
the way in which the orbitals are ordered. In particular, the orbital which we take
as the first in the Gram–Schmidt process remains unchanged. It is clear from the
foregoing analysis that this does not really matter if the states are already orthogonal
to order h4.

Another possible way to orthogonalise the orbitals is to calculate the Lagrange
parameters such that the final orbitals will be orthonormal. For example, we first
calculate the new orbitals without taking the Lagrange multipliers into account:

|ψ̃k(t + h)〉 = 2|ψk(t)〉 − |ψk(t − h)〉 − 2h2

µ
H|ψk(t)〉, (9.64)

and then we calculate the Lagrange parameters Xij such that the orbitals

|ψk(t + h)〉 = |ψ̃k(t + h)〉 +
∑

l

Xkl|ψl(t)〉 (9.65)

form an orthonormal set. Obviously, the Xkl are related to the 	kl by

Xkl = 2h2

µ
	kl. (9.66)

The parameters Xij should satisfy a matrix equation which can conveniently
be formulated after introducing the matrices Akl = 〈ψ̃k(t + h)|ψ̃l(t + h)〉 and
Bkl = 〈ψk(t)|ψ̃l(t + h)〉 as:

XX† + XB + B†X† = I − A. (9.67)

This can be solved iteratively by the straightforward reformulation

X(n+1) = 1
2 [I − A + X(n)(I − B)+ (I − B†)X(n) − X(n)X(n)†]. (9.68)

As an initial guess, we take X = 1
2 (I − A), which is close to the first guess for	kl

found above.
Summarising the integration algorithm so far:

We have |ψk(t)〉 and |ψk(t − h)〉.
Find | ˙̃

ψk(t)〉 = (|ψk(t)〉 − |ψk(t − h)〉)/h.

9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques 283

Now we may proceed in two ways:

(i) Calculate as a first guess 	kl = 2〈ψk(t)|H|ψl(t)〉 − µ〈 ˙̃
ψk(t)| ˙̃

ψl(t)〉 and
calculate |ψ(t + h)〉 by the algorithm (9.50). Then refine the solution thus
obtained by orthonormalisation.

(ii) Calculate the new solution by the algorithm (9.50) without the constraint
term. Then calculate the Lagrange parameters Xij by the above algorithm.
The constraint term is then added to the solution.

It is possible to turn the Verlet algorithm into a velocity Verlet form. In that case,
not only the new orbitals are orthonormalised, but also the constraint 〈ψ̇k(t)|ψl(t)〉
is satisfied rigorously at all times. The algorithm requires a bit more work and
storage. Its advantage is that it can be extended more easily within a Nosé–Hoover
thermostat scheme – for details see Refs. [9, 13]. We give the algorithm here for
completeness:

| ˙̃
ψk(t + h)〉 = |ψ̇k(t)〉 + h

µ
H|ψk(t)〉; (9.69a)

|ψ̃k(t + h)〉 = |ψk(t)〉 + h| ˙̃
ψk(t + h)〉; (9.69b)

|ψk(t + h)〉 = |ψ̃k(t + h)〉 +
∑

ij

Xij|ψk(t)〉; (9.69c)

|ψ̇ ′
k(t + h)〉 = | ˙̃

ψk(t + h)〉 + h

µ
H|ψk(t + h)〉; (9.69d)

|ψ̇k(t + h)〉 = |ψ̇ ′
k(t + h)〉 +

∑
ij

Yij|ψk(t + h)〉. (9.69e)

The matrix Xij is the same as used in the standard Verlet procedure above; the matrix
Yij is simply calculated in terms of the matrix Ckl = 〈ψk(t + h)|ψ̇ ′

l (t + h)〉 as

Ykl = −Ckl + C†
kl

2
. (9.70)

If we include friction in the equations of motion, we are allowed more freedom,
as the only requirement is that the orbits will become stationary by some damping
mechanism. In this case, one can take the 	kl to be diagonal:

	kl = εkδkl (9.71)

and the equation of motion for the stationary state leads directly to

εk = 〈ψk|H|ψk〉, (9.72)

and this form of the Lagrange parameters is then used throughout the simulation, that
is, even when if the orbitals move. However, this form of the Lagrange multipliers

284 Quantum molecular dynamics

does not preserve orthonormality if we are not at the energy minimum; therefore,
in the simulation, we use these values for the εk and perform a Gram–Schmidt
orthonormalisation afterwards in order to prevent the orbitals all evolving to the
ground state of the Kohn–Sham or Fock equation. The orbitals will then tend to the
eigenvalues of the Hamiltonian, as these are the stationary solutions of the equations
of motion.

9.4.2 The conjugate gradient method

The Car–Parrinello technique is based upon three ideas. First, the forces are cal-
culated during the simulation, and only for those nuclear configurations which are
actually visited. Second, the electronic structure can be determined by minimising
the energy using an arbitrary minimisation method, that is, not necessarily by a self-
consistency iteration as in Chapters 4 and 5. Car and Parrinello choose the molecular
dynamics method for this purpose. Finally, we might pay a price in accuracy by not
requiring the electrons to relax to the minimum energy state before each nuclear
displacement.

In the conjugate gradients approach, the treatment of the electronic degrees of
freedom differs from that in MD simulation methods. The idea is that if we aban-
don the usual self-consistency iterations which in the conventional HF and DFT
approaches lead to the minimum of the electronic energy, we might as well apply
any efficient minimisation method to the electronic energy – for example the con-
jugate gradients method – see Section A4. Using the conjugate gradients method
enables us to keep the electronic degrees of freedom much closer to the ground
state than in the Car–Parrinello method.

The conjugate gradients technique enables us to calculate a local minimum of an
arbitrary smooth function depending on a number of variables. In fact, in our case
we must perform the minimisation with a constraint. That is, we must minimise the
energy, E[n], as a function of the orbitals, ψk , using the gradient of the function

E[n] −
∑

kl

	kl〈ψk|ψl〉, (9.73)

where	kl must be such that orthonormalisation is always ensured. Using the nota-
tion of the previous subsection, ∂E/∂ψk = H|ψk〉, we find that the orthonormality
condition leads to

	kl = 〈ψk|H|ψl〉; (9.74)

see Exercise 9.3. In the conjugate gradients method we need the steepest descent
direction, which is the opposite of the gradient of the function (9.73). Note that H
depends on the orbitals ψk . Neglecting this dependence, we obtain for the steepest

9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques 285

descent direction:
ζk = −2

[
Hψk −

∑
l

〈ψk|H|ψl〉ψk

]
. (9.75)

In a method proposed by Stich et al. [14], this approximation is used in the line
minimisations. Gillan [15] has devised a conjugate gradients method in which this
approximation is not made. Finally, Teter et al. [16] have proposed a particularly
efficient method in which only one state ψk is updated at a time. See Problems 9.3
and 9.5 for examples.

The conjugate gradients method is known to converge slowly for this problem.
The reason is that the steepest descent direction, which should be close to the
difference between the current orbitals {ψk} and those that minimise the energy,
{ψ̃k}, may not have this property. To see what goes wrong, let us expand δψk =
ψk − ψ̃k in the eigenstates ξp of the Hamiltonian:

δψk =
∑

p

αpkξp. (9.76)

Note that whereas the indices k and l in the previous discussion run only over the
occupied electronic states, the index p runs over all the eigenstates of the variational
Hamiltonian matrix, and their number is equal to the number of states in the vari-
ational basis set used. Working out the steepest descent direction for this state, we
have

ζk = −2
∑

p

(αpkεp −
∑

l

	klαpk)ξp (9.77)

(note that the part involving ψ̃k on the right hand side vanishes). The right hand
sign will contain important contributions from the high energy levels, and they will
spoil the desired proportionality between steepest descent direction and δψk . This
can be remedied by an extension to the method, called pre-conditioning [17]. We
shall not treat this in detail here – for details see Refs. [8, 16,17].

The conjugate gradients method can be readily applied to energy minimisation
problems. However, if we want to perform a dynamic simulation for the atoms, that
is, without friction acting on the nuclei, a rather subtle problem arises. To see this,
consider a nucleus which is moving in the positive x-direction with an electronic
charge distribution around it, which has converged to the ground state. As the
nucleus moves, the charge cloud starts lagging behind and this discrepancy might
grow larger and larger with time. But this is not possible in the Verlet algorithm as
this symplectic algorithm does not allow for energy drift (see Section 8.4). In the
Verlet simulation, the electron charge cloud keeps oscillating around the nucleus so
that errors remain bounded, and even cancel out on average. This is an important
advantage of the molecular dynamics approach of Car and Parrinello [18–20]. There
is, however, the possibility that the electron system absorbs energy from the nuclear

286 Quantum molecular dynamics

system and that the negative charge cloud would therefore oscillate more and more
violently around the nuclei. To avoid this, the total simulation time should be kept
short, or the electrons and the nuclei should both be coupled to a Nosé–Hoover
thermostat (see Section 8.5.1), perhaps at different temperatures [21].

In the conjugate gradients method, the errors are more erratic than oscillatory in
nature. Therefore this cancellation effect will not occur in that case, and it is neces-
sary to keep the electronic charge distribution very close to the energy minimum at
any time in order to avoid an unstable propagation of the errors spoiling the results.
This means that we must perform many conjugate gradient steps, which slows the
calculation down considerably. The only way to achieve good performance using
the conjugate gradient method is by extrapolating the orbitals at the next time step
from the previous ones, so that the conjugate gradients iterations start off from a
configuration which is close to the exact energy minimum [22].

Details concerning the conjugate gradients method can be found in Refs. [8,14,
16, 17].

9.4.3 The RM-DIIS technique

Another widely used technique for finding the optimal orbitals is the RM-DIIS
technique. The abbreviation stands for residual minimisation by direct inversion
of the iterative subspace. This can be applied to any problem in which a set of
orthonormal eigenstates of a large Hamiltonian must be found. We describe the
method briefly – for details see Refs. [9, 23, 24].

The eigenfunctions that we seek satisfy

(H − εn)|ψn〉 = 0; n = 1, . . . , N . (9.78)

We now want to quantify the deviation of some approximate set of states from this.
To this end we reformulate (9.78) as

|ψn〉 = |ψn〉 + 1

Hnn
(H − Hnn)|ψn〉, (9.79)

with

Hnn = 〈ψn|H|ψn〉
〈ψn|ψn〉 . (9.80)

For the eigenstates we obviously have εn = Hnn. This form may seem a bit arbitrary
but it naturally leads to an iterative scheme:

|ψ(j+1)
n 〉 = |ψ(j)n 〉 + 1

Hnn
(H − Hnn)|ψ(j)n 〉. (9.81)

The reason the correction term has a prefactor 1/Hnn is that in this way all eigen-
vectors have a similar correction, independent of the energy eigenvalue. The main

9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques 287

feature of Eq. (9.81) for us is that the correction factor can be used as an error
estimate, which we call |�j〉:

|�j〉 = 1

Hnn
(H − Hnn)|ψ(j)n 〉. (9.82)

Suppose we have a sequence of estimates |ψ(j)n 〉, j = 1, . . . , J for the optimal
states, which are not necessarily constructed according to the recipe of Eq. (9.81).
From this sequence we construct a new state as a linear combination of the
previous ones

|ψJ+1
n 〉 =

J∑
j=1

dj|ψ(j)n 〉 (9.83)

such that it has a minimal error. We must, however, beware of the fact that the states
can be scaled at will – upon rescaling they still satisfy the same linear equations.
However, rescaling affects the norm of the error which we want to minimise. In
order to have an unambiguous measure of the error we require that

J∑
j=1

dj = 1, (9.84)

which turns out to be a convenient choice.
Substituting the linear expansion (9.83) in the expression for the error |�J+1〉

of the new state |ψJ+1
n 〉, we see that yields a linear combination of the individual

errors |�j〉 of the |ψ(j)n 〉:
|�J+1〉 =

J∑
j=1

dj|�j〉. (9.85)

Now we shall be specific about the minimalisation of the norm of the error. This
is given by

|�J+1|2 =
J∑

j,k=1

djdk〈�j|�k〉. (9.86)

We abbreviate the matrix elements 〈�j|�k〉 by ajk . Minimising the error norm,
respecting the appropriate constraint, which is included through a Lagrange
parameter λ, leads to



a11 a12 . . . a1n 1
a21 a22 . . . a2n 1

...
...

. . .
...

...
an1 an2 . . . ann 1
1 1 . . . 10







d1

d2
...

dn

−λ


 =




0
0
...
0
1


 . (9.87)

288 Quantum molecular dynamics

The resulting states |ψJ
n 〉 are not yet orthogonal; an orthogonalisation of the states

must be performed after each of the steps described above.

9.4.4 Large systems

Periodic or other type of boundary conditions are not imposed a priori in QMD
simulations. Boundary conditions may, however, be introduced by the basis set,
which might consist of periodic functions, or functions vanishing at some bound-
ary. There is an increasing interest in nonperiodic systems containing large numbers
of atoms; these systems are said to be mesoscopic. Examples of mesoscopic sys-
tems and phenomena are the scanning tunnelling microscope tip and surface, grain
boundaries, quantum dots and wires, biological macromolecules, etc. Often these
systems are periodically continued; in the case of grain boundaries, for example,
we might consider a system cell with a linear size corresponding to 10 atoms, and
containing a grain boundary. Imposing periodic boundary conditions means that
we are considering a system containing a periodic array of such grain boundaries.

If the system cell contains large numbers of atoms, it becomes very important to
use a method for solving electronic structure and dynamics for which the computer
time scales favourably with time. In this subsection we analyse the scaling behaviour
for a few methods. Two parameters are important: first, the number Nat of atoms
in the system, and second, the size NB of the basis set. Of course, these numbers
are not independent: they are usually proportional to each other. However, as the
number of basis states exceeds the number of atoms sometimes by a factor of 100
or more, it is important to distinguish between the two in the time scaling.

It depends strongly on the type of basis functions used how the time required by
a quantum molecular dynamics simulation scales with the number of atoms. In the
case of plane wave basis sets, FFT techniques (see Appendix A9) can be used to
increase the efficiency of the calculations. The kinetic energy is diagonal in a plane
wave basis set; for evaluating the potential energy the FFT transforms the states
into real space where the potential energy is diagonal. The plane wave basis leads
to a time scaling (complexity) for one integration step in the quantum molecular
dynamics method of NatNB ln NB.

Other methods use localised orbitals as basis functions so that the Hamiltonian
couples only orbitals on neighbouring atoms – hence the Hamiltonian becomes
sparse, and sparse matrix methods can be very efficient, giving essentially a scaling
behaviour of NatNB. Obviously, this can be used in the calculation of the elec-
tronic structure using the conventional self-consistent approach where the Hamilton
matrix has to be diagonalised several times. Using localised basis functions, the
recursion method of Haydock [25–27] is particularly useful as it allows for cal-
culating the density in a number of steps independent of Nat, and as long as the

9.5 Implementation of the Car–Parrinello technique for pseudopotential DFT 289

nuclear positions remain fixed, the method scales as NB, but with a large pre-
factor. The method converges much faster for insulators and semiconductors than
for metals [27]. Finally, discretising the degrees of freedom on a cubic lattice can
lead to methods with a favourable time scaling [28, 29].

*9.5 Implementation of the Car–Parrinello technique
for pseudopotential DFT

In this section we describe how the self-consistent pseudopotential code described
in Section 6.7.3 can be extended to include Car–Parrinello dynamics. In the code of
Section 6.7.3, we constructed the DFT Hamiltonian, diagonalised it and calculated
the density which was then used to construct a new Hamiltonian, and so on until
convergence was achieved. We then calculated the total energy from the orbitals,
the density and the nuclear positions (which were taken to be fixed).

Now we want to use the derivative of the total energy with respect to the orbital
degrees of freedom and with respect to the nuclear positions in order to formulate
equations of motions which can then be solved using the (velocity) Verlet algorithm.
The rather complicated expression for the energy leads to even more complicated
expressions for these forces. We start with the orbital forces. They follow directly
from the expression for the total energy given in Section 6.7.7. If we calculate the
orbital forces from this energy, we obtain by direct differentiation: [9]

∂Etotal

∂c∗
j (K)

= K2

2
cj(K)+

∑
K′

V∗
loc(K − K′)cj(K′)

+
∑

n

∑
lm

Fn
jlme−iK·RnYlm(K̂)hn

lmpl
m(K), (9.88)

where V all
loc is the total local potential:

Vloc(K) =
∑

n

�Vloc(K)+ Vxc(K)+ 4π
ntot(K)

K2
. (9.89)

The potentials occurring in this expressions are given in Section 6.7.3.
If we implement this force in a Verlet algorithm in which we reduce the velocities

at each time step such as to mimic frictional forces which bring us to the stationary
energy minimum, the result should be equal to that obtained in the Kohn–Sham
program. For two silicon atoms placed at a distance of 1.05 a.u. in a cell of size
8 a.u., the converged energy is −21.235 347 29 atomic units.

For the dynamics of the nuclei, we need the gradients of the energy with respect
to the nuclear coordinates. These can be obtained directly from the expression for
the total energy. The nuclear gradients are generated by the local and nonloncal

290 Quantum molecular dynamics

parts of the pseudopotential, and the electrostatic energy. The expressions are:

∇RnElocal = −�
∑

K

iKVlocal,n(K)e−iK·Rnn∗(K) (9.90)

∇RnEnonlocal =
∑

j

fj
∑
l,mεn

[(Fn
jlm)

∗hn
lm∇RnFn

jlm + ∇Rn(F
n
lm)

∗hn
lmFn

lm]; (9.91)

∇RnEES = −�
∑
K �=000

iK
n∗

tot

K2 nn
core(K)e

−iK·Rn + ∇RnEovrl, (9.92)

where

∇Rn Fn
lm = − 1√

�

∑
K

iKe−iK·Rnc∗
j (K)Ylm(K̂)pl

m(K), (9.93)

and

∇Rn Eovrl =
∑′

n′
∑

L




ZnZn′

|Rn − Rn′ − L|3 erfc


 |Rn − Rn′ − L|√

2(ξ2
n + ξ2

n′)




+ 2√
π

1√
ξ2

n + ξ2
n′

ZnZn′

|Rn − Rn′ − L|2 exp


 |Rn − Rn′ − L|√

2(ξ2
n + ξ2

n′)






× (Rn − Rn′ − L). (9.94)

The full implementation of the Car–Parrinello is quite cumbersome. For a hydro-
gen dimer, you should find a result similar to that of Figure 9.4. Note that this
frequency depends on the nuclear mass. Similar results should be found for a silicon
dimer.

Exercises

9.1 [C] The Car–Parrinello method can be used to find the minimum of any variational
energy functional. We use it in this problem for finding the ground state of a particle
in a one-dimensional, infinitely deep potential well. This problem was treated in
Chapter 3, Section 3.2.1. We use N variational basis functions of the form

χr(x) = xr(x − a)(x + a), r = 0, 1, 2, . . . , N − 1

from which a variational state ψ(x) is built as

ψ(x) =
∑

r

Crχr(x).

The Euler–Lagrange equations for the Lagrangian with potential

E[Cr] =
∑

rs

CrCs〈χr |H|χs〉 =
∑

rs

CrCsHrs

Exercises 291

and the normalisation constraint

〈ψ |ψ〉 =
∑

rs

CrCs〈χr|χs〉 =
∑

rs

CrCsSrs

are given by
µC̈r = 2

∑
s

(HrsCs −	SrsCs).

We solve this equation of motion using the Verlet algorithm with friction. Note that	
is determined by the normalisation condition. Therefore we first perform an
integration step with 	 = 0 and then calculate 	 from (9.32). You are free to choose
µ, the frictional constant and the time step h, although they are not independent.

The energy should converge to 2.467 40 as found in Section 3.2.1.
9.2 [C] Extend the program of the previous problem to include more than one state. Each

state ψk(x) has its own set of coefficients Crk :

ψk(x) =
∑

r

Crkχr(x).

We consider K states. There are now K(K + 1)/2 constraint equations:

〈ψk|ψl〉 =
∑

rs

CrkSrsCsl = δkl

(interchanging k and l gives the same equation). The Euler–Lagrange equations now
become

µC̈kr =
∑

l

∑
s

(Hrs −	kl)Csl .

Because we include friction in the problem, we can take 	kl diagonal:

	kl = εkδkl,

and at each step we estimate εk as

εk =
∑

rs

CrkCskHrs

see Section 9.4.1.
Implement these equations in a computer program and compare your results with

those presented in Section 3.2.1.
9.3 [C] Consider again the deep potential well of the previous two problems. We now use

the conjugate gradients method for finding the eigenvalues, by using it to minimise the
energy functional. It is assumed that you have a conjugate gradient routine available.

Let us first consider the ground state. This can be written as

ψG(x) =
∑

r

Crχr(x),

where χr is the basis consisting of polynomials vanishing on the boundaries of the
well. The energy functional

E[Cr] =
∑

rs

CrCsHrs

292 Quantum molecular dynamics

must be minimised subject to the normalisation constraint∑
rs

CrCsSrs = 1.

The Lagrangian function for this problem is

L[Cr] =
∑

rs

CrCsHrs − λ
∑

rs

CrCsSrs

where λ should be such that the normalisation remains guaranteed when moving in
the steepest descent direction. The steepest descent direction ζ is given by

ζ =
∑

r

Drχr(x);

Dr = −2
∑

s

CsHrs + 2λ
∑

s

CsSrs.

(a) Show that
λ = 〈ψ |H|ψ〉.

(b) Use this in applying the conjugate gradients method in order to find the ground
state. Note that convergence is slow as no preconditioning is applied.

Now we consider the problem of finding more energy eigenstates ψk which are
expanded in the basis set states as

ψk(x) =
∑

r

Crkχp(x).

For N eigenstates we have N(N + 1)/2 constraints.
The Lagrange function now reads

L[Cr] =
∑

k

∑
rs

CrkCskHrs −
∑

kl

	kl

∑
rs

CrkCslSrs.

(c) Show that
	kl = 〈ψk|H|ψl〉.

(d) Use this form to find the four lowest eigenstates.

9.4 [C] Use the conjugate gradients technique for finding the minimum of the electronic
energy of the hydrogen molecule with a fixed configuration of nuclei. This is a
straightforward extension of the first program of the previous problem: there is only
one normalisation constraint. Note however that the energy functional contains a term
which is quartic in the Cr – see Eq. (9.26). Show that the steepest descent direction
subject to the constraint is given by

Dr = −2
∑

s

FrsCs + 2λ
∑

s

SrsCs

with
λ =

∑
rs

CrFrsCs.

References 293

Apply the conjugate gradients method to this problem and compare the results with
the matrix diagonalisation method of Chapter 4 and the molecular dynamics method
of the present chapter.

References

[1] G. M. Barrow, Introduction to Molecular Spectroscopy. New York, McGraw-Hill, 1962.
[2] H. Hellmann, Einführung in die Quantenchemie. Leipzig, Deuticke, 1937.
[3] R. P. Feynman, ‘Forces in molecules,’ Phys. Rev., 56 (1939), 340–3.
[4] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘Optimization by simulated annealing,’ Science,

220 (1983), 671–80.
[5] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, ‘Numerical integration of the cartesian equa-

tions of motion of a system with constraints: molecular dynamics of n-alkanes,’ J. Comput. Phys.,
23 (1977), 327–41.

[6] J. W. Negele, ‘The mean-field theory of nuclear structure and dynamics,’ Rev. Mod. Phys., 54
(1982), 913–1015.

[7] P. Pulay, ‘Ab initio calculation of force constants and equilibrium geometries in polyatomic
molecules. I. Theory,’ Mol. Phys., 17 (1969), 197–204.

[8] M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, ‘Iterative minimization
techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,’
Rev. Mod. Phys., 64 (1992), 1045–97.

[9] D. Marx and J. Hutter, ‘Ab initio molecular dynamics: theory and implementations,’ in Modern
Methods and Algorithms of Quantum Chemistry, NIC series, vol. 1. Jülich, John von Neumann
Institute for Computing, 2000, pp. 301–449.

[10] J. Q. Broughton and F. Khan, ‘Accuracy of time-dependent properties in electronic structure
calculations using a fictitious Lagrangian,’ Phys. Rev. B, 40 (1989), 12098–104.

[11] R. Car and M. Parrinello, ‘Unified approach for molecular-dynamics and density-functional
theory,’ Phys. Rev. Lett., 55 (1985), 2471–4.

[12] R. Car and M. Parrinello, ‘The unified approach for molecular dynamics and density func-
tional theory,’ in Simple Molecular Systems at Very High Density (A. Polian, P. Lebouyre, and
N. Boccara, eds.), NATO Advanced Study Institute, vol. 186, New York, Plenum, 1989, p. 455.

[13] M. E. Tuckerman and M. Parrinello, ‘Integrating the Car–Parrinello equations. I. Basic integration
techniques,’ J. Chem. Phys., 101 (1994), 1302–15.

[14] I. Stich, R. Car, M. Parrinello, and S. Baroni, ‘Conjugate-gradient minimisation of the energy
functional: a new method for electronic structure calculation,’ Phys. Rev. B, 39 (1989), 4997–
5004.

[15] M. J. Gillan, ‘Calculation of the vacancy formation energy in aluminium,’ J. Phys.–Cond Mat, 1
(1989), 689–711.

[16] M. P. Teter, M. C. Payne, and D. C. Allan, ‘Solution of Schrödinger’s equation for large systems,’
Phys. Rev. B, 40 (1989), 12255–63.

[17] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. London, Academic Press, 1981.
[18] M. C. Payne, ‘Error cancellation in the molecular-dynamics method for total energy calculations,’

J. Phys.–Cond. Mat., 1 (1989), 2199–210.
[19] R. Car, M. Parrinello, and M. C. Payne, ‘Error cancellation in the molecular-dynamics method

for total energy calculations: comment,’ J. Phys.–Cond. Mat., 3 (1991), 9539–43.
[20] D. K. Remler and P. A. Madden, ‘Molecular-dynamics without effective potentials via the

Car–Parrinello approach,’ Mol. Phys., 70 (1990), 921–66.
[21] P. Bloechl and M. Parrinello, ‘Adiabaticity in first-principles molecular dynamics,’ Phys. Rev. B,

45 (1992), 9413–16.

294 Quantum molecular dynamics

[22] T. A. Arias, J. D. Joannopoulos, and M. C. Payne, ‘Ab initio molecular-dynamics techniques
extended to large-length scale systems,’ Phys. Rev. B, 45 (1992), 1538–49.

[23] P. Pulay, ‘Improved SCF convergence acceleration,’ J. Comp. Chem., 3 (1982), 556–60.
[24] R. M. Martin, Electronic Structure. Cambridge, Cambridge University Press, 2004.
[25] R. Haydock, V. Heine, and M. J. Kelly, ‘Electronic structure based on the local atomic

environment for tight-binding bands,’ J. Phys. C, 5 (1972), 2845–58.
[26] R. Haydock, ‘The recursive solution of the Schrödinger equation,’ in Solid State Physics

(H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), vol. 35, New York, Academic Press, 1980,
pp. 216–94.

[27] A. Gibson, R. Haydock, and J. P. LaFemina, ‘Ab initio electronic structure computations with
the recursion method,’ Phys. Rev. B, 47 (1993), 6518–23.

[28] S. Baroni and P. Giannozzi, ‘Towards very large-scale electronic structure calculations,’
Europhys. Lett., 17 (1992), 547–52.

[29] J. M. Thijssen and J. E. Inglesfield, ‘Embedding muffin tins into a finite difference grid,’
Europhys. Lett., 27 (1994), 65–70.

10

The Monte Carlo method

10.1 Introduction

In Chapter 8 we saw how a classical many-particle system can be simulated by
the MD method, in which the equations of motion are solved for all the particles
involved. This enables us to calculate statistical averages of static and dynamic
physical quantities. There exists another method, called the Monte Carlo (MC)
method, for simulating classical many-particle systems by introducing artificial
dynamics based on ‘random’ numbers.1 The artificial dynamics used in the MC
method prevent us from using it for determining dynamical physical properties in
most cases, but for static properties it is very popular.

In fact, every numerical technique in which random numbers play an essential
role can be called a ‘Monte Carlo’ method after the famous Mediterranean casino
town, and we shall discuss the method not only as a tool for studying classical
many-particle systems, but also as a way of dealing with the more general problem
of calculating high-dimensional integrals. In fact, three main types of Monte Carlo
simulations can be distinguished:

• Direct Monte Carlo, in which random numbers are used to model the effect of
complicated processes, the details of which are not crucial. An example is the
modelling of traffic where the behaviour of cars is determined in part by random
numbers.

• Monte Carlo integration, which is a method for calculating integrals using
random numbers. This method is efficient when the integration is over
high-dimensional volumes (see below).

• Metropolis Monte Carlo, in which a sequence of distributions of a system is
generated in a so-called Markov chain. This method allows us to study the static
properties of classical and quantum many-particle systems. The latter will be
discussed in Chapter 12.

1 As explained in Appendix B, computer-generated random numbers are not truly random, hence the quotes.

295

296 The Monte Carlo method

Direct Monte Carlo is a powerful method which can be applied to a wide variety
of problems inside and outside physics. There is, however, not much to be said
about this method as its implementation is as direct as the name suggests. The diffi-
culty usually resides in the modelling aspect: how to represent certain phenomena
using random numbers. The implementation of the method is then usually rather
straightforward. In the next section we shall briefly discuss MC integration. The
Metropolis sampling method will be discussed in the remainder of this chapter. The
MC techniques which will be discussed in this chapter are essential for much of
the material covered in Chapters 12 and 15 on quantum Monte Carlo methods and
lattice field theory simulations.

A general reference on MC techniques is the book by Hammersley and Hand-
scomb [1]. More detailed material concerning Metropolis Monte Carlo methods
can be found in the book by Allen and Tildesley [2], two review volumes by Binder
[3, 4] and the books by Kalos and Whitlock [5], Binder and Heermann [6] and
Barkema and Newman [7].2

10.2 Monte Carlo integration

Suppose we want to calculate the integral of a smooth function f on the interval
[a, b] on the real axis:

I =
∫ b

a
dx f (x). (10.1)

Standard numerical methods for this problem are discussed in Appendix A6, and
they usually boil down to calculating the function on a set of equally spaced values
xi (except for Gaussian integration, where the points are not equidistant) and then
evaluating the sum

I = (b − a)

N

N∑
i=1

wif (xi), (10.2)

where the weights wi do not depend on f – they determine the accuracy of the
method. Usually such methods are based on polynomial approximations of the
integrand and their accuracy σ is expressed in terms of a power of the separation
h of the integration points: σ ∝ hk ∝ N−k , where k is a positive integer. In Monte
Carlo integration we also use Eq. (10.2), with the weights wi all equal to 1 but the
xi now chosen randomly.

It will be clear that if the random coordinates xi are homogeneously distributed
on [a, b], and if N is sufficiently large, the sum (10.2) yields a result close to the

2 Lecture notes by Frenkel [8] have been helpful in writing part of this chapter.

10.2 Monte Carlo integration 297

exact integral. We calculate the variance in the result:

σ 2 =
〈(

b − a

N

N∑
i=1

fi

)2〉
−
(〈

b − a

N

N∑
i=1

fi

〉)2

. (10.3)

The angular brackets denote an average over all possible realisations of the sequence
of random coordinates xi. Carrying out this average for the last term on the right
hand side gives the square of the average f of the function f on [a, b]. Splitting the
sums in the first term on the right hand side into a sum with i = j and one with
i �= j leads after some manipulation to

σ 2 = (b − a)2

N
(f 2 − f

2
) (10.4)

where the bar denotes an average of the function on [a, b]. We see that the error is
proportional to the variance of f on [a, b]. The fact that σ ∝ 1/

√
N is to be expec-

ted from the central limit theorem. This scaling is clearly unfavourable compared
with standard quadrature methods using equidistant values for the xi, which yields
an error N−k with k ≥ 1. However, MC integration is more efficient in higher
dimensions. To see this, let us consider standard numerical integration, with error
O(hk), for a d-dimensional integral. For simplicity we assume that the integration
volume is a hypercube with side L. This contains N = (L/h)d points and therefore
the error in the result scales as N−k/d . The error of the Monte Carlo integration,
however, is independent of d; it is still O(N−1/2), since the central limit theorem
does not depend on the dimension. Comparing this error with that of the standard
method, we see that MC integration is more efficient than an order-k algorithm
when d > 2k.

This is a rather counterintuitive result: we would expect that using a regular grid
for calculating the integral would always be superior to the random distribution of
points of the Monte Carlo method. The reason for the superiority of MC integration
in higher dimensions is that in a sense the random distribution is more homogeneous
than the regular grid. Consider for example a rectangular volume within the integ-
ration volume. A homogeneous distribution of the integration points would imply
that the number of points within this rectangular volume should be approximately
proportional to that volume. If we choose the rectangular volume to have sides
parallel to the axes of the point grid used in the standard integration method, it is
clear that on increasing the volume size, the number of points it contains increases
stepwise whenever a facet of the volume moves through an array of integration
points. In this respect random distributions are more homogeneous, since for these
distributions such steps in the number of points are extremely unlikely to occur. This
heuristic argument can be formalised – see the review by James [9] and references
therein.

298 The Monte Carlo method

Several methods have been devised to reduce the error of the Monte Carlo integ-
ration method; for a discussion see Ref. [9]. We give a brief overview here. In
order to distribute the points more homogeneously over the integration hypercube,
it is possible to subdivide the latter into smaller, equally sized subvolumes and
to choose an equal number of random points in each subvolume. This is called
‘stratified Monte Carlo’.

In many practical cases, the contributions to the integral from different regions
in the integration volume vary strongly. The MC method samples the function
homogeneously, so if the significant contributions to the integral come primarily
from a small region within the integration volume, there will be only a few MC
points for sampling the function there, leading to large statistical errors. This effect
shows up in (10.4) as a large variance of f over the volume. In order to reduce this
contribution to the error, points are concentrated in the regions where f happens to
be large (in absolute value). More precisely, let ρ(x) be a function on [a, b] which
has more or less the shape of f in the sense that f /ρ is approximately constant over
the interval. We furthermore require ρ to be normalised:∫ b

a
dx ρ(x) = 1. (10.5)

We write the integral over f as follows:∫ b

a
dx f (x) =

∫ b

a
dx ρ(x)

[
f (x)

ρ(x)

]
. (10.6)

The function in square brackets is reasonably flat (as ρ is chosen to have more or
less the shape of f) and the weight ρ(x) in front of this function can be included
in the integral by choosing the random points xi with distribution ρ(x). The Monte
Carlo result for the integral is then still given by (10.2). This reduces the error in
the result considerably as we can see by evaluating the variance (10.4) for this case:

σ 2 = 1

N



∫ b

a

[
f (x)

ρ(x)

]2

ρ(x) dx −
(∫ b

a

[
f (x)

ρ(x)

]
ρ(x) dx

)2

 . (10.7)

If we are indeed able to choose ρ such that f /ρ is approximately constant, then as a
result of (10.5) the expression in the braces will indeed be much smaller than in the
‘crude sampling’ case. This method is called importance sampling Monte Carlo.
Adaptive Monte Carlo methods also aim at concentrating the sampling points in
those regions where f contributes significantly to the integral, but these methods
locate these regions by probing the function at random points and require no a priori
knowledge on the function f as in the case of importance sampling.

Note that MC integration is not susceptible to correlations in the random gener-
ator. Correlations influence the order in which the points xi are generated but this

10.3 Importance sampling through Markov chains 299

does not affect the sum. In fact, it is possible to generate artificial number sequences
for which no attempt made to achieve (pseudo-) randomness but which fill a high-
dimensional volume very homogeneously so that they are suitable for integration.
The resulting method is called ‘quasi-Monte Carlo’ [9].

10.3 Importance sampling through Markov chains

We now explain the importance sampling method for classical many-particle sys-
tems in the canonical or (NVT) ensemble; extensions to other ensembles will be
discussed later in this chapter. When calculating averages in the (NVT) ensemble,
the configurations should be weighted according to the Boltzmann factor

ρ(X) ∝ exp[−βE(X)], β = 1/(kBT). (10.8)

This suggests that we apply MC integration with importance sampling, as the phase
space over which we must integrate is high-dimensional. The method that first
comes to mind for generating phase space points (configurations) with a Boltzmann
distribution is the Von Neumann method discussed in Appendix B3. In our case this
would mean generating random configurations and accepting them with probabil-
ity exp[−βE(X)] where the energy scale is assumed to be such that the energy is
always positive. However, as the number of configurations with a particular energy
increases exponentially with energy, most of the randomly constructed states have
very high energy. Hence for finite temperature they will be accepted with a vanish-
ingly small probability and we spend most of our time generating configurations
that are then rejected, which is obviously very inefficient.

Another method would be to construct statistically independent configurations
with a bias towards lower energies in accordance with the Boltzmann weight.
However, recipes for such a construction are difficult and will certainly be very
time-consuming. Related to this method is the Metropolis method [10], developed
in 1953, which abandons the idea of constructing statistically independent config-
urations – rather, the configurations are constructed through a so-called Markov
chain, in which each new configuration is generated with a probability distribution
depending on the previous configuration.

Before considering Markov chains, we consider truly random, or uncorrelated
chains. For an uncorrelated chain, the probability of occurrence of a particular
sequence of N objects X1, . . . , XN is statistically uncorrelated:

PN (X1, X2, . . . , XN) = P1(X1)P1(X2) · · · P1(XN) (10.9)

where P1(X) is the independent probability of occurrence for the object X (this
probability is assumed to be equal for each step). Truly random number sequences
are examples of uncorrelated chains (see Appendix B). A Markov chain is different

300 The Monte Carlo method

from uncorrelated chains – it is defined in terms of the transition probability T(X →
X ′) for having the object X ′ succeeding object X in the sequence. The probability
of having a sequence of objects Xi then becomes

PN(X1, X2, . . . , XN) = P1(X1)T(X1 → X2)T(X2 → X3) · · · T(XN−1 → XN).
(10.10)

The transition probabilities T(X → X ′) are normalised:∑
X ′

T(X → X ′) = 1. (10.11)

As an example, consider a random walk on a two-dimensional square lattice. At
every step, the random walker can jump from a point to each of its four nearest
neighbours with equal probabilities 1/4. This probability is, however, independent
of how the walker got there, that is, which path he followed in order to arrive at the
present point. An example of a non-Markovian (but correlated) sequence is given
by the self-avoiding random walk in which the walker is not allowed to visit a site
that has been visited in the past. Therefore, the probability for being at a specific
site depends not just on the last position but on the full history of the walk.

We want to generate a Markov chain of system configurations such that they
have a distribution proportional to exp[−βE(X)], and this distribution should be
independent of the position within the chain and independent of the initial configur-
ation. Under certain conditions, a Markov chain does indeed yield such an invariant
distribution, at least for long times, as it needs some time to ‘forget’ the chosen
initial distribution. We shall not go into details, nor give proofs, but summarise
these conditions. They are: (i) every configuration which we want to be included
in the ensemble should be accessible from every other configuration within a finite
number of steps (this property is called connectedness, or irreducibility) and (ii)
there should be no periodicity. Periodicity means that after visiting a particular
configuration, it should not be possible to return to the same configuration except
after t = nk steps, n = 1, 2, 3, . . . , where k is fixed. A Markov chain that satisfies
these criteria is called ergodic.

The Metropolis Monte Carlo method consists of generating a Markov chain of
configurations with the required invariant distribution, which in our case is the
Boltzmann distribution exp(−βH). We must therefore find a transition probability
T(X → X ′)which leads to a given stationary distribution ρ(X) (to keep the follow-
ing analysis general, we use the arbitrary positive function ρ(X) rather than specify
this to be the Boltzmann distribution). The number of possible configurations, N ,
is assumed to be finite as the computer memory in which they are to be stored is
finite. The ‘matrix’ T(X → X ′) therefore has N2 elements, as opposed to only N
elements of the ‘vector’ ρ(X). This means that there are many different solutions
to this problem and we are allowed some freedom in finding one.

10.3 Importance sampling through Markov chains 301

Let us introduce the function ρ(X, t)which gives us the probability of occurrence
of configuration X at ‘time’, or Markov step, t (for an ergodic chain, ρ(x, t) becomes
independent of t for large t). The change in this function from one step to another
is governed by two processes: (i) going from a configuration X at time t to some
other configuration X ′ at t + 1, leading to a decrease of ρ(X), and (ii) going from
some configuration X ′ at time t to X at time t +1, thus causing an increase in ρ(X).
These mechanisms can be summarised in the formula

ρ(X , t + 1)− ρ(X, t) = −
∑
X ′

T(X → X ′)ρ(X, t)+
∑
X ′

T(X ′ → X)ρ(X ′, t).

(10.12)
This equation is called the master equation. Remember that we are trying to find
the stationary distribution, which is found by requiring ρ(X, t + 1) = ρ(X , t), so
that we have ∑

X ′
T(X → X ′)ρ(X, t) =

∑
X ′

T(X ′ → X)ρ(X ′, t). (10.13)

We omit the t-dependence of ρ from now on. It is difficult to find the general
solution to this equation, but a particular solution is recognised immediately:

T(X → X ′)ρ(X) = T(X ′ → X)ρ(X ′) (10.14)

for all pairs of configurations X, X ′. This solution is called the detailed balance
solution. Viewing the configurations X as buckets, each containing a certain amount
ρ(X) of water, imagine that we make connections with pumps between each pair
of buckets. Water is pumped from bucket X to bucket X ′ with a pumping rate
T(X → X ′)ρ(X). Condition (10.14) makes sure that the pumping rates between
any pair of buckets X, X ′ are balanced: the flow from X to X ′ is equal to the flow
from X ′ to X, so that obviously the volumes ρ(X) and ρ(X ′) do not change. As this
holds for any pair of buckets, the whole set of water volumes in the buckets will
remain stationary.

Let us now reformulate the detailed balance solution to make it suitable for
practical purposes. We write the transtion probability in the form

T(X → X ′) = ωXX ′AXX ′ , (10.15)

where the matrixωωω is symmetric:ωXX ′ = ωX ′X . Furthermore, it satisfies 0 ≤ ωXX ′ ≤
1, and

∑
X ′ ωXX ′ = 1. AXX ′ must lie between 0 and 1 for each pair XX ′. Substituting

this form of T into the detailed balance equation gives a detailed balance equation
for A:

AXX ′

AX ′X
= ρ(X ′)
ρ(X)

. (10.16)

In order to construct an algorithm, we useωXX ′ as a trial step probability and AXX ′
as an acceptance probability. This means that the algorithm proceeds in two stages.

302 The Monte Carlo method

In the first stage, given a state X, we propose a new state X ′ with a probability given
by ωXX ′ . In the second stage, we compare the weights of the old and the new one,
ρ(X) and ρ(X ′). AXX ′ is chosen equal to 1 if ρ(X ′) > ρ(X), and it is chosen equal
to ρ(X ′)/ρ(X) if ρ(X ′) < ρ(X). Obviously AXX ′ satisfies condition (10.16). We
accept the new state X ′ with a probability AXX ′ , and we reject it with a probability
1 − AXX ′ . If the state X ′ is accepted, it replaces X; if it is not accepted, the system
remains in the state X . Note that if ρ(X ′) > ρ(X), the state X ′ is always accepted.
We can summarise the Metropolis algorithm as follows:

T(X → X ′) = ωXX ′AXX ′ ; (10.17a)∑
X ′
ωXX ′ = 1; ωXX ′ = ωX ′X ; (10.17b)

ωXX ′ > 0, for all X , X ′; (10.17c)

if ρ(X ′) < ρ(X) : AXX ′ = ρ(X ′)
ρ(X)

; (10.17d)

if ρ(X ′) ≥ ρ(X) : AXX ′ = 1. (10.17e)

The question now arises as to how we can accept a state with a probability
AXX ′ ≤ 1, and reject it with probability 1 − AXX ′ . This is done by generating a
random number r uniformly between 0 and 1. If r < AXX ′ , the state is accepted,
otherwise it is rejected. It is clear that if this procedure is carried out many times
with the same probability AXX ′ , the state will be accepted a fraction AXX ′ of the total
number of trials.

Note that because the configurations are generated in a Markov chain, they have
correlations inherent to them. The theory of Markov chains guarantees that we
arrive at the invariant distribution ρ for long times; however, it may take much
longer than the available computer time to reach this distribution.

The total number of statistically independent configurations is given by the total
number of steps divided by the correlation ‘time’, measured in Monte Carlo steps.
Note that the number of steps is the total number of trials: do not fall into the trap of
counting only the successful trials as MC steps. As we have generated a sequence of
configurations X with a statistical distribution exp[−βE(X)], the ensemble average
of a physical quantity A is given by the ‘time average’

A = 1

n − n0

n∑
ν>n0

Aν (10.18)

where n0 is the number of steps used for equilibration. Note that the ‘time’ n is not
physical time. This average is exactly the same as for MD simulations discussed
near the end of Section 8.2. For the determination of statistical errors in the resulting
averages we refer to the discussion in Section 7.4.

10.3 Importance sampling through Markov chains 303

In the next subsections we shall work out the canonical ensemble MC method in
more detail for two examples of classical many-particle systems, the Ising model
and the monatomic fluid.

It should be noted that the detailed balance condition can be fulfilled by
algorithms other than the Metropolis method. The Barker algorithm [11, 12] reads

T(X → X ′) = ωXX ′
ρ(X ′)

ρ(X)+ ρ(X ′)
for X �= X ′, (10.19a)

T(X → X) = 1 −
∑

X �=X ′
T(X → X ′). (10.19b)

where ω satisfies the same criteria as in the Metropolis method. It can easily
be shown that this algorithm indeed satisfies the detailed balance condition. The
Metropolis solution, however, turns out to be more efficient [2].

We can generalise the Metropolis procedure, in which for some pairs X, X ′ of
configurations, ωXX ′ is not equal to ωX ′X . In that case, the acceptance criterion for
an attempted move X → X ′ must be replaced by

AXX ′ = min(1, qXX ′) (10.20)

with

qXX ′ = ωX ′Xρ(X ′)
ωXX ′ρ(X)

. (10.21)

This is called the generalised Metropolis method. In the context of Monte Carlo
simulations, the method is also called smart Monte Carlo. It can easily be checked
that the generalised Metropolis method satisfies detailed balance.

We conclude this section by mentioning another variant of the Metropolis
method: the heat-bath algorithm. In this algorithm it is assumed that the trial step
involves one or a few degrees of freedom, the remaining ones being kept fixed (this
is the case in most Metropolis algorithms). The degrees of freedom that may change
are denoted x; the remainder of the system, which is kept fixed, is then denoted
symbolically as X − x. We now assign a new value to x according to

P(x) ∝ exp[−βH(x|X − x)], (10.22)

where H(x|X − x) is the Hamiltonian as a function of x, with X − x kept fixed. It
is easy to see that this procedure satisfies detailed balance, and that it is equivalent
to applying an infinite number of Metropolis steps to x successively, with fixed
X − x. The practical implementation of this method is often difficult, for reasons
to be explained below; however, for lattice models it can be implemented rather
straightforwardly.

304 The Monte Carlo method

10.3.1 Monte Carlo for the Ising model

The Ising model was discussed in Chapter 7. Here we consider the Metropolis
algorithm for the Ising model in two dimensions (the extension to more than two
dimensions is straightforward). In order to formulate the Monte Carlo method, we
must make a choice for the matrix ωXX ′ . For the two-dimensional Ising model on
an L × L square lattice, we take

ωXX ′ = 1/L2 if X and X ′ differ by one spin;
ωXX ′ = 0 otherwise.

(10.23)

The realisation of the first stage of the Markov step – generating a trial configur-
ation – is then easy: we select a spin at random, and the trial configuration is the
present configuration with the selected spin turned over.

We then calculate the energy difference �E(X → X ′) between the old and the
trial configuration:

�E(X → X ′) = E(X ′)− E(X). (10.24)

This is easy as there are only nearest neighbour interactions: the energy difference
depends only on the number of neighbours which have the same spin as the selected
spin in the old configuration – this is therefore an integer number between 0 and 4.
If the energy increases from the old to the new configuration, �E(X → X ′) > 0,
the trial state is accepted with probability exp[−β�E(X → X ′)]. If, however, the
energy decreases, the trial state is always accepted as the new state. Implementation
of this algorithm for the two- or three-dimensional Ising model is straightforward;
the reader is encouraged to go through this exercise. The average number of steps
between two updates of the same spin is equal to L2. Therefore, the ‘time’ in a MC
simulation is often expressed in units of Monte Carlo steps per spin (MCS), 1 MCS
being equal to L2 trials.

programming exercise

Write a program for simulating the nearest neighbour two-dimensional Ising
model on a square lattice using the Metropolis Monte Carlo technique.

The following considerations should be borne in mind. It is convenient to have
a variable representing the total energy of the system. Usually, βE is recorded
rather than the energy E itself, as the behaviour of the system is fully determined
by βJ . This must be calculated at the beginning by performing a sweep over the
whole lattice. If, however, the initial state is one in which all the spins are the same,
the total energy for the L × L lattice with only nearest neighbour interactions is
simply given by −2βJL2, where βJ is the coupling constant. Every time a trial
configuration is accepted as the new one, we add the energy difference (which is

10.3 Importance sampling through Markov chains 305

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7

Sp
ec

if
ic

 h
ea

t

�

Figure 10.1. Specific heat per site in units of J/kB of the Ising 20 × 20 square
lattice as a function of the coupling constant reduced temperature τ = kBT/J.

calculated at every step) to the total energy so that we always have the energy of the
new state at our disposal. Similarly it is possible to keep track of the magnetisation
during the simulation. The approach described here avoids having to calculate these
quantities every now and then by summing over the entire lattice.

As the acceptance probability exp[−β�E(X → X ′)] can assume only five dif-
ferent values, it is advisable to store these in an array in order to avoid calculating
the exponential function over and over again. It is nice to display the lattice after
every fixed number of MC steps on the computer screen and give the user the oppor-
tunity to change the temperature during the simulation. A magnetic field can also
be included. Visual inspection should convince you that the phase transition for
zero field takes place somewhere around βJ ≈ 0.44, although critical fluctuations
make it difficult to locate this transition temperature with satisfactory precision.
The specific heat can be determined as the variance of the energy (see Eq. (7.28))
and this should exhibit a peak near the critical temperature (see Figure 10.1).

The initial configuration will be chosen either random (infinite temperature) or
as one of the two ground states: all spins either + or −. In the first case, if the
temperature at which the system is simulated is lower than the transition temperat-
ure, spontaneous magnetisation may not always occur. In fact, several large regions
of spin + or of spin − will be formed, separated by boundaries which are relat-
ively smooth in order to minimise their energy. It will now take a very long time
before one of the two spin values dominates. This undercooling effect can only be
avoided by cooling the system gradually down to the desired temperature, taking
care that the cooling rate is particularly slow near Tc. After passing a first order
transition in a simulation, it is often impossible to arrive at the equilibrium state
within a reasonable time, as the system cannot overcome the free energy barrier

306 The Monte Carlo method

separating the metastable from the stable phase. This can also be checked: below
the critical temperature, the Ising model exhibits a first order transition triggered
by the magnetic field. Going from a state with positive magnetisation and positive
magnetic field to negative (but small) magnetic field, the magnetisation will not
turn over. Making the field strongly negative will eventually pull the system over
the free energy barrier.

Check Produce a graph of the specific heat (measured in units of J/kB) as a function
of τ = kBT/J and compare it with Figure 10.1.

You could be tempted to calculate the magnetisation in order to compare this
with Figure 7.3. As we have just mentioned, cooling the system down from a high
temperature fails unless you cool very slowly through the critical region. However,
even if you start with the low temperature phase and heat the system up, you will
notice that the magnetisation vanishes for temperatures just below the transition
temperature. The point is that in order to let the magnetisation flip from a positive
value to a negative one, a domain wall separating the two phases must be built up.
Below the transition temperature, domain walls have a positive wall tension, that is,
they carry a free energy cost per unit length. Therefore, flipping the magnetisation
in the infinite system requires an infinite amount of free energy so that this will
never happen. In the finite system however, if the wall tension is still finite (and the
temperature therefore still below the finite-size critical point), the energy barrier
for a magnetisation flip is finite as the domain walls are necessarily finite. Hence
the magnetisation will fluctuate around a positive or negative equilibrium value for
relatively long periods. But now and then it may switch sign, so that its long time
average vanishes. Figure 10.2 shows the typical behaviour of the magnetisation in
this phase.

A histogram of the probability of occurrence for various magnetisations shows
a double-peaked shape. These problems also show up in the determination of the
magnetic susceptibility which can be expressed in terms of the variance of the
magnetisation.

Several methods exist for avoiding this problem:

• A restriction to – say – positive magnetisation is built in. This option has the
disadvantage that the system is distorted and the consequences of this are not a
priori clear. Moreover the average magnetisation is always positive so it
becomes hard, if not impossible, to see where it would vanish without this
restriction.

• Making a plot of the magnetisation as a function of time and taking averages
only on the plateaux where the magnetisation is either positive or negative. This
method is, however, difficult to apply close to the transition, as the strong
fluctuations there will make it difficult to distinguish these plateaux clearly.

10.3 Importance sampling through Markov chains 307

0 20 40 60 80 100 120

M
ag

ne
tis

at
io

n

10 MCS3

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure 10.2. Magnetisation of a 20 × 20 Ising lattice as a function of time for
an effective coupling constant J/kBT = 0.46. The graph clearly shows plateaux
where the magnetisation fluctuates around positive or negative average values.

• Making a histogram of the magnetisation as mentioned above and taking the
peak positions as the value of the magnetisation. Again, distinguishing the peak
will be difficult when critical fluctuations are strong.

It will be clear that measuring the magnetisation close to the phase transition is a
difficult task which should be avoided if possible.

It should be noticed that the Ising model is formulated without a prescription
for its dynamical evolution. Consequently, there exists no molecular dynamics
method for the Ising model, and Monte Carlo is the only simulation technique
for spin systems such as the Ising model. Using the Metropolis method, the Ising
model becomes dynamic in the sense that its configurations change with time. The
kinetics of this behaviour have been studied, first because it is assumed that the
dynamic evolution of Ising-like systems in nature is governed by processes not too
dissimilar from Metropolis MC and second because the kinetics are relevant to the
reliability of the simulations, in particular near the critical point [13, 14]. Recall
that the dynamical behaviour close to the phase transition is expressed in terms of
the dynamic critical exponent, z, which describes the divergence of the correlation
time (see Section 7.3.2).

Our choice for the matrix ωXX ′ is not the only possibility. We may allow for two
(or more) spins flipping over at the same step, and these spins might be restricted
to be opposite so that the total magnetisation does not change, giving us a constant-
magnetisation algorithm. In all cases, instead of selecting the spins randomly, they
may be chosen in a regular fashion, for example by scanning through the lattice row
by row. In that case, one step in the Markov chain consists of a scan through the
whole lattice. ωX,X ′ is equal for any new configuration X ′ and it remains to show

308 The Monte Carlo method

that the acceptance probability for each such new configuration is proportional to
exp[−β�E(X → X ′)]. This can be done using induction – see Problem 10.7 and
Ref. [15].

The heat-bath method (see above) can be implemented straightforwardly for the
Ising model. Suppose the spin si selected by the random generator is surrounded
by n+ + spins and n− = 4 − n+ − spins. In that case the Hamiltonian for the spin
si in the fixed neighbour configuration is given by

H(si|S − si) = −J(2n+ − 4)si. (10.25)

Therefore, si is given the value + or − with probabilities

P+ = e(2n+−4)βJ

e(2n+−4)βJ + e−(2n+−4)βJ
and (10.26a)

P− = e−(2n+−4)βJ

e(2n+−4)βJ + e−(2n+−4)βJ
. (10.26b)

Using the heat-bath instead of the Metropolis method results in a substantial
decrease of the correlation time. We shall encounter this method again in Chapter 15,
where we present results for the correlation times for the scalar lattice field model.
We shall return to the Ising model in Section 15.5.1 where we discuss algorithms
that are much more efficient near the critical point than the standard MC methods
discussed here.

10.3.2 Monte Carlo simulation of a monatomic gas

The Metropolis MC technique enables us to calculate averages of static quantit-
ies. Therefore, the momentum degrees of freedom are irrelevant and we integrate
these out as in Section 7.2.1, so that the Boltzmann factor depends only on the
configurational potential energy:

ρ(R) = exp[−βU(R)], (10.27)

where R is the combined position coordinate r1, . . . , rN . The configurational poten-
tial energy U(R) is usually written as a sum of pair-potentials as in the previous
chapters.

The Monte Carlo procedure for a monatomic gas proceeds as follows. The matrix
ωXX ′ is chosen such that only one particle may be moved to a new position – it is
selected at random and the remaining particles are kept fixed. The new position
of the particle is chosen at random with a homogeneous distribution within a cube
centred at the old position of the particle.3 The energy difference is calculated and

3 The cubic shape is not essential – it is chosen for convenience.

10.3 Importance sampling through Markov chains 309

the trial configuration is accepted or rejected as usual, with an acceptance rate
exp[−β�E(X → X ′)].

The displacement volume remains to be specified. Any cube should lead to
the correct behaviour as the requirements of the Markov chain (connectedness
and aperiodicity) and the detailed balance condition are fulfilled, but there will
obviously be a particular cube size yielding optimum efficiency, where efficiency
can be defined as the number of statistically independent configurations that we can
generate in a fixed amount of computer time. Obviously, if the cube is chosen very
small, particles are allowed to move over small distances only and it will take many
MC steps to arrive at a statistically independent configuration. On the other hand,
if the cube is chosen too large, the particles will on average make large moves.
This changes the configuration of the system to such an extent that the energy will
increase strongly in the large majority of cases. The probability that the trial move
is accepted will then be vanishingly small and we will spend most of our time
generating configurations which are subsequently rejected, so the configuration
changes very slowly in that case as well.

A widely adopted rule of thumb is to choose the cube such that the acceptance
rate of trial states is on average somewhere between 0.4 and 0.6. Although for hard
sphere systems it should perhaps be lower (around 0.1) [11], this rate is generally
relied upon as being reasonably efficient [2].

When programming the Metropolis method for the case of argon, much of the
MD code (see Section 8.3) can be copied. The particles are again released from face-
centred cubic (fcc) lattice positions. Every trial displacement should be performed
respecting the periodic boundary conditions. Calling half the linear size of the cube
dmax, the trial displacement (without correcting for PBC) in the x-direction is given
in terms of a random number 0 ≤ r < 1 as

xnew − xold = dmax(2r − 1) (10.28)

and similarly for y and z. A neighbour list may be kept as in the MD case, but the
list must be constructed such that we have at our disposal all the neighbours (at
a distance smaller than the neighbour list cut-off rcut−off) for every particle. This
means that we need twice as much storage as in the MD method, where only the
neighbours with an index higher than the particle under consideration are stored in
the list. As in the Ising case, the total potential energy can be updated after every
acceptance of a trial configuration. The same can be done with the virial. Physical
properties to be calculated are the same as in MD simulations: the pressure, the
configurational energy, and the pair correlation function. Any quantity dependent
on the positions only can be determined – remember the momenta are not considered
in the MC method.

310 The Monte Carlo method

programming exercise

Code the Metropolis method for argon, and compare the results with those of
the molecular dynamics program; see Table 8.1.

The heat-bath method turns out impractical in this example. If we were to use
the pure heat-bath method, we would have to allow the particle to move to any
position in the system cell, and then accept or reject this position using the Von
Neumann algorithm (see Appendix B3), but as the vast majority of positions in the
cell are unacceptable, this is very inefficient. One could imagine a ‘hybrid’ heat-
bath method, in which we move the particle to a new position in a small sphere or
cube centred at the old position with a probability distribution determined by the
conditional Hamiltonian H(ri|R − ri), using the symbolic notation of Eq. (10.22).
This can again be done using the Von Neumann method (see Appendix B3). The
difference with the Metropolis method is that the new position is accepted with a
probability which is independent of the previous one (except for the sphere or cube
being centred on the old position). To apply the Von Neumann method, we should
know the minimum of the conditional Hamiltonian, as the acceptance probability in
the Von Neumann method may never exceed 1. We might guess a lower bound for
this minimum, but this will often be much lower than the actual potential minimum,
so that the acceptance rate becomes very small. Because of these difficulties, the
heat-bath method is not used for atomic or molecular systems.

Just as in the case of the Ising model, we may sometimes suffer from critical slow-
ing down due to a diverging the correlation time close to a critical point. Methods
have been developed which dramatically reduce this effect. A recent breakthrough
in this field is the Liu–Luijten algorithm [16].

10.4 Other ensembles

The canonical ensemble is the most natural ensemble for MC simulations. It is,
however, possible to simulate other ensembles by the Metropolis MC method. We
shall consider the isothermal-isobaric, or (NPT) ensemble, and the grand canonical
ensemble. There also exists a microcanonical MC method, [17] but this is seldom
used as it is of little practical importance.

10.4.1 The (NPT) ensemble

The (NPT) ensemble is relevant because temperature and pressure are often kept
fixed in experiments. A Monte Carlo method for this ensemble was first developed
for hard sphere systems by Wood [18, 19] and later extended to smooth potentials
by McDonald [20, 21]. We consider the latter case here.

10.4 Other ensembles 311

The (NPT) ensemble average of a physical quantity A depending on the positions
R = r1, . . . , rN is given as

〈A〉(NPT) =
∫∞

0 dV e−βPV
∫

dR A(R)e−βU(R)

Q(N , P, T)
. (10.29)

Q is the partition function which is related to the Gibbs free energy: G =
−kBT ln Q(N , P, T); see Section 7.1. As the volume is allowed to vary, we extend
the notion of a configuration to include the volume in addition to the set of particle
positions, R = (r1, r2, . . . rN), with the restriction that the latter should all lie
within that volume. A Markov chain must be constructed in which particle moves
and volume changes are allowed. It is, however, impossible to change the volume
independently from the particle positions, as a decrease of the volume might cause
particles close to the wall to fall outside the volume. Therefore, a change in volume
must be accompanied by an appropriate rescaling of the particle positions.

To be more specific, let us consider a cubic volume L×L×L with the edges along
the positive Cartesian axes. We scale the particle positions according to ri = siL
so that the positions si lie within the unit cube. The average (10.29) can now be
written as

〈A〉(NPT) =
∫∞

0 dV e−βPV VN
∫

dS A(LS)e−βU(LS)

Q(N , P, T)
(10.30)

where S denotes the combined positions s1, . . . , sN . When changing the volume, S
remains the same; the change in the real positions ri is accounted for by a change
in the Jacobian VN and the various factors L in (10.30). The Boltzmann weight of
the (NVT) ensemble method is replaced by

ρ(V , S) = e−βPV VN e−βU(LS). (10.31)

A step in the Metropolis Markov chain consists of either a particle move, which
is performed exactly like the particle moves in the (NVT) ensemble method, or a
volume change. The calculation of the ratio of the weights before and after the
volume change consists of calculating the change due to the potential energy,

exp{−β[U(LnewS)− U(LoldS)]} (10.32)

and multiplying this by the ratio of the terms involving the volume coordinate:

exp[−βP(Vnew − Vold)]
(

Vnew

Vold

)N

. (10.33)

The product of (10.32) and (10.33) defines the acceptance ratio of the new config-
uration according to the Metropolis recipe. Eppenga and Frenkel [22] have applied
the method with the logarithm of the volume as the extra coordinate rather than the
volume itself.

312 The Monte Carlo method

The calculation of the potential energy difference associated with a volume
change is rather demanding – as all positions change, we must sum over all pairs of
particles. If the potential can be written as a linear combination of powers (σ/r)k ,
the calculation can be performed very fast, because the energy difference in the
exponent of (10.32) due to a term (σ/r)k can be evaluated as

σ k
∑
i<j

(Laftersij)
−k = σ k


∑

i<j

(Lbeforesij)
−k


 (Lbefore/Lafter)

k; (10.34)

that is, this contribution to the potential energy changes simply by an overall scaling
factor! If the potential is a linear combination of such powers (e.g. the Lennard–
Jones potential), this formula can be used, provided that the contributions to the
total potential energy due to each power are stored separately.

A possible problem needs some attention. If the potential is cut off beyond a range
rcut−off , we must correct for this in the total energy using Eq. (8.18). The correlation
function, g, occurring in this formula is usually replaced by 1, in which case this
term does not contribute to the total energy difference in MC steps. Therefore, the
cut-off distance is usually kept constant. In the special case of a potential consisting
of a sum of powers, where we would like to calculate the potential energy difference
using the simple scaling procedure just described, we would like to scale the cut-off
with the linear system size, rcut−off = Lscut−off , so that (10.34) remains valid. It
should be noted, however, that in that case the correction to the potential (which
depends also on the density N/V , which changes at each rescaling) has to be
included in the calculation of the energy difference using Eq. (8.18).

We have the freedom to choose the relative frequency with which particle moves
and volume changes are attempted. If the scaling method just described for calculat-
ing the potential cannot be used because of invariant intramolecular configurations,
or because of more complicated parametrisations of the potential, calculating the
potential energy difference due to a volume change becomes quite expensive and
volume changes should be attempted at a much lower rate than particle moves. If,
however, the method of Eq. (10.34) is applicable, both types of changes can be
attempted with equal probability.

10.4.2 The grand canonical ensemble

In 1969, Norman and Filinov [23] developed a Metropolis Monte Carlo method
for simulating many-particle systems in the grand canonical ensemble. In this case
the temperature, the system volume and the chemical potential are given, and the
particle number and pressure vary; their average values can be determined to estab-
lish the equation of state. As the particle number does not remain constant, creation

10.4 Other ensembles 313

and annihilation of particles should be possible. Let us write down the probabil-
ity distribution of configurations in this ensemble. The grand canonical ensemble
average of a configurational physical quantity A is given by

〈A〉µVT =
∑∞

N=0 1/N !eβµN�−3N
∫

dRN A(RN)e−βU(RN)

ZG(µ, V , T)
; (10.35)

� = h/
√

2πmkBT in the case of a monatomic gas – it results from integrating out
the momentum degrees of freedom. We have attached a subscript N to the positional
coordinate R because the number of particles is not fixed.

It is clear from (10.35) that the configurations are now defined by the number
of particles N and by their positions RN . The weight factor which replaces the
Boltzmann factor of the (NVT) ensemble now becomes

ρ(N , RN) = e−βU(RN)�−3N/N ! eβµN (10.36)

and the Metropolis algorithm can be applied directly, provided that in addition to
the usual particle moves, we allow for particle creations at random positions and
annihilations of randomly chosen particles. The algorithm for a Metropolis step
then becomes:

• Decide whether the next trial configuration is constructed via a creation, an
annihilation, or a particle move according to the probabilities for these
processes given by the matrix ωXX ′ (note that the trial rates for creation and
annihilation should be equal in order to keep ωXX ′ symmetric). This choice can
be made simply by dividing the interval [0, 1] up into three segments with sizes
equal to the respective probabilities, generating a random number uniformly
between 0 and 1, and then checking in which segment this number lies.

• If a creation is attempted, a random position in the system is selected and the
interactions between a new particle inserted at that position and the remaining
ones are added to yield a potential energy difference �U+ = U(RN+1)−
U(RN). As the probability that the new particle ends up in the volume element
d3rN+1 is given by d3rN+1/V , we accept the creation with a probability

e−β�U+
�−3V/(N + 1)eβµ. (10.37)

• If an annihilation is attempted, one of the existing particles is selected at
random, and its interaction with the remaining particles, �U− = U(RN−1)−
U(RN), is calculated. The annihilation is then accepted with probability

e−β�U−
�3N/Ve−βµ. (10.38)

• Particle moves are processed similarly to the canonical case. Only the potential
energy difference enters into the acceptance probability.

314 The Monte Carlo method

This form of grand canonical Monte Carlo was presented by Norman and Filinov
[23]. Other approaches turn particles into ‘ghost’ particles instead of annihilating
them [24, 25], and these ghosts can be switched on so that they enter the real life
of the simulation again. The Norman–Filinov version is, however, more popular.

It is possible to change the relative rates of the creation and annihilation process
and correct for this by a suitable change in acceptance rates of the corresponding
trial configurations. This was done for example by Saito and Müller-Krumbhaar
[26]; see also Problem 10.3. These methods may be useful in situations where the
acceptance rate for particle creation in the standard method becomes exceedingly
small because of a high value of the chemical potential.

It should be noticed that at high densities, insertion of new particles is likely to fail
because the probability of spatial overlap between the new particle and the existing
ones becomes very high. In this case, the Boltzmann factor is small, not as a result
of a high value of the chemical potential but as a result of the interactions between
the new particle and the existing ones. Methods have been devised for locating
‘cavities’ in such fluids and creating particles preferentially in these regions [27].

More details on grand canonical Monte Carlo methods can be found in
Refs. [2, 28].

10.4.3 The Gibbs ensemble

Studying the coexistence of different phases of the same material, and of different
species that can transform into each other via chemical reactions, is difficult using
the ensembles defined up to now. We know that for coexistence to be possible, the
different phases or species must have equal temperature, pressure and chemical
potential. We shall use the name ‘species’ in the context of both chemical mix-
tures and phase transitions in the following. If we fix pressure and temperature, the
chemical potentials of the different species will in general not be equal and one
species will grow at the expense of the other, until either one of the two has disap-
peared or until the chemical potentials are equal. However, it is often very hard to
achieve equilibrium in such cases since droplets surrounded by domain walls with
a nonvanishing wall tension need a long time to disappear.

Panagiotopoulos [29, 30] has developed a method in which two subsystems are
considered with no interface between them so that they are free to exchange particles
without having to overcome free energy barriers. The method is called ‘Gibbs
ensemble method’. The method is quite simple. Consider a volume V which is
divided into two subsystems with volumes V1 and V2 by a freely movable piston. The
volume V = V1+V2 is fixed, so the total system is described by the (NVT) ensemble.
Furthermore, there is a virtual hole in the piston through which particles can move
from one subsystem to the other. Most importantly: there are no interactions between
the particles of the two subsystems; that is, if a particle moves from V1 to V2, the
energy difference it feels consists of the interactions with its partners in the new

10.4 Other ensembles 315

subsystem (V2) minus the interactions it felt in its previous subsystem (V1). These
moves are actually executed in the Gibbs ensemble MC method, alongside the
usual particle moves within the two subsystems and relative changes of the two
subsystem volumes. In order to be able to vary the subsystem volumes, we scale
the particle positions RK = LKSK where the index K = 1, 2 labels the subsystem
and LK = V1/3

K . The weight of a configuration with subsystem volumes V1 and
V2 = V −V1, subsystem particle numbers N1 and N2 and subsystem configurations
S1 and S2 is given by

ρ(V1, N1, S1, V2, N2, S2) = VN1
1

N1!
VN2

2

N2! e−βU(L1S1)e−βU(L2S2). (10.39)

This expression follows directly from the weight factors for the ensembles con-
sidered in the two previous subsections (the pressure and the chemical potential
occur with V1 + V2 and N1 + N2 respectively, which are constant).

Equation (10.39) determines the detailed balance transition probabilities in a
Metropolis algorithm:

• The matrix ωXX ′ is a probability for volume changes, particle transfers from
subsystem 1 to 2 or vice versa, and for particle moves in either 1 or 2
respectively. The matrix elements for particle moves are chosen such as to allow
for single particle moves only, with equal probability for each particle.

• Particle moves in each subsystem are processed with the probabilities based on
the factor

exp{−β[U(LSnew
K)− U(LSold

K)]}. (10.40)

• For subsystem volume changes we find for the acceptance rate (see also
Section 10.4.1):

∏
K=1,2

exp{−β[U(Lnew
K SK)− U(Lold

K SK)]}
(

Vnew
K

Vold
K

)NK

. (10.41)

• Acceptance rates for particle transfers from subsytem 1 to subsystem 2 involve
the energy difference �U±

K for removing (−) or adding (+) a particle to the
subsystem analogous to the grand canonical MC method:

exp[−β(�U+
2 −�U−

1)]
N1

N2 + 1

V2

V1
(10.42)

and similarly for transfers from subsystem 2 to subsystem 1.

These transition rates define the Gibbs ensemble Monte Carlo method. It should
be noted that this method is still susceptible to the kind of problems described in
connectionwiththegrandcanonicalMonteCarlomethod:movingaparticlefromone
subsystem to another may have a prohibitively low acceptance rate at high densities,
because of the large increase of configurational energy in most such attempts.

316 The Monte Carlo method

It is not necessary to separate the two subvolumes by a movable piston in order
to arrive at equal pressures in both subsystems: it is also possible [30] to couple
both subsystems to a ‘pressure bath’ with predefined pressure P similar to the
(NPT) method described in Section 10.4.1, and imposing no restriction on the
total volume V1 + V2. This method is less suitable for phase coexistence as the
coexistence occurs on a line in the (P, T) diagram. Therefore we need to know
the exact location of that line, as we have to specify T and P in this method.
In the original version, the system will move to the coexistence line by adjusting
pressure and chemical potential simultaneously. In the case of chemical equilibrium,
however, the coexistence region has a finite width and the constant (P, T) version
is useful there. The Gibbs ensemble method has become very popular for studying
coexistence equilibria in recent years [29–32].

*10.5 Estimation of free energy and chemical potential

In Section 7.1 we have already mentioned the difficulties involved in calculating
free energies. We described briefly the method of thermodynamic integration. Other
methods have been proposed and these are easier to understand in the context of MC
trials and this is the reason why we discuss them in this chapter. It should, however,
be noted that the methods described below are not restricted to MC. Some are
applicable within MD, especially in the canonical (NVT) MD method. In view of
the equivalence of ensembles, microcanonical MD allows for using these methods
too [33].

The reader is referred to Refs. [28, 32] for more details concerning the material
in this section.

10.5.1 Free energy calculation

The difficulty in free energy calculation is that it cannot be formulated directly as a
‘mechanical average’, that is, an ensemble average of functions of the coordinates
ri (and pi in the case of MD). Rather, the free energy must be evaluated as a sum
(or integral) over phase space. Clearly, both MD and MC methods sample that part
of phase space from which the dominant contribution to the free energy arises;
however, this does not provide an estimate of the phase space volume integral,
as the frequency with which phase space points are visited is proportional to the
Boltzmann weight, with an unknown proportionality factor. Moreover, it is ques-
tionable whether the number of points visited in a typical simulation would be
sufficient to sample the relevant phase space volume adequately.

It is nevertheless possible to formulate the free energy difference between two
systems with different interactions as a mechanical ensemble average. The first

10.5 Estimation of free energy and chemical potential 317

method for doing this is thermodynamic integration, described in Section 7.1. This
method suffers from the fact that many simulations are needed in order to calculate
free energy differences. We shall now describe a few alternative procedures for this
purpose.

Suppose the two systems have interactions described by the potential functions
U0 and U1. We show now that the partition function of system 1 can be rewritten as
a mechanical average with the Boltzmann factor of system 0. Writing the respective
partition functions as Z0 and Z1 we have

Z1

Z0
=
∑

X e−βU1∑
X e−βU0

=
∑

X e−βU0e−β(U1−U0)∑
X e−βU0

= 〈e−β(U1−U0)〉0, (10.43)

where 〈. . .〉0 represents an ensemble average in system 0.
Applications of (10.43) are restricted to systems for which the regions they tend

to occupy in phase space have appreciable overlap. This can be seen by considering
two systems with the same potential function but kept at different temperatures,
U1 = αU0. If α < 1, system 1 is at a higher temperature than system 0. If we
evaluate the expectation value in (10.43) using MC or MD, the result contains the
contributions to Z1 arising from the equilibrium states of the same system at lower
temperature – hence the free energy estimate will be drastically wrong as a result of
not taking the overwhelming majority of high energy states contributing to Z1 into
account. On the other hand, if α > 1, the system will visit configurations with high
energy and rarely assume one of the lower energy configurations which contribute
to the partition function of system 1. Sufficient overlap between the phase space
volume occupied by the two systems is essential. One way to achieve such overlap
is to simulate a chain of systems with potentials Up that interpolate between U0

and U1, such that subsequent configurational potential functions Up, Up+1 have
sufficient overlap to give reliable results. This means that the amount of computer
time needed is comparable to that of thermodynamic integration, which uses a chain
of different thermodynamic parameters.

Torrie and Valleau have refined the method by adding an extra weight function
W(X) to the average in (10.43), which pushes the system to a different region of
phase space such as to reduce the overlap problem. Their method is called ‘umbrella
sampling’ and we refer to their paper for a description of the method and examples.
[34, 35].

Bennett [33] writes the free energy difference in another way, by defining the
‘Metropolis function’ M(x) as M(x) = min[1, exp(−x)]. Then we have

exp[−β(U0 − U1)] = M[β(U0 − U1)]/M[β(U1 − U0)] (10.44)

from which it follows that

Z0

∑
X M[β(U1 − U0)]e−βU0

Z0
= Z1

∑
X M[β(U0 − U1)]e−βU1

Z1
. (10.45)

318 The Monte Carlo method

The quotients in this expression are canonical ensemble averages corresponding to

Z0

Z1
= 〈M[β(U0 − U1)]〉1

〈M[β(U1 − U0)]〉0
. (10.46)

This equation is now used as follows. We perform two simulations, one with poten-
tial U0, and one with potential U1. We consider switching the potential in system
0 from U0 to U1 as a trial move for which we calculate the acceptance ratio, but
which is in fact never carried out. Taking the average of the acceptance ratios of
such moves gives the numerator of (10.46). Similarly, the denominator is given as
the acceptance ratio of trial switches from U1 to U0, evaluated in the system with
potential U1. Again, this method is reliable only for appreciable overlap between
the two equilibrium distributions in phase space. Bennett’s method can also be
extended with a weight function similar to that of Torrie and Valleau, and Ben-
nett calculates the actual form of this function that gives the most accurate results.
Bennett furthermore describes an interpolation method to estimate the free energy
difference even if the overlap between the distributions is very small. His paper
should be consulted for details [33].

10.5.2 Chemical potential determination

Determining the chemical potential is done using relation (7.13), which enables
us to extract this thermodynamic quantity as a free energy difference between two
systems with N and N +1 particles respectively. The exponential of this free energy
difference can be written as the fraction of two partition functions:

ZN+1

ZN
= N!�3N

(N + 1)!�3(N+1)

∫
dRN+1 exp[−βU(RN+1)]∫

dRN exp[−βU(RN)]
= V

(N + 1)�3

〈
1

V

∫
d3rN+1 exp(−β�U+)

〉
N

= e−βµ (10.47)

where �U+ is the energy of a particle inserted at rN+1 into the N-particle system.
The prefactor V�−3/(N + 1) of the expectation value on the right hand side is
exp(−βµideal), where µideal is the chemical potential of the ideal gas. The term
within angular brackets gives the expectation value of the Boltzmann factor asso-
ciated with the energy difference for the addition of a particle anywhere in the
system. This expectation value is determined via trial additions which are regularly
performed but never accepted. After each MC step we generate a position r at
random in the system and calculate the factor exp[−β�U(rN+1)]. The factor 1/V
within the brackets ensures the proper evaluation of the average. These values are
then used to calculate the required expectation value by dividing by the number
of such trial additions. This method is called ‘Widom’s particle insertion method’

10.6 Further applications and Monte Carlo methods 319

[36]. The method works well, although problems arise for high densities. In that
case the Boltzmann factor is very small for most trials, because the probability that
the core of the new particle overlaps with one of the existing particles becomes
very high. There have been refinements in which the particle insertions are biased
towards the cavities in the fluid [22, 37, 38].

Instead of particle insertions, particle removals could be used to find the chemical
potential. In this case we would use the inverse of Eq. (10.47):

ZN−1

ZN
= N !�3N

(N − 1)!�3(N−1)

∫
dRN−1 exp[−βU(RN−1)]∫

dRN exp[−βU(RN)]
= NV�3〈 1

V

∫
d3rN exp(β�U−)〉N = e+βµ. (10.48)

However, generalisation of the method proposed above to this case usually fails as
the sampling of exp(β�U−) is very inefficient. The reason is that we are trying to
calculate 〈exp(β�U−)〉 whereas the Boltzmann weight factor used in the average
includes a factor exp(−β�U−). The latter squeezes the high-�U contributions
off and these contribute significantly to the average. Shing and Gubbins [37] have
formulated an efficient method combining particle insertions and removals.

10.6 Further applications and Monte Carlo methods

10.6.1 Generating ensembles of polymers

An important topic in statistical mechanics is the behaviour of polymers: long and
flexible chain-like molecules. These can be studied as a melt (a kind of liquid
consisting of polymers) or in solution. A nice review on models, theory and Monte
Carlo methods for this problem can be found in Ref. [39]. We focus here on the
problem of a dilute polymer solution. In that case, if we can somehow model the
effect of the solvent in terms of a simple interaction, the problem reduces to studying
ensembles of individual polymers in different conformations. If the solvent is good,
then the free energy for a polymer segment which is on all sides embedded in the
solvent is lower than that of a polymer segment which is close to another polymer
segment, without solvent molecules in between them. This picture boils down to
an effective repulsion of the polymer segments.

It is useful to make a model in which the important properties of the polymer are
preserved, whereas the details of its structure on the atomic scale have disappeared
from the description. This is related to the idea of universality (see Section 7.3.2):
only a few major features of the interactions at small length scales influence the
behaviour on longer length scales; the details do not matter. We therefore make
a ‘mesoscopic’ model of the polymer. It is a chain consisting of beads: the beads

320 The Monte Carlo method

represent segments of the polymer; the segments in turn represent groups of atoms.
These atomic groups have a strong short-range interaction, as they are chemically
bonded. Remote segments influence each other through a Van der Waals attraction,
and they repel when they overlap. However, the solvent effect described above
represents another type of repulsion which forces the beads to remain at a minimum
distance of at least a few solvent layers. All these characteristics can be summarised
in the following polymer model:

• The polymer consists of N beads, which are represented as point particles.
Neighbouring beads have a fixed mutual distance. This is the only interaction
between them.

• Remote beads feel a repulsion at short distances and a Van der Waals attraction
at longer distances. Their interaction can be modelled by a Lennard–Jones
shape (see Eq. (7.33)).

Note that if we switch off the Lennard–Jones interaction, the polymer represents a
random walk: this is called the ideal chain case. If, on the other hand, the beads repel
each other, we are dealing with a self-avoiding walk (SAW) as the chain cannot cross
itself. Often, polymers are studied on a lattice, which is an even further restriction
of the model, but asymptotic (large length scale) behaviour is not sensitive to this.
For a review of lattice algorithms, see Ref. [40]. Here we shall discuss algorithms
for simulating the off-lattice model. Most of the methods used in this field have a
very similar counterpart in the lattice case.

Note that the behaviour of the polymer is independent of temperatures for high
temperatures. This is because the Lennard–Jones interaction is then dominated by
the repulsive term, which is always noticeable, even when the temperature is very
high. The quantities of interest are the end-to-end distance, which is the distance
from the first to the last bead, and the radius of gyration (see Problem 1.2). We shall
restrict ourselves here to studying the end-to-end distance as a function of N for
polymers in two dimensions.

Our aim is to generate (an ensemble of) polymer configurations which are dis-
tributed according to the canonical distribution at a given temperature. Then we can
calculate physical properties for this temperature as an average over the ensemble.
Now let us consider possible steps in a standard Metropolis algorithm. We cannot
move a single bead, as we should keep the distance to its neighbours constant. An
obvious alternative is to choose a bead at random and change the angle between
this bead and its two neighbours by some amount. If the polymer is ‘curled up’,
which turns out to be not unlikely in typical simulations, there are very few such
moves that will be accepted. Algorithms based on this type of moves are called
‘pivot algorithms’: the selected bead acts as a pivot for changing bending or (in
three dimensions) dihedral angles.

10.6 Further applications and Monte Carlo methods 321

Another approach is inspired by a particular type of motion of polymers: repta-
tion. This is a snake-type motion which, in the case of the Monte Carlo algorithm,
works as follows. A trial step consists of removing the last bead (the ‘tail’) of
the polymer and this is attached to the head. Acceptance of this move proceeds
according to the standard Metropolis criterion.

The previous methods are typical Metropolis methods, in the sense that every
conformation is strongly correlated with the previous one, and these correlations
may result in extremely slow relaxation. Another approach tries to avoid this correl-
ation by generating a new polymer at each step. This must be done quite carefully
as simply adding beads will typically result in very unprobable conformations. This
is because there will certainly be overlaps or crossings. We should therefore add
new segments to the polymer carefully, avoiding high-energy conformations.

A method in which this is done is the Rosenbluth algorithm [41]. We start with
two beads on positions (0, 0) and (1, 0) (the distance between the beads is taken to
be 1). Now we add the third one. This is characterised by the angle made by the three
beads. The Metropolis algorithm suggests that it would be wise to add the third one
with a distribution exp[−E(θ)/(kBT)], where E(θ) is the interaction energy of the
third bead (of angle θ) with the first two. This is, however, difficult to do if we do not
want to use many trial steps. Therefore we discretise the space of possible θ-values
to obtain a finite number of, say, six different values of θ , with a random offset
and spaced by 2π/6. Now we calculate the weights w(l)j = exp[−E(θj)/(kBT)]
for these six θ -values numbered by j (l denotes the bead we are adding), and their
sum W (l):

W (l) =
∑

j

exp[−E(θj)/(kBT)]. (10.49)

We accept angle j with probability w(l)j /W
(l). This is done by the ‘roulette-wheel’

algorithm. In fact, what we do is divide up the interval [0, 1] into six segments of size
w(l)j /W

(l). Then we calculate a uniform random number between 0 and 1, and we
check which segment j it corresponds to. Then we choose the corresponding θj. The
final Boltzmann weight of the polymer is exp[−Etotal/(kBT)], where Etotal is the
total energy of the chain. Some reflection may convince you that this is equivalent
to the product of the wj:

exp[−Etotal/(kBT)] =
N∏

l=3

w(l)j (10.50)

where j denotes the choice which has been made for the angle θ at step l.
We choose as parameters of the Lennard–Jones potential ε = 0.25, and σ = 0.8

(the distance between the polymers is taken to be 1). If the algorithm does what
we want it to do, it should generate the polymers distributed according to (10.50).

322 The Monte Carlo method

Calculating the actual probability for a particular configuration to occur, we find

P =
N∏

l=3

w(l)j

W (l)
. (10.51)

We see that we are off by a factor
∏

l W (l), so we must correct for this by storing
this number into a weight factor for calculating properties of the polymers in the
generating ensemble. The weighting factor thus compensates for the fact that the
actual probability of occurrence does not match (10.50). The method described here
is known as ‘method A’. If we were to take all θ angles with an equal probability
of 1/Nθ , where Nθ is the number of angles (six in our example), then we should
take for the weights of each polymer

∏N
l=1 w(l)j (check this!). This is known as

‘method B’.
An interesting quantity to look at is the end-to-end distance as a function of the

number of beads N . In fact, the Rosenbluth algorithm is extremely useful for this
case as it generates polymer populations for all lengths up to the maximum set
in the simulation. We have seen that the polymer corresponds to a self-avoiding
random walk in two dimensions. It turns out that the end-to-end length scales with
N as

R ∝ Nν , (10.52)

where ν is an exponent which is 0.75 in two dimensions. The crosses with error
bars in Figure 10.3 show the scaling behaviour as determined in the Rosenbluth
algorithm. For this figure, 10 000 polymers were grown up to a size of 250 beads.
We see that the simulation reproduces the scaling behaviour well for small sizes, but
when the sizes exceed 100, the errors become rather large. This seems surprising
as the population sizes are equal for all polymer lengths, and the statistics for long
polymers should only become better (unless the fluctuations in R increase with
polymer length). The reason behind these fluctuations is the fact that the algorithm
generally does not suppress high-energy configurations sufficiently; they will be
accepted, but with a low weight. This effect becomes more pronounced for long
chains – therefore we have a large population with only a few polymers dominating
the average, and most members of the population not contributing to better statistics.

A solution to this problem is offered in the ‘pruned–enriched Rosenbluth method’
(PERM) by Grassberger [42], in which the population evolves towards a more
balanced distribution by removing the ‘bad’ configurations from it and replacing
them with copies of the good ones which can then further evolve independently
in the simulation. Before going into details, we consider the standard Rosenbluth
algorithm formulated in a recursive implementation:

Set PolWeight to 1;
ROUTINE AddBead(Polymer, PolWeight, L)

10.6 Further applications and Monte Carlo methods 323

 1

 10

 100

 1000

 10 000

 10 100

N

R
2

Figure 10.3. Scaling behaviour of the square of the end-to-end length R as a
function of N on a semi-log scale. Crosses with error bars: Rosenbluth algorithm.
Double crosses: PERM algorithm. The circles are the population sizes in the PERM
algorithm. The drawn line has the form a(N−1)0.75, where a is chosen to fit the data.

Calculate the weights wL
j and their product WL;

Add bead number L;
PolWeight = PolWeight∗WL;
IF L<N THEN

AddBead(Polymer, PolWeight, L+1);
END IF

END ROUTINE AddBead.

A careful read of this pseudocode should convince you that this routine is equivalent
to the Rosenbluth algorithm described above. The PERM algorithm cleverly uses
this recursive type of procedure in order to perform pruning (i.e. the removal of
weak members of the population) and enrichment (the proliferation of the strong
members) in a single recursive procedure without having to analyse an entire pop-
ulation. Note that by ‘weak’ we denote conformations having low weight and vice
versa for ‘strong’.

Now consider a polymer which has a relatively large weight. This is ‘enriched’
in the following way. We create two members of this polymer at the next step (i.e.
when adding the next bead) and give them each a weight which is half of the weight

324 The Monte Carlo method

of their ‘parent’. This causes the total weight of this conformation in the population
to be constant. Suppose we have an upper limit (called ‘UpLim’) of the weight
above which polymers are enriched. The recursive code would then contain the
following lines:

IF (PolWeight>UpLim) THEN
NewWeight = 0.5*PolWeight;
AddBead(Polymer, NewWeight, L+1);
NewWeight = 0.5*PolWeight;
AddBead(Polymer, NewWeight, L+1);

END IF

This does precisely what we want. Note the copy we have made of PolWeight
into NewWeight. This is necessary when the call to AddBead would change its
PolWeight variable on exit; this depends on the type of call and on the possibilities
offered by the computer language.

Next we consider pruning. This means we must remove weak members from
the population, but we are not allowed to change the distribution. This is realised
by removing weak polymers with probability 1/2, and multiplying the weight of
those that happen not to be removed by a factor of 2. The criterion for removal
is determined by a lowest weight LowLim. This is done in the following piece of
code:

IF (PolWeight<LowLim) THEN
Choose random number R uniformly between 0 and 1;
IF (R<0.5) THEN

NewWeight = 2*PolWeight;
AddBead(Polymer, NewWeight, L+1);

END IF;
END IF

The choice of UpLim and LowLim determine whether the population will grow,
shrink or remain stationary. The right choice depends on the average weight
‘AvWeight’ at step L of the procedure. This average is updated for every new
polymer reaching this length. UpLim and LowLim are then taken as multiples of
the ratio of this average weight and the weight ‘Weight3’ at the shortest length (3
beads):

UpLim = α ∗ AvWeight/Weight3. (10.53)

and similar for LowLim. A good value for α for UpLim is 2, and for LowLim we
take 1.2. The values of α may depend on the level L. It is possible to remove this
dependence by multiplying the polymer weight by a constant at each addition step.

10.6 Further applications and Monte Carlo methods 325

In this example that constant should be near 1/(0.75Nθ), where Nθ is the number
of choices for the angle θ (6 in the example).

programming exercise

You can now try to code the PERM algorithm. If you have done it correctly
you should be able to reproduce the double crosses in Figure 10.3. As you
can see, they fall on top of the theoretical fit which has ν = 3/4.

It should be mentioned that there exist many more methods than described in this
subsection. In particular we mention the configurational bias Monte Carlo (CBMC)
method by [43].

10.6.2 Tempering and replica exchange

If we want to simulate a disordered system at low temperatures, we run into the
problem that many low-energy states exist. Once the system finds itself in phase
space near such a low-energy state, it can escape only with great difficulty: the
system is trapped. In order to sample the phase space, we must visit a large set of
minima accessible at the relevant temperature, and therefore we should somehow
‘push’ the system over the barriers separating the minima. The problem which arises
is that pushing the system over the barrier is likely to destroy the detailed balance
condition. Methods preserving detailed balance and moving the system efficiently
through phase space are the simulated tempering Monte Carlo [44], the replica
Monte Carlo [45, 46] and the replica exchange [47] method. All these methods
are based on the idea that the system can move from one minimum to another by
repetitive heating and cooling. The problem is to heat and cool efficiently such
that moves to different temperatures have a reasonable acceptance probability and
that overall detailed balance is preserved. We briefly describe the replica exchange
method in this section.

M replicas of the system under consideration are simulated in parallel, each at
a different (inverse) temperature β1, β2, . . . ,βM . We take β1 < β2 < . . . < βM .
We now alternate a number of ordinary MC steps for each of the replicas by an
exchange of the replica configurations, or, equivalently, of the replica temperat-
ures. Exchanging the temperatures just involves assigning different numbers to the
temperatures in the two replicas but the temperatures are then no longer ordered.
Exchanging the configurations will be more time-consuming.

The partition function describing the collection of replicas is given as

Z =
M∏

m=1

Z(βm) = Z(β1)Z(β2) . . . Z(βM). (10.54)

326 The Monte Carlo method

This can also be written as

Z =
∑

Xm;m=1,...,M

exp

(
−

M∑
m=1

βmEXm

)
, (10.55)

where Xm denotes a system configuration of replica m. We can interpret this partition
function as that of a large system, encompassing all replicas, with a ‘Boltzmann
factor’

P(β1, X1; . . . ;βM , XM) = exp

(
−

M∑
m=1

βmEXm

)
. (10.56)

Note that the βm are stochastic variables in this formulation. They can exchange
their values but are subject to the condition that the set of values taken on by
the βm remains the same. For this ensemble we perform a Metropolis Monte Carlo
algorithm. Suppose we let the replicas evolve independently according to the stand-
ard Metropolis algorithm. Then obviously detailed balance is satisfied. After a
number of steps, however, we exchange the configurations (or the temperatures)
pair-wise according to

βn, Xn;βm, Xm → βn, Xm;βm, Xn. (10.57)

This means that a low-temperature replica receives a high(er) temperature configur-
ation. At higher temperatures, in particular above the phase transition temperature,
the system moves easily over all the free energy barriers in phase space. If the low-
temperature replicas move to such high temperatures and back, their configuration
will in general have moved to different (free) energy minima.

We calculate the expectation values of physical quantities A at any of the tem-
peratures by averaging over all replica configurations at that particular temperature
(perhaps omitting the first few MCS just after a temperature change). Note that
exchanges are performed only between adjacent temperatures (βm and βm+1 if
the temperatures are ordered), as the acceptance rate decreases exponentially with
temperature difference.

Let us calculate the transition probability for temperature exchange. The ratio
between a forward and a backward move is given by

T(βn, Xn;βm, Xm → βn, Xm;βm, Xn)

T(βn, Xm;βm, Xn → βn, Xn;βm, Xm)
= exp[−βm(EXn − EXm)− βn(EXn − EXm)]

= exp[−(βm − βn)(EXn − EXm)]. (10.58)

This implies that a trial step in which the temperatures are exchanged is accepted
with a probability min{1, exp[−(βm − βn)(EXn − EXm)]}.

For the method to be successful it is necessary that all Metropolis steps have a
reasonable acceptance. It is clear that the acceptance rate is sensitive to the differ-
ence between adjacent temperatures. For the acceptance rates to be of order 1, the

10.6 Further applications and Monte Carlo methods 327

exponent
−(βm − βn)(EXn − EXm) (10.59)

should be of order 1. Note that before the exchange, EXn will be close to the equi-
librium energy at temperature βn, and similarly for EXm . This implies that their
difference will be approximately

EXn − EXm ≈ C(βm − βn), (10.60)

where C is the (total) specific heat, evaluated near the temperatures βm and βn (we
assume that C(β) does not vary too strongly between both temperatures – note that
this is not justified if the temperatures are close to a critical phase transition). We
see that for the acceptance rate to be of order 1, we should have

� ≡ (βm − βn)(EXn − EXm) ≈ C(βm − βn)
2 = O(1). (10.61)

From the fact that the total specific heat is an extensive quantity, we see that

βm − βn ∼ 1√
N

. (10.62)

In practice, the set of β values is determined dynamically, such as to make the
acceptance rate approximately constant. This is done as follows. We start with
a set of temperatures {βn}. For these we perform a number of MCS and replica
exchanges. The acceptance rates pm for temperature βm are stored and then the
latter are updated according to the recipe:

βnew
1 = β1;

βnew
m = βnew

m−1 + (βm − βm−1)
pm

ptarget
,

where ptarget is the ‘target’ acceptance rate which is taken equal for all temperatures.
In this way we ensure that the replicas will cycle through all temperatures.

This method has been applied very successfully to spin-glasses and many other
examples. For a review, see Ref. [48].

10.6.3 Walking in a rough landscape

In everyday life, we often encounter the problem of finding the optimum solution to a
problem among many candidate solutions. An example is the well-known ‘travelling
salesperson problem’ (TSP) which consists of finding the shortest path connecting a
set of cities to be visited by a salesperson. This problem is related to design problems
in electronic circuits, where the wiring must be done as efficiently as possible. The
TSP is an example of so-called combinatorial optimisation problems, as the aim is
to find the optimum among all permutations of the cities. Another type of problems

328 The Monte Carlo method

is formulated in a continuum phase space. An example is finding the minimum-
energy conformation of a polymer. In particular, the problem of protein folding has
received much attention. Although the equilibrium conformations of a protein are
usually determined by the minimum of the free energy, in many approaches it is a
(sometimes phenomenological) potential energy which is to be minimised.

The problems described here have something in common: it is possible to find
many good solutions, but there is only one, or at most a few optimal ones. To
define the problem, we should first specify what makes a solution the ‘best’. This is
done by assigning to each possible candidate solution a ‘merit function’ (or ‘fitness
function’). In the case of the TSP, the merit function is the length of a path. In the
case of the polymer conformation it is the potential energy. The optimum solution
is defined as the one with the lowest value of the merit function (if the problem is
to find the maximum of some quantity we choose the negative of that quantity to
be the merit function).

Now we can define the problems in a more abstract way. It is convenient to
consider continuum problems. The candidate solutions (for example the possible
conformations) form a phase space, and the merit function has some complicated
shape on that space – it contains many valleys and mountains, which can be very
steep. The solution we seek corresponds to the lowest valley in the landscape. Note
that the landscape is high-dimensional. You may think, naively, that a standard
numerical minimum finder can solve this problem for you. However, this is not
the case as such an algorithm always needs a starting point, from which it finds
the nearest local minimum, which is not necessarily the best you can find in the
conformation space. The set of points which would go to one particular local min-
imum when fed into a steepest descent or other minimum-finder (see Appendix
A4) is called the basin of attraction of that minimum. Once we are in the basin
of attraction of the global minimum we can easily find this global minimum; the
problem is to find its basin of attraction.

There exist many methods for dealing with this problem. In this section we review
a few of these only briefly. One method is to generate configurations at random or
on a regular grid in the (high-dimensional) phase space, and then finding the nearest
local minima for all these point using a standard function minimisation such as the
conjugate gradient method (see Appendix A4). It is however possible to have the
simulation let the system probe preferentially those regions where the energy is low.
Many of these approaches are based on the ideas presented earlier in this chapter.
Note that we simply want to find a (near)-global minimum of the merit function –
detailed balance is no longer a concern.

Suppose that you were to find the minimum energy of a polymer studied in the
previous subsection. You then could generate a low-temperature ensemble and, for
each conformation you encounter, find the nearest local minimum. This has been

10.6 Further applications and Monte Carlo methods 329

done by Grassberger for polymer chains consisting of two different types of beads
[49]. This method is closely related to simulated annealing [50] which is a special
version of the Metropolis algorithm. In simulated annealing, the merit function is
viewed as an energy. Applying the standard Metropolis ensemble, we would gener-
ate configurations distributed according to the Boltzmann factor exp[−E/(kBT)].
In simulated annealing, we slowly cool the system down. The idea behind this is
that at higher temperatures, the system can easily hop over the barriers, thereby
probing a large part of the phase space. On cooling the system, it samples only
the lower energy domains and finally ends up in one of the deepest valleys. It is
obviously efficient to use various samples of the system, so that in fact a popula-
tion of systems is cooled down and we finally take the one that has reached the
lowest energy. Alternatively, one could heat up the system again and then anneal
it once more and so on. It is always advisable in these simulations to combine the
stochastic algorithm with a deterministic minimum finder such as the conjugate
gradient method, in order to efficiently find the deepest point of an attraction basin
from each point visited.

The idea behind these method is called ‘configurational search’ for obvious reas-
ons. Another concept in this field is ‘energy sculpting’. This trick tries to overcome
the difficulty that a method focusing on the low-energy parts of the phase space will
automatically avoid the (sometimes) high (free) energy barriers separating the dif-
ferent energy minima. This is done by replacing the energy (i.e. the merit function)
by a modified one. An extreme version of this is the basin hopping method by Doye
and Wales which was used to find optimal conformations of Lennard–Jones clusters
[51]. In this method, the energy of a point is replaced by the energy minimum of the
attraction basin the point is in. This implies that all points in an attraction basin have
the same (modified) energy. The energy steps up or down when moving from one
attraction basin to another – the barriers between the basins are entirely removed.

Finally, another method deserves mention: the genetic algorithm (GA) [52, 53].
This algorithm is inspired by the ideas of evolution theory and employs these to
find optimal solutions to combinatorial or continuous problems. These algorithms
are based on encoding any point in phase space into a linear chain. This can be a
binary chain. For example, let us suppose that our merit function f depends on N
variables xj:

f = f (x1, . . . , xN). (10.63)

We restrict the range of acceptable values xj to some finite interval. Within this
interval, we allow for a number (256 or 512, say) of different equidistant val-
ues. These values can be coded as a bit-string. It is also possible to run the
algorithm with the string of reals x1, . . . , xN . The algorithm now manipulates a
population of such strings. We start with a pool of M individuals. Then we do the

330 The Monte Carlo method

following steps.

WHILE No acceptable solution found DO
Calculate fitness (merit function) of all individuals;
Enrich the fit ones by letting them create identical clones;
Weed out the individuals with low fitness;
Mate randomly chosen pairs of the population and

and have them create offspring;
Mutate;

END WHILE.

The enrichment through cloning and the weeding of low-fitness individuals is car-
ried out along the same lines as the PERM algorithm discussed above. The size
of the population should remain more or less constant in this process. Mating is
a process in which the two members of a pair of chains are cut into two pieces at
some randomly chosen chain position. The left piece cut off from chain 1 is then
connected to the right part of chain 2 and vice versa.

Mutation is a process in which one of the bits is chosen at random and then
flipped. This is necessary to keep variety in the population. The necessity for this is
seen by considering the case in which some segment is the same in all chains. This
segment would always remain the same in all steps except when mutation takes
place. This interesting method has been used for a large variety of problems [52].

*10.7 The temperature of a finite system

We conclude this chapter with an intriguing aspect of the simulation of finite
systems. In molecular dynamics, the microcanonical ensemble is the ‘default
ensemble’, as the solution of the equations of motion leaves the total mechan-
ical energy constant. On the other hand, in Monte Carlo, the Metropolis algorithm
naturally leads to the canonical ensemble. We know from equilibrium statistical
mechanics that the different ensembles are ‘equivalent’, which means that physical
quantities evaluated with the same values of the thermodynamic quantities in dif-
ferent ensembles are the same up to corrections of order 1/N . For finite systems, the
two therefore cannot be compared to very high accuracy. However, with a careful
analysis of the proper definitions of the temperature, we can make comparisons
between the two as we shall now show.

Traditionally, the temperature in microcanonical molecular dynamics is calcu-
lated from the equipartition theorem. There is however a subtlety in that the number
of degrees of freedom for an N-particle system is not 3N , but 3N − 3, where the
three degrees of freedom of the centre of mass must be subtracted as they are fixed
in the molecular dynamics algorithm – only the internal momenta contribute to the

10.7 The temperature of a finite system 331

temperature. This procedure thus leads to the expression

kBT = 2
〈K〉

3N − 3
(10.64)

for the temperature (K is the total kinetic energy). Although this expression is
widely used, it is not correct within the microcanonical ensemble if we use the
thermodynamic definition of temperature

1

T
=
(
∂S

∂E

)
N ,V

. (10.65)

where S = kB ln�, together with the standard expression for �:

� = kB ln

[∑
allstates

δ(E − Hstate)

]
, (10.66)

where Hstate is the Hamiltonian of the system.
For a system of N particles in three dimensions, taking into account that the total

momentum is conserved, this leads to

� = 1

h3N−3N !
∫
δ[E − H(P, R)] d3N−3P d3N R, (10.67)

where h is Planck’s constant. Note, however, that other expressions for the entropy
can also be used [54]. Working out the derivative of this entropy with respect to the
energy as prescribed by (10.65) does not seem very easy, but it can be done when
we first use the explicit quadratic expression for the kinetic energy in the expression
for the entropy:

� = 1

h3N−3N !
∫
δ

[
E − P2

2m
− V(R)

]
d3N−3P d3N R. (10.68)

Now we write d3N−3P = ω(3N − 3)p3N−4 dp where p = |P| and ω(3N − 3)
is the surface of a hypersphere in 3N − 3 dimensions. Furthermore, substituting
K = p2/(2m), the integral becomes

� = 1

h3N−3N !
∫
δ[E − K − V(R)]ω(3N − 3)(2mK)(3N−3)/2 dK

2K
d3N R. (10.69)

Working out the delta function then leads to

� = ω(3N − 3)

h3N−3N !
∫

[2m(E − V)](3N−5)/2d3N R. (10.70)

332 The Monte Carlo method

Taking the derivative of S = kB ln� with respect to energy then leads to the
following expression for the temperature:

1

kB

1

T
= 1

kB

∂S

∂E
= 3N − 5

2

∫
(E − V)(3N−7)/2d3N R∫
(E − V)(3N−5)/2d3N R

= 3N − 5

2

〈
1

E − V

〉
= 3N − 5

2

〈
1

K

〉
. (10.71)

The difference between this expression for the temperature and that obtained
from the equipartition theorem is of the order of 1/N , so it is not obvious why
people bother about subtracting the 3 from the total number of degrees of freedom
when the adopted convention still differs by an order of 1/N from the correct value.
However, the good reason for sticking to this convention is that it is adopted in most
of the MD codes.

We now consider the question how properties obtained in, say, the canonical
ensemble, compare with those obtained in the microcanonical ensemble. When
we calculate the expectation value of some physical property in one ensemble
for particular values of the system parameters, we can measure the expectation
values of the variables conjugate to the system parameters and then evaluate the
expectation value of the property at hand in any other ensemble. As we have already
noted in the beginning of this section, the differences between values obtained in
different ensembles will be of the order of 1/N . To be specific, we may perform
a molecular dynamics simulation in the microcanonical ensemble at some energy
E∗ and calculate some configurational average. If on the other hand we calculate
the same configurational average in a canonical Monte Carlo simulation, we should
find differences of order 1/N . We shall now show that it is possible to calculate this
difference analytically if the quantity under consideration is the total energy.

The expectation value of the total energy in the canonical ensemble is

〈E〉 =
∑

i Eie−βEi∑
i e−βEi

. (10.72)

The sum can be rewritten when we collect terms with the same energy. According
to the definition of entropy we have exp[S(E)/kB] states at energy E:

〈E〉 =
∫

Ee−βE+S(E)/kB dE∫
e−βE+S(E)/kB dE

. (10.73)

We can approximate the term ρ(E) = exp[−βE + S(E)/kB] as follows:

ρ(E) ≈ exp

[
−βE∗+S(E∗)/kB+�E2

2kB

∂2S(E∗)
∂E2 +�E

∂S(E∗)
∂E

+�E3

6kB

∂3S(E∗)
∂E3

]
.

(10.74)

10.7 The temperature of a finite system 333

This is a Taylor expansion of the exponent around its maximum E∗ which satisfies

β = 1

kB

∂S(E∗)
∂E

. (10.75)

We now introduce the two parameters

α = 1

kB

∂2S(E∗)
∂E2

; γ = 1

kB

∂3S(E∗)
∂E3

. (10.76)

The expectation value of the energy can be evaluated straightforwardly in terms of
these parameters:

〈E〉 =
∫∞
−∞ e−α�E2

(1 + γ�E3)(E∗ +�E) d�E∫∞
−∞ e−α�E2

(1 + γ�E3) d�E
. (10.77)

The leading term is simply E∗. Realising that only even powers of �E survive in
the Gaussian integrals, we obtain for the correction

〈E〉 = E∗ +
∫∞
−∞ e−α�E2

γ�E4 d�E∫∞
−∞ e−α�E2 d�E

= E∗ − 3γ

4α2
. (10.78)

The derivatives α and γ can be determined in a way similar to that used to find
the temperature calculation above, with the results

α = 3N − 5

4

[
(3N − 7)

〈
1

K2

〉
− (3N − 5)

〈
1

K

〉2
]

, (10.79)

and

γ = (3N − 5)(3N − 7)(3N − 9)

8

〈
1

K3

〉

− 3
(3N − 5)2(3N − 7)

8

〈
1

K2

〉 〈
1

K

〉
+ 1

(3N − 5)3

4

〈
1

K

〉3

. (10.80)

From the fact that S and E are both extensive variables, we see that α ∼ 1/N
(which ensures that the energy fluctuations are of order 1/

√
N), whereas γ ∼ 1/N2.

Therefore, the relative correction to the energy 3γ /(4α2) is still of order 1/N . This
is significant when N is not too large.

Armed with these expressions it is possible to relate the microcanonical energy
E∗ to the canonical one. We now give results for a test run involving only eight
particles, as for this number the differences are very clear. Accurate simulations
for particles with Gaussian repulsion V(r) = exp(−4r2) have been performed. We
have used this potential because it smooth and does not suffer from the periodicity
(it decays rapidly). The kinetic energy K and the expectation values of 1/K , 1/K2

334 The Monte Carlo method

and 1/K3 are determined in a molecular dynamics simulation at constant energy in
order to calculate α and γ according to (10.79) and (10.80).

Using a target temperature (according to the equipartition theorem) of 1.0, a
(measured) temperature of 1.043 (using the correct definition (10.71)), and a total
energy of 10.913 ± 0.003 (in reduced units) have been found in our simulation.
This is the energy E∗. In the canonical ensemble, we should add the correction
3γ 2/(4α2). Adding the correction, we obtain an energy of 11.94 + 0.03 in natural
units. An MC calculation with a temperature of 1.043 gives E = 11.96, in good
agreement with the prediction. The statistical errors in α and γ are difficult to
calculate because the inverse powers of the kinetic energy are correlated quantities.
The best method is to calculate the correction from several independent simulations
and infer the error from these results, or by data-blocking of the correction over
a long run (see Section 7.4). Note that in order to calculate the canonical kinetic
energy, K = 3(N − 1)kBT/2 should be used rather than 3NkBT/2 in order to relate
the energy to the molecular dynamics energy which has three degrees of freedom
less (in the canonical ensemble, the equipartition is satisfied even for small particle
numbers).

Obviously, the practical value of this calculation is limited – the main point is to
show that careful analysis is necessary and possible for systems consisting of small
numbers of particles (such as droplets).

Exercises

10.1 Consider a Monte Carlo algorithm for the two-dimensional Ising model in which the
sites are scanned in lexicographic order, that is, each row is scanned from left to
right, starting with the top row and proceeding towards the bottom row. We want to
show that this method satisfies the detailed balance criterion. A sweep through the
entire lattice is considered as a single step in the Markov chain.

(a) Explain why this Markov chain is ergodic.
The proof that the transition probabilities satisfy detailed balance is done by
recursion. Suppose that the lattice contains N sites, and that for the lattice
containing N − 1 sites the algorithm satisfies detailed balance.

(b) Show that if the N th spin is flipped according to the usual Metropolis algorithm,
the sweep over the lattice with N sites satisfies detailed balance.

10.2 [C] Code the heat-bath algorithm for the Ising model and analyse the correlation
time (see Section 7.4), in particular close to the critical temperature. Compare the
results with the standard Metropolis algorithm.

10.3 Consider the Norman–Filinov method for a system with a large chemical potential.
From Eqs. (10.37) and (10.38) we see that in that case the acceptance rate for
creation is much smaller than that for annihilation. Therefore we use a generalised

References 335

Metropolis method, in which creations are tried much more often than annihilations.
Suppose the trial probabilities for creation and annihilation are PC and PA

respectively.
Show that the acceptances should be modified as follows:

• The acceptance probability for creation is

Pacc = min(1, qXX ′)

with

qXX ′ = e−β�U+
�−3V/(N + 1)eβµ

PA

PC
.

• Similarly for annihilation:

Pacc = min(1, qXX ′)

with

qXX ′ = eβ�U−
�3N/Ve−βµPC

PA
.

Show that this modification can be implemented by a suitable shift in the chemical
potential. Find this shift.

10.4 [C] Consider the methane (CH4) molecule of Problem 8.12. In that problem we have
given the potential energy of the molecule in terms of stretching and bending terms.
Write a Monte Carlo simulation for simulating this molecule at a given temperature.
Compare the results with those obtained in Problem 8.12.

References

[1] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods. London, Methuen, 1964.
[2] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Oxford, Oxford University

Press, 1989.
[3] K. Binder, ed., Applications of the Monte Carlo Method in Statistical Physics, Topics in Current

Physics, vol. 36. Berlin, Springer, 1984.
[4] K. Binder, ed., Monte Carlo Methods in Statistical Physics, 2nd edn. Topics in Current Physics,

vol. 7. Berlin, Springer, 1986.
[5] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. New York, John Wiley, 1986.
[6] K. Binder and D. W. Heermann, eds., Monte Carlo Simulation in Statistical Physics. New York,

Springer, 1988.
[7] G. T. Barkema and M. E. J. Newman, Monte Carlo Methods in Statistical Physics. Oxford,

Oxford University Press, 1999.
[8] D. Frenkel, Monte Carlo Simulations. Utrecht, Van ’t Hoff laboratory, University of Utrecht,

The Netherlands, 1988.
[9] F. James, ‘Monte Carlo theory and practice,’ Rep. Prog. Phys., 43 (1980), 1145–89.

[10] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, ‘Equation of
state calculations by fast computing machines,’ J. Chem. Phys., 21 (1953), 1087–92.

[11] W. W. Wood and J. D. Jacobsen, ‘Monte Carlo calculations in statistical mechanics,’ Proceed-
ings of the Western Joint Computer Conference, New York, San Francisco Institute of Radio
Engineers, 1959, pp. 261–9.

336 The Monte Carlo method

[12] J. A. Barker, ‘Monte Carlo calculations of the radial distribution functions for a proton-electron
plasma,’ Aust. J. Phys., 18 (1965), 119–33.

[13] P. C. Hohenberg and B. I. Halperin, ‘Theory of dynamic critical phenomena,’ Rev. Mod. Phys.,
49 (1977), 435–79.

[14] K. Kawasaki, ‘Kinetics of Ising models,’ in Phase Transitions and Critical Phenomena (C. Domb
and M. S. Green, eds.). London, Academic Press, 1972.

[15] W. K. Hastings, ‘Monte Carlo methods using Markov chains, and their applications,’ Biometrika,
57 (1970), 97–109.

[16] J. Liu and E. Luijten, ‘Rejection-free geometric cluster algorithm for complex fluids,’ Phys. Rev.
Lett., 92 (2004), 035504.

[17] M. Creutz, Quarks, Gluons and Lattices. Cambridge, Cambridge University Press, 1983.
[18] W. W. Wood, ‘Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble,’

J. Chem. Phys., 48 (1968), 415–34.
[19] W. W. Wood, ‘NpT -ensemble Monte Carlo calculations for the hard disk fluid,’ J. Chem. Phys.,

52 (1970), 729–41.
[20] I. R. McDonald, ‘Monte Carlo calculations for one- and two-component fluids in the isothermal–

isobaric ensemble,’ Chem. Phys. Lett, 3 (1969), 241–3.
[21] I. R. McDonald, ‘NpT -ensemble Monte Carlo calculations for binary liquid mixtures,’ Mol.

Phys., 23 (1972), 41–58.
[22] R. Eppenga and D. Frenkel, ‘Monte Carlo study of the isotropic and nematic phases of infinitely

thin hard platelets,’ Mol. Phys., 52 (1984), 1303–34.
[23] G. E. Norman and V. S. Filinov, ‘Investigations of phase transitions by a Monte Carlo method,’

High Temp. (USSR), 7 (1969), 216–22.
[24] Z. W. Salsburg, J. D. Jacobson, W. Ficket, and W. W. Wood, ‘Application of the Monte Carlo

method to the lattice gas model. I. Two dimensional triangular lattice,’ J. Chem. Phys., 30 (1959),
65–72.

[25] D. A. Chesnut, ‘Monte Carlo calculations for the two-dimensional triangular lattice gas:
supercritical region,’ J. Chem. Phys., 39 (1963), 2081–4.

[26] Y. Saito and H. Müller-Krumbhaar, ‘2-Dimensional Coulomb gas: a Monte Carlo study,’ Phys.
Rev. B, 23 (1981), 308–15.

[27] M. Mezei, ‘A cavity-based (TVµ) Monte Carlo method for the computer simulation of fluids,’
Mol. Phys., 40 (1980), 901–6.

[28] D. Frenkel, ‘Free energy computation and first-order phase transitions,’ in Molecular Dynamics
Simulation of Statistical Mechanical Systems (G. Ciccotti and W. G. Hoover, eds.), Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97, Amsterdam,
North-Holland, 1986, pp. 151–88.

[29] A. Z. Panagiotopoulos, ‘Direct determination of phase coexistence properties of fluids by Monte
Carlo simulation in a new ensemble,’ Mol. Phys., 61 (1987), 813–26.

[30] A. Z. Panagiotopoulos, N. Quirke, and D. J. Tildesley, ‘Phase-equilibria by simulation in the
Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane
equilibria,’ Mol. Phys., 63 (1988), 527–45.

[31] A. Z. Panagiotopoulos, ‘Adsorption and capillary condensation of fluids in cylindrical pores by
Monte Carlo simulation in the Gibbs ensemble,’ Mol. Phys., 62 (1987), 701–19.

[32] D. Frenkel and B. Smit, Understanding Molecular Simulation. San Diego, Academic Press,
1996.

[33] C. H. Bennett, ‘Efficient estimation of free energy differences from Monte Carlo data,’ J. Comput.
Phys., 22 (1976), 245–68.

[34] G. M. Torrie and J. P. Valleau, ‘Nonphysical sampling distributions in Monte Carlo free energy
estimation: umbrella sampling,’ J. Comp. Phys., 23 (1977), 187–99.

References 337

[35] G. M. Torrie and J. P. Valleau, ‘Monte Carlo study of a phase separating liquid mixture by
umbrella sampling,’ J. Chem. Phys., 66 (1977), 1402–8.

[36] B. Widom, ‘Some topics in the theory of fluids,’ J. Chem. Phys., 39 (1963), 2808–12.
[37] K. S. Shing and K. E. Gubbins, ‘The chemical potential in dense fluids and fluid mixtures via

computer simulation,’ Mol. Phys., 46 (1982), 1109–28.
[38] M. Fixman, ‘Direct simulation of the chemical potential,’ J. Chem. Phys., 78 (1983), 4223–6.
[39] J. Baschnagel, J. P. Wittmer, and H. Meyer, ‘Monte Carlo simulation of polymers: coarse-grained

models,’ in Computational Soft Matter: From Synthetic Polymers to Proteins. Lecture Notes
(N. Attig, K. Binder, H. Grubmüller, and K. Kremer, eds.), NIC Series, vol. 23. Jülich, John von
Neumann Institute for Computing, 2004, pp. 83–140.

[40] K. Kremer and K. Binder, ‘Monte Carlo simulation of lattice models for macromolecules,’
Comp. Phys. Commum., 7 (1988), 259–310.

[41] M. N. Rosenbluth and A. W. Rosenbluth, ‘Monte Carlo calculation of the average extension of
molecular chains,’ J. Chem. Phys., 23 (1955), 356–9.

[42] P. Grassberger, ‘Pruned-enriched Rosenbluth method: Simulation of θ polymers of chain length
up to 1 000 000,’ Phys. Rev. E, 56 (1997), 3682–93.

[43] J. I. Siepmann and D. Frenkel, ‘Configurational-bias Monte Carlo: a new sampling scheme for
flexible chains,’ Mol. Phys., 75 (1992), 59–70.

[44] E. Marinari and G. Parisi, ‘Simulated tempering: a new Monte Carlo scheme,’ Europhys. Lett.,
19 (1992), 451–8.

[45] R. H. Swendsen and J.-S. Wang, ‘Replica Monte Carlo simulation of spin-glasses,’ Phys. Rev.
Lett., 57 (1986), 2607–9.

[46] C. Geyer, ‘Markov chain Monte Carlo maximum likelihood,’ in Computing Science and Statist-
ics: Proceedings of the 23rd Symposium on the Interface (E. Keramidas, ed.), Fairfax Station,
Interface Foundation of America, 1991, pp. 156–63.

[47] K. Hukushima and K. Nemeto, ‘Exchange Monte Carlo method and application to spin glass
simulation,’ J. Phys. Soc. Jpn., 65 (1996), 1604–8.

[48] D. J. Earl and M. W. Deem, ‘Parallel tempering: theory, applications, and new perspectives.’
physics/0508111, 2005.

[49] H.-P. Hsu, V. Mehra, and P. Grassberger, ‘Structure optimization in an off-lattice protein model,’
Phys. Rev. E, 68 (2003), 037703.

[50] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘Optimization by simulated annealing,’ Science,
220 (1983), 671–80.

[51] D. J. Wales and J. P. K. Doye, ‘Global optimization by basin-hopping and the lowest energy
structures of Lennard–Jones clusters containing up to 110 atoms,’ J. Phys. Chem. A, 101 (1997),
5111–16.

[52] C. R. Reeves and J. E. Rowe, Genetic Algorithms: Principles and Perspectives. Dordrecht,
Kluwer, 2003.

[53] J. H. Holland, Adaptation in Natural and Artificial Design. Ann Arbor, The University of
Michigan Press, 1975.

[54] K. Huang, Statistical Mechanics, 2nd edn. New York, John Wiley, 1987.

11

Transfer matrix and diagonalisation of spin chains

11.1 Introduction

In Chapters 8 and 10 we studied methods for simulating classical systems con-
sisting of many interacting degrees of freedom. In these methods, a sequence of
system configurations is generated, and from this sequence averages of physical
quantities, given as functions of the degrees of freedom (positions and momenta, or
spins), can be determined. These quantities are called mechanical quantities, and
the expressions of their expectation values are called mechanical averages.

There exist, however, quantities that cannot be determined straightforwardly
using these methods. These quantities include free energies and chemical potentials.
The point is that these quantities are not given as a normalised average, which for
mechanical quantities is replaced by an average over the configurations generated in
the simulation. In the previous chapters we have seen that it is not straightforward
to find free energies and chemical potentials using MC and MD methods (see
Section 10.5).

In this chapter we discuss a method which enables us to find free energies for
lattice spin models with very high accuracy; this is the transfer matrix method.
This method calculates the free energy of a model defined on a strip of finite width
and infinite length directly in terms of the largest eigenvalue of a large matrix, the
transfer matrix. This matrix contains essentially the Boltzmann weights for adding
an extra row of spins to the strip. In Chapter 12 we shall see that the transfer matrix
is the analogue of the time evolution operator in quantum mechanics. The fact that
we can apply matrix methods to both quantum mechanics problems and statistical
problems results from the fact that statistical and quantum mechanics are intimately
related, as will be shown in the next chapter.

The transfer matrix is an operator acting in a dimension which is one lower
than the dimension of the original, classical system. In this lower dimensional
space, we must solve a quantum problem. This can be an interesting application by

338

11.2 The one-dimensional Ising model and the transfer matrix 339

itself, even without reference to a transfer matrix relating the quantum problem to
a classical one. We shall discuss one-dimensional quantum problems extensively
in this chapter. Not too long ago, a new method was developed for treating this
problem very efficiently. It is based on renormalisation and on the density matrix –
hence its name, density matrix renormalisation group. We shall consider a few
applications of this method in the last sections of this chapters.

In the next section we solve the one-dimensional Ising model exactly using the
transfer matrix. We shall derive the free energy and the pair correlation function
from this matrix. In the following section we shall describe the transfer matrix
for two-dimensional spin models and see how transfer matrix techniques allow
for numerically exact solutions of two-dimensional models on an infinite strip
of finite width. This, in combination with finite-size scaling methods, makes the
transfer matrix method very useful for obtaining accurate data for two-dimensional
statistical models. For details concerning the numerical transfer matrix method, see
Ref. [1].

Later sections are then dedicated to numerically diagonalising quantum chains
(Section 11.5), to quantum renormalisation methods (11.6), and a particular form
of this, the density matrix renormalisation group method (11.7).

11.2 The one-dimensional Ising model and the transfer matrix

In this section we present the exact solution of the one-dimensional Ising model.
To arrive at the solution we must introduce a new concept, the transfer matrix,
whose largest eigenvalue determines the partition function. The one-dimensional
Ising model (see also Section 7.2.2) consists of a chain of spins numbered 1 through
L; the spins assume values si = ±, and the Hamiltonian is given by

H[{si}] =
L∑

i=1

(−Jsisi+1 − Hsi). (11.1)

J is the coupling strength between the spins, and the external field H favours spins
of one particular sign. Periodic boundary conditions are imposed by identifying the
spins at sites 1 and L + 1. The partition function is

Z =
∑
{si}

exp

[
β

L∑
i=1

(Jsisi+1 + Hsi)

]
. (11.2)

The sum runs over all possible spin configurations {si}.
The exponent can be written as a product over all nearest neighbour pairs:

Z =
∑
{si}

L∏
i=1

exp[βJsisi+1 + βHsi]. (11.3)

340 Transfer matrix and diagonalisation of spin chains

It is therefore convenient to define the transfer matrix which contains the
contribution of the pair si, si+1 to the Boltzmann factor of the full chain:

Tsi,si+1 = 〈si|T |si+1〉 = exp[β(Jsisi+1 + Hsi/2 + Hsi+1/2)]. (11.4)

The quantum mechanical Dirac notation is convenient here. The contribution of the
magnetic field H has been symmetrically distributed over si and si+1 in order to
arrive at a symmetric transfer matrix.1 The transfer matrix has the form:

T =
(

eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
(11.5)

in a representation with basis vectors |+〉 = (1, 0) and |−〉 = (0, 1).
Now we can rewrite the partition function as

Z =
∑
{si}

〈s1|T |s2〉〈s2|T |s3〉 · · · 〈sL|T |s1〉. (11.6)

The sum is over all si = ±1, so we may write

Z =
∑

s1=±1

〈s1|TL|s1〉 = Tr (T L), (11.7)

where we have used the completeness property
∑

s=±1 |s〉〈s| = I; I is the 2 × 2
unit matrix.

The transfer matrix is a 2 × 2 matrix, which has two eigenvalues, λ0 and λ1. We
then have

Z = λL
0 + λL

1 . (11.8)

As the partition function is positive, the eigenvalue with the largest absolute value
must be positive. Suppose that this eigenvalue is λ0, then

Z = λL
0 + λL

1 ≈ λL
0 . (11.9)

The approximation becomes exact for the L → ∞, i.e. the thermodynamic limit.
Therefore, using F = kBT ln Z , we obtain the following result for the free energy
per spin:

F/L = −kBT ln λ0. (11.10)

In the case that both eigenvalues are equal, the result remains unaltered as can easily
be checked. The transfer matrix method is trivially generalised to models with more
than two possible values on each site along the chain – for example when the spins
can assume more than two values, or when there is more than one spin per site.
It is also possible to include further than nearest neighbour interactions. In these
cases the matrix will be larger than 2 × 2, and numerical diagonalisation will be

1 Other distributions of these interactions are also possible; the physical properties that we shall calculate are
not affected by the choice we make here.

11.2 The one-dimensional Ising model and the transfer matrix 341

necessary, but for matrix sizes up to 10 000×10 000, diagonalisation of the transfer
matrix is a trivial numerical exercise (Appendix A8.2).

Let us now calculate the expectation value of the spin at site m. As a result of
translation invariance, the result is independent of m. This expectation value is
given by

〈sm〉 =
∑

{si} sm
∏L

i=1 exp[βJsisi+1 + βHsi]∑
{si}
∏L

i=1 exp[βJsisi+1 + βHsi]
. (11.11)

Introducing again the transfer matrix and using the same argument as above to
retain the largest eigenvalue λ0 with eigenvalue φ0 only, we obtain

〈sm〉 =
∑

s1
〈s1|T m−1ŝmT L−m+1|s1〉∑

s1
〈s1|TL|s1〉 = 〈φ0|ŝm|φ0〉λL

0

λL
0

= 〈φ0|ŝ|φ0〉. (11.12)

In a spinor representation, in which the spin-up and -down states are (1, 0) and
(0, 1) respectively, the operator ŝ is the Pauli matrix σz. There is no subscript m in
the rightmost expression as the ground state eigenvector φ0 is independent of m.

We can also calculate the correlation function. This is defined as

g(m − n) = 〈snsm〉 − 〈sm〉〈sn〉. (11.13)

Denoting the eigenvalues of T by λα (and higher indices) and the corresponding
eigenvectors by φα (for the one-dimensional Ising model, α assumes only the two
values 0 and 1), we have

g(m − n) = 1

Z

∑
φα ···φε

〈φα|T m−1|φβ〉〈φβ |ŝm|φγ 〉〈φγ |T m−n|φδ〉

× 〈φδ|ŝn|φε〉〈φε |TL−n+1|φα〉 − 〈φ0|ŝ|φ0〉2. (11.14)

The last eigenvector φα in the first term is the same as the first eigenvector because
of the periodic boundary conditions. One is usually interested in the long-range
behaviour of the correlation function:

1 � |m − n| � L. (11.15)

This suggests that the major contribution to the correlation function comes from
replacing all eigenvalues in (11.14) by the largest one, λ0. However, inspection
shows that the two terms in (11.14) cancel exactly for this choice. The major con-
tribution to the correlation function is therefore obtained by replacing the transfer
matrices acting between positions n and m by the largest-but-one eigenvalue, λ1.
In the limit (11.15), all the other choices are much smaller. This results in

g(m − n) = |〈φ0|s|φ1〉|2
(
λ1

λ0

)|m−n|
. (11.16)

342 Transfer matrix and diagonalisation of spin chains

We see that the correlation drops off exponentially, unless λ0 = λ1, that is, unless
the largest eigenvalue is degenerate. This implies that critical behaviour can only
occur when the largest eigenvalue is degenerate – recall that critical behaviour is
characterised by power-law decay of correlation functions.

In this regard Frobenius’ theorem is important. This states that the largest eigen-
value of a positive matrix (i.e. a matrix with all positive elements) of finite size is
nondegenerate [2]; that is, our correlation functions will never show critical beha-
viour. The only way to obtain critical behaviour is by having a matrix of infinite
size, which is only possible when the degrees of freedom on a site can assume
an infinite number of different values. For a one-dimensional model on a lattice
(chain) in which the degrees of freedom on a lattice site can assume a finite number
of different values, the correlation function is always exponential.

In Chapter 12 we shall see that the analysis applied here carries over to quantum
mechanics, the transfer matrix corresponding to the quantum mechanical time evol-
ution operator exp(−itH/�), where H is now the quantum Hamiltonian. If this
Hamiltonian has eigenvalues Eα , we have λα = exp(−itEα/�). After an ana-
lytic continuation into imaginary time t → −it, the eigenvalues become real:
λα = exp(−tEα/�) and we see that degeneracy of the largest eigenvalue of the
transfer matrix (or time-evolution operator) implies degeneracy of the quantum
ground state energy. As an example, consider the one-dimensional Ising model in
zero magnetic field. It is easy to see that for this model the quantum Hamiltonian
occurring in the exponent of the time-evolution operator can be written as

H = −J̃σx, (11.17)

where

σx =
(

0 1
1 0

)
(11.18)

is the Pauli matrix, and J̃ is related to J by

tanh(β J̃) = exp(−2βJ) (11.19)

(see Problem 11.1).
In quantum field theory (see Chapter 15), the ground state is the vacuum (no

particles present) and the first excited state is the state with one particle at rest.
As the relativistic energy is given by E = √

p2c2 + m2c4, the gap between these
two states is given by the particle rest energy mc2. Degeneracy of the ground state
implies therefore that the particle mass is zero. A critical point is therefore often
identified with a vanishing mass.

11.3 Two-dimensional spin models 343

11.3 Two-dimensional spin models

We shall now describe the transfer matrix analysis for the two-dimensional Ising
model; generalisation to models with more spin degrees of freedom is straightfor-
ward. Using the transfer matrix method we can calculate the free energy of an Ising
model on an infinite strip of width M with periodic boundary conditions (PBC)
connecting the two sides of the strip – it is therefore convenient to imagine the
strip to be wrapped around a cylinder. The Hamiltonian of the Ising model in this
geometry is given by

H =
M∑

i=1

∞∑
j=−∞

(−Jsi,jsi,j+1 − Jsi,jsi+1,j − Hsi,j), (11.20)

where s1,j ≡ sM+1,j as a result of the PBC.
For this model, the transfer matrix is the contribution to the Boltzmann factor

of two adjacent lattice rows (the transfer matrix acts along the axis of the cylinder;
the rows are perpendicular to this direction). The possible states of the rows are the
indices of the transfer matrix. If the rows contain M sites, the size of the transfer
matrix is 2M × 2M . We represent the configuration of row j by the state |Sj〉:

|Sj〉 = |s1,js2,j . . . sM,j〉 = |s1,j〉 ⊗ |s2,j〉 ⊗ . . .⊗ |sM,j〉. (11.21)

The transfer matrix for rows j and j + 1 is found as

〈Sj|T |Sj+1〉 = exp

[
β

M∑
i=1

J

(
1

2
si,jsi+1,j + 1

2
si,j+1si+1,j+1 + si,jsi,j+1

)

+ β

2
H

M∑
i=1

(si,j + si,j+1)

]
, (11.22)

The eigenvalues can now be found from a numerical diagonalisation of this matrix:
its largest eigenvalues (in absolute value) determine the free energy and correlation
functions of the model on a semi-infinite strip of width M.

Diagonalisation can be performed straightforwardly up to matrices of size
10 000 × 10 000 (and beyond if one uses powerful machines). However, we
need only the largest few eigenvalues and there exist special numerical meth-
ods for calculating these which, for sparse matrices, are much more efficient than
standard methods. Most convenient is Lanczos’ method, which is described in
Appendix A8.2. In this method, the matrix enters only via the multiplication with a
vector, and this multiplication can be carried out efficiently, in particular for a sparse
matrix, provided we take only the nonzero entries into account. Unfortunately, the
transfer matrix of the Ising model is not sparse at all – it follows from Eq. (11.22)
that it has a nonzero value for each pair of possible row configurations Sj and Sj+1.

344 Transfer matrix and diagonalisation of spin chains

'si

s s
i

s'
i – 1

i + 1

Figure 11.1. A step in the multiplication of a vector with the transfer matrix for
the Ising case.

There is, however, a way to perform matrix–vector multiplications efficiently,
using the fact that T factorises into a product of sparse matrices:

T = TMTM−1 · · · T1 (11.23)

where the matrix Ti is associated with site number i. To understand the explicit form
of the submatrices Ti, it is useful to look at Figure 11.1. Let us call φ the state with
matrix elements corresponding to the bottom row in that figure. Calling the bottom
row configurations |S〉, and the top row |S′〉, we want to calculate the elements of
the vector |ψ〉 = T |φ〉:

〈S′|ψ〉 = 〈S′|T |φ〉 =
∑

S

〈S′|T |S〉〈S|φ〉 (11.24)

for each top row configuration S′. The full matrix T contains couplings within the
two horizontal rows and on the vertical links between them. The submatrices Ti

contain only the couplings on the thick lines in Figure 11.1. We could therefore say
that the application of a matrix Ti replaces the lower spin si by the upper spin s′

i,
leaving the remaining spins unchanged.

We can now give the form of the matrices Ti. It acts between two states which are
somehow intermediate between S and S′: the state
′ on the left of Ti represents the
spins s′

1, s′
2, . . . , s′

i, si+1, . . . , sM , and the state
 on the right represents the spins
s′

1, s′
2, . . . , s′

i−1, si, . . . , sM . In terms of these states, which have elements σj and σ ′
j

respectively, we have

〈
′|Ti|
〉 = 〈σ ′
1 . . . σ

′
i−1σ

′
i σ

′
i+1 . . . σ

′
M |Ti|σ1 . . . σi−1σiσi+1 . . . σM〉

= exp

{
βJ

[
1

2
(σiσi+1 + σ ′

i σ
′
i−1)+ σiσ

′
i

]}

× δσ1σ
′
1
δσ2σ

′
2
. . . δσi−1σ

′
i−1
δσi+1σ

′
i+1
. . . δσMσ

′
M

. (11.25)

The horizontal couplings have a factor 1/2 because they are taken into account
twice: once when the transfer matrix couples the previous row to the current row,
and once when the transfer matrix couples the present row to the next one. The form

11.3 Two-dimensional spin models 345

given in (11.25) is not correct for i = 1 or i = M, because the first new spin, s′
1, does

not yet have a left neighbour. Therefore, in the matrix T1, the term βJσ ′
1σ

′
M/2 is

left out and replaced by βJσ1σM/2. Similarly, for i = M, the coupling βJσMσ1/2
is replaced by βJσ ′

Mσ
′
1/2.

How do we perform the full matrix–vector multiplication? We introduce a set of
intermediate vectors ψ(i), defined by

|ψ(0)〉 ≡ |φ〉 (11.26a)

|ψ(i)〉 ≡ Ti|ψ(i−1)〉, (11.26b)

so that |ψ(M)〉 = |ψ〉. Suppose we have the vector |ψ(i−1)〉 at our disposal, that
is, we have all its matrix elements 〈S(i−1)|ψ(i−1)〉 stored in an array (below we
shall describe how the different configurations S correspond to the array index).
The multiplication of the vector |ψ(i−1)〉 by the matrix Ti is done as follows (
 ≡
S(i−1);
′ ≡ S(i)):

FOR all states S(i) DO
FOR all S(i−1) equal to S(i) except for spin number i DO

Calculate 〈S(i)|ψ(i)〉 = 〈S(i)|Ti|S(i−1)〉〈S(i−1)|ψ(i−1)〉.
END FOR

END FOR

To do the evaluation in the inner loop, we need the vector elements 〈S(i−1)|ψ(i−1)〉
and the matrix elements 〈S(i)|Ti|S(i−1)〉. The former are stored in an array, and the
latter are given by (11.25).

It now remains to find a relation between array and loop indices, and the states
S. This is done using binary encoding, using ‘bits’ bi which assume values 0 or 1:

n = b0 + b121 + b222 + · · · + bM−12M−1 (11.27)

where bi = 1 corresponds to si+1 = 1 and bi = 0 to si+1 = −1. The matrix
element 〈S(i)|Ti|S(i−1)〉 depends on si−1(= s′

i−1), si+1(= s′
i+1), and on si and s′

i
(the latter are not necessarily equal). For an integer n, the ith bit can be found
as bi−1 = (n/2i−1) mod 2, where integer division is assumed. Most computer
languages have, however, an intrinsic function returning the value of any desired
bit of an integer number. It should be noted that in the algorithm given above, the
central evaluation for the first and last sites (1 and M) differs slightly from the other
ones because the respective transfer matrix elements were defined differently (see
above).

Having a routine for evaluating the transfer matrix–vector product, this can be
used in the Lanczos algorithm in order to find the lowest eigenvalue and vector.

346 Transfer matrix and diagonalisation of spin chains

programming exercise

Write a program for calculating the largest eigenvalue of the transfer matrix
of the Ising model. The program involves a considerable amount of book-
keeping and the correctness can be tested only in the very end, when the free
energies are actually calculated. When debugging, it is advisable to reserve
just sufficient memory for the rows and then compile the code with the range-
check option on (in this case it is checked whether indices of arrays addressed
in the program lie within the appropriate bounds). Furthermore, an error in
the multiplication routine will usually result in the transfer matrix not being
Hermitian, which in turn causes the Lanczos routine to converge very slowly,
if at all. For strip widths M somewhere between 4 and 12, the Lanczos routine
should converge within less than 20 steps.

Check For M = 6 and the critical coupling J/(kBT) = 0.440 687, you should
find λ0 = 276.6004.

If the program works correctly, we can calculate the free energy. First of all, rather
than considering the free energy F = ln λ0 (we leave out the factor kBT), we
calculate the free energy per spin, given as f = (ln λ0)/M, which should converge
to a fixed value for large widths. To analyse the results using finite size scaling,
we quote a few results from conformal field theory [3, 4]. In this theory, two-
dimensional critical models are labelled by a number, the central charge, c, and the
possible values of the central charge smaller than one form a discrete set.2

The central charge also has a physical interpretation. If we consider the model
on a strip of width M, the free energy will scale approximately proportional with
M. However, in diagonalising the transfer matrix (or the Hamiltonian), changing M
means changing the boundary conditions, and therefore there will be corrections to
this scaling behaviour. This mechanism occurs also in electrostatics [5], where it is
known as the Casimir effect: two parallel conducting plates will attract each other:
the energy per area scales as Const × M−3 (zero temperature). It turns out that in
our case, the statistical model on a strip, the free energy (per unit length along the
strip) scales as

F = ln λ0 = fBulkM − πc

6

1

M
. (11.28)

fBulk is the free energy per site of the infinite system. For the Ising model it is
known that the central charge is equal to 1/2. Each value of c defines a set of
possible critical exponents of the theory, and indeed, the thermal and magnetic
exponent of the Ising model, with values 1 and 1/8 respectively, are in the set for
c = 1/2. The determination of the central charge is therefore very useful to classify
the model’s critical behaviour.

2 For c > 1 there are arguments from supersymmetric field theory that also suggest discrete series, but they
are not based on requirements that should hold rigorously.

11.4 More complicated models 347

f

 0.93

 0.931

 0.932

 0.933

 0.934

 0.935

 0.936

 0 0.006 0.012 0.018 0.024
 0.879

 0.88

 0.881

 0.882

 0.883

1/M2

Figure 11.2. Free energy per site of the Ising model on a strip as a function of
1/M2. Values for M run from 7 to 20. The pluses correspond to the critical point
J = 0.4407; the crosses (right axis) are the data for an off-critical point: J = 0.4.
The straight line through the data has slope π/12.

Therefore, if we plot our results for the Ising model in the form (ln λ0)/M vs.
1/M2 we should obtain a straight line with slope π/12. Figure 11.2 shows that this
is indeed the case. As this is a finite size correction to the bulk free energy, the
eigenvectors λ0 must be determined with a precision of about six significant digits.

The magnetic exponent can be obtained by comparing the free energies for sys-
tems with periodic and antiperiodic boundary conditions, see Ref. [4]. Antiperiodic
means the bonds across a seam along the cylinder are antiferromagnetic. The free
energy difference then scales with the width M as

FAP − FP = 2π

M
x, (11.29)

where x is the magnetic exponent – indeed, x = 1/8 can be found in this way for
the Ising model.

11.4 More complicated models

The linear size of the transfer matrix increases exponentially with the strip width.
This puts severe limits on the system sizes that can be treated with this method. In
particular, this prohibits calculations with reasonable system size for models with
larger numbers of degrees of freedom. There exist models, such as the clock or the

348 Transfer matrix and diagonalisation of spin chains

� � � � � �1 2 3 4 65

Figure 11.3. Vertex configurations of the six-vertex model. The Boltzmann weight
of a lattice configuration is the product of the weights ωi for all sites.

Potts model, with q spin states per site, where q can be any number,3 and the transfer
matrix method is only feasible for q-values up to about 4. It turns out that many of
these models can be mapped exactly onto models with fewer degrees of freedom,
and the transfer matrix method can then be applied to the latter in order to obtain
critical exponents. This approach was used by Blöte and Nightingale [1, 3, 8] to
analyse the Potts model. They used a mapping [7, 9, 10] of the Potts model onto
the six-vertex model [11].

In the six-vertex model, the degrees of freedom do not reside on the sites,
but on the links of a square lattice. They are two-valued and are represented by
arrows on the links. For each site, there are in principle 24 = 16 different con-
figurations of arrows on the four links connected to that site. This number is,
however, reduced if we require that the net flow into the sites is zero: the num-
ber of incoming and outgoing arrows must be equal for each site. This leaves only
six different site configurations or vertices, hence the name of the model. The dif-
ferent vertices are shown in Figure 11.3. Each vertex is assigned a weight, and
the Boltzmann weight of a lattice is the product of the vertex weights of all sites.
Often the case ω1 = ω2 = ω3 = ω4; ω5 = ω6 is considered. The model is called
the ‘F-model’ and this particular case has been solved exactly by Lieb [11]. The
F-model turns out to be critical, with an infinite order transition (of the Kosterlitz–
Thouless type, see Section 15.5.2) for 2ω1 = ω5. In Problem 11.2, a transfer
matrix implementation for the standard six-vertex is described. In the case of the
Potts model, the equivalent six-vertex model is a slightly modified version of the
original model, and this has as a consequence that the transfer matrix is no longer
Hermitian for q noninteger, which complicates its diagonalisation (for details, see
Ref. [1]).

If a transformation onto a simple model is not known, application of the transfer
matrix for models in which the degrees of freedom can assume many values might
still be possible, using a technique inspired by quantum Monte Carlo methods [12].
This method will be considered in some detail in Section 12.6.

3 Even noninteger values of q are relevant [6, 7].

11.5 ‘Exact’ diagonalisation of quantum chains 349

11.5 ‘Exact’ diagonalisation of quantum chains

So far in this chapter, we have studied methods for diagonalising the transfer
matrices of two-dimensional models. This is equivalent to diagonalising Hamiltoni-
ans of one-dimensional quantum systems. In the next few sections we shall consider
the analysis of one-dimensional quantum chains more systematically.

You may be sceptical about the use of studying one-dimensional quantum chains.
There are, however, good reasons for considering such systems. First, they are
equivalent to classical systems in two dimensions, as we have seen extensively in
the first half of this chapter. Second, there exist experimental realisations of quasi-
one dimensional systems in some particular crystals; see for example Ref. [13]. Last
but not least, the fact that one-dimensional chains can be studied successfully using
analytical and computational tools makes them useful as testing grounds for new
methods which may be successful in higher dimensions too. A nice introduction to
the material covered in this and the following sections is Ref. [14].

The quantum chains which are studied most intensively are spin chains and
Hubbard-like systems. Spin chains consist of quantum spins located on a one-
dimensional lattice. The magnetic spin quantum numbers can assume values −S,
−S +1 up to S, where the maximal spin S is a positive, (half-)integer number. Note
that from now on we shall simply call ‘spin’ the eigenvalue of the z-component
of the spin-angular momentum operator (without the factor �). A famous example
is the Heisenberg (anti-)ferromagnet, which is described by the Hamiltonian:

H = J
L−1∑
i=1

SiSi+1. (11.30)

This is a chain with open ends as the first and last spins couple only to a single
neighbour. If we connect the first and last spin by putting SL+1 ≡ S1, we have a
periodic chain. For positive values of J the chain is antiferromagnetic.

The one-dimensional Hubbard model describes fermions4 on a chain. The fermi-
ons are spin-1/2 particles and because of the Pauli principle there are on each site
four possibilities: zero particles, one spin-up or one spin-down particle, or both.
The motion of the particles along the chain is represented by a hopping term. There
is also a Coulomb interaction, which is assumed to be strongly local: only particles
on the same site can feel it. For particles on different sites, the Coulomb interaction
is neglected. The Hamiltonian is

H = −t
L−1∑
σ ;i=1

(c†
i,σ ci+1,σ + c†

i+1,σ ci,σ)+ U
L∑

i=1

ni,↑ni,↓. (11.31)

4 Bose–Hubbard models are presently also the subject of research, but the fermion version has been studied
most intensively.

350 Transfer matrix and diagonalisation of spin chains

The real parameter t represents the hopping rate, and U (which is also real) describes
the Coulomb interaction. The fermion creation and annihilation operators ci,σ and
c†

i,σ have a site index i and a spin index σ = ±1/2 (these two values are denoted
as ↑ and ↓ in the Coulomb term). They satisfy the usual fermion anticommutation
relations:

{c†
i,σ , cj,σ ′ } = δijδσσ ′ . (11.32)

The other anticommutators vanish. Finally, the number-operators ni,σ are given by

ni,σ = c†
i,σ ci,σ . (11.33)

Other models, such as the t − J model, can be related to the Hubbard model,
and this model reduces in a particular limit to the Heisenberg chain; we shall not
go into details but refer to the literature [15].

In the following, we shall mainly restrict ourselves to the Heisenberg chain,
which serves to illustrate the numerical methods suitable for studying quantum
chains; we shall briefly mention how these can be adapted to Hubbard-like models
where appropriate.

11.5.1 Lanczos diagonalisation of the Heisenberg model

It is quite straightforward to diagonalise the Hamiltonian for the Heisenberg model –
this is done using the Lanczos method (see Appendix A8.2). The main problem is
writing a procedure for multiplying the Hamiltonian by some given vector |ψ〉.

The basis vectors of an L-site chain can be chosen as

|
〉 = |s1, s2, . . . , sL〉, (11.34)

where the si are the spins. For a spin-1/2 chain these spins assume the values ±1/2,
and for the S = 1 chain 1, 0 and −1. The dimension of the Hilbert space is (2S+1)L.
We shall not use this spin representation in our program, but use a mapping of each
basis state to an integer just as in the transfer matrix program. First, we change
notation and let si run from 0 to 2S instead of from −S to S. We write

|K〉 = |s1, s2, . . . , sL〉, (11.35)

where the integer K is given as

K =
L∑

i=1

siM
i−1
S ; (11.36)

MS = 2S + 1. It is instructive to calculate the numbers K for all possible states of
a L = 4 spin-1/2 chain, for which si = 0, 1, and the reader is invited to do this.

11.5 ‘Exact’ diagonalisation of quantum chains 351

Before we proceed, we note that the Heisenberg Hamiltonian can be written in
the form (see Problem 11.3)

H = J
N−1∑
i=1

[
1

2
(S+

i S−
i+1 + S−

i S+
i+1)+ Sz

i Sz
i+1

]
. (11.37)

Furthermore, the Hamiltonian commutes with quite a few symmetry operators. We
shall study these in detail in Section 11.5.2.

Multiplication of this Hamiltonian with a given vector |ψ〉 proceeds in a way
analogous to the transfer matrix problem: we ‘zip’ through the chain and collect
all the generated terms into the resulting vector. The heart of the algorithm looks
as follows:

FOR each site I DO
FOR N1 = 0 TO (MS)

I−1 − 1
FOR N2 = 0 TO (MS)

L−I−1 − 1
FOR S1 = 0, MS − 1

FOR S2 = 0, MS − 1
FOR S1P = 0, MS − 1

FOR S2P = 0, MS − 1
J = N1+N2*(MS)

I+1 + S1*(MS)
I−1 +

S2*(MS)
I ;

JP = N1+N2*(MS)
I+1 + S1P*(MS)

I−1 +
S2P*(MS)

I ;
HPsi(JP) = HPsi(JP)+

HMat(S1P, S2P, S1, S2)*Psi(J);
END FOR;

END FOR;
END FOR;

END FOR;
END FOR;

END FOR;
END FOR;

It is understood that for i near the boundary, some modification is necessary. The
matrix HMat is the part of the Hamiltonian which couples the spins at sites i
and i + 1. This matrix is directly found from the Heisenberg Hamiltonian with
Si = 1

2 (σx, σy, σz), and σi are the three Pauli matrices.
This procedure can now readily be used in the Lanczos algorithm to find the

lowest few eigenvalues.

352 Transfer matrix and diagonalisation of spin chains

programming exercise

Program a routine for multiplying the Hamiltonian by a vector. Use this in a
Lanczos algorithm to find the ground state and first excited state of a spin-
1/2 antiferromagnetic Heisenberg chain. The infinite chain has no energy gap
[16]; therefore, the energy gap should decrease with increasing length.

Check For a chain with 12 sites, you should find −5.3873909 for the ground
state energy of a periodic chain.

The program can easily be extended to the spin-1 chain. You can then check the
value of the Haldane gap [17] between the ground state and the first excited state,
which is 0.4107 + 67.9/L2 per site for an long chain [18]. Note that to extend this
program to the Hubbard model, MS must be four (as there are four possible states
for each site) and the Hamiltonian must be adjusted to that model.

11.5.2 Exploiting symmetry

Up to this point, we have hardly mentioned the use of symmetry when diagonalising
a Hamiltonian. This is, however, extremely important, as the use of symmetry can
result in a huge reduction of the CPU time needed for a calculation. To see this let us
assume that we have some symmetry operation, represented by a quantum operator
O which commutes with the Hamiltonian. In that case we can organise the eigen-
states of the Hamiltonian such that they are also eigenstates of O and vice versa.
Now suppose that we can easily find a complete set of eigenstates of O (this often
turns out be the case). These states are then organised into subspaces, one for each
eigenvalue of O. States within such a (possibly degenerate, and therefore multidi-
mensional) eigenspace will be invariant under action of the Hamiltonian on them
(see Problem 11.3). This means that the Hamiltonian will acquire a block-diagonal
form when formulated with respect to this complete set. This is an extremely useful
result. If we have for example a basis on a one-dimensional axis, and a Hamiltonian
which is invariant under reflection, we divide up our N basis vectors into a subset
of even and one consisting of odd basis functions. If there are equal numbers of
each type, the Hamiltonian will have two blocks of size N/2 on the diagonal.

What is the use of this? Matrix diagonalisation is an order-N3 algorithm. Diag-
onalising two N/2 × N/2 matrices is therefore four times as fast as diagonalising
a single N × N matrix. The invariant subspaces in which we solve our small
Hamiltonian matrices are called sectors. Studying symmetries and their use in
physics is mainly the domain of group theory. The interested reader is advised to
consult specialised literature [19]. Here we shall implement the symmetries using
pedestrian methods.

11.5 ‘Exact’ diagonalisation of quantum chains 353

For the one-dimensional Heisenberg chain, the implementation of symmetry is
very instructive. The symmetry operations are easy to find [20]. The symmetry
operations we shall consider are translation symmetry (which holds for the peri-
odic chain), conservation of angular momentum along the z axis (which results
from rotational symmetry around that axis), and reflection symmetry (left-right
symmetry). In Problem 11.3, these symmetries are considered in some detail.

We can find so many small sectors that it is possible to find all eigenvalues (thus
not only the lowest ones) for the L = 12 Heisenberg chain of the previous section
very quickly. We start by considering the rotation symmetry which leads to the
conservation of the total angular momentum along the z-axis. This is

Stot
z =

L∑
i=1

si. (11.38)

It is clear that the states |s1, . . . , sL〉 are eigenstates of the Stot
z . We can simply loop

over all the states |K〉 (K given by (11.36)), determine their total spin component
along the z axis and reshuffle them into sets of equal Sz. You can try this for the
Heisenberg chain and see that it leads to much smaller matrices. These matrices
can already be diagonalised on a standard PC. However, an additional major
improvement is realised by implementing translation symmetry (which only holds
for the periodic case). Eigenstates of the translation operator, which shifts all spins
one site to the right, are Bloch states. In fact, for each basis state |ψ〉 we can generate
a Bloch state which is an eigenvector of the translation operator T as follows:

|ψk〉 = |ψ〉+e2π ik/LT |ψ〉+e4π ik/LT 2|ψ〉+ · · ·+e2π i(L−1)k/LT L−1|ψ〉. (11.39)

It can easily be checked that the eigenvalue is e−2π ik/L.
Let us now work out these symmetries for a chain consisting of four spins. The

basis states can be grouped into states related to each other by translations.

Sz 0 1 2 3 4

k=0 |0〉 |1〉+|2〉+|4〉+|8〉 |3〉+|6〉+|12〉+|9〉 |5〉+|10〉 |7〉+|14〉+|13〉+|11〉 |15〉
k=1 |1〉+i|2〉−|4〉−i|8〉 |3〉+i|6〉−|12〉−i|9〉 |7〉+i|14〉−|13〉−i|11〉
k=2 |1〉−|2〉+|4〉−|8〉 |3〉−|6〉+|12〉−|9〉 |5〉−|10〉 |7〉−|14〉+|13〉−|11〉
k=3 |1〉−i|2〉−|4〉+i|8〉 |3〉−i|6〉−|12〉+i|9〉 |7〉−i|14〉−|13〉+i|11〉

All the boxes represent sectors of the Hilbert space: we see that only two sectors
are two-dimensional; the others contain only a single state. This means that the
diagonalisation can now easily be done by hand.

Note that some boxes are empty: this is because constructing the eigenstate
according to the above recipe leads to the zero state. This happens when translating
the state over one or two positions turns the state into itself. As the period of these

354 Transfer matrix and diagonalisation of spin chains

states is smaller than four, the corresponding k-values are spaced by more than one.
Note that the prefactors in the different states are given by exp(2π ikl/L), where k
is the k-vector, and this prefactor is for the state obtained by translating the first
basis state over l sites. It is clear that shifting k by L leaves the states invariant.

We now consider reflection symmetry. This leads to combinations of states with
wave vectors k and −k. Taking the periodicity k → k + L into account, we see that
the k = 3 line above can be eliminated (it is equivalent to k = 1) and that we can
take either even or odd combinations of k, −k pairs. In the first case, the prefactor
exp(2π ikl/L) is replaced by cos(2πkl/L) and in the second case by sin(2πkl/L).

The program is now set up as follows. A loop over all states is performed. For
each new state, the states which can be obtained by translation over 1, 2 and 3
(more generally 1 to L − 1) positions are considered; if such a state is identical to
the first state, we know the periodicity of the state, and hence the nonzero k-vectors.
Consider the |0〉 state as an example. A translation over one site transforms the state
into itself – hence, the period in the k-values is L/1 = L. This is why we find only
one state in the second and rightmost columns of the table above. Similarly, the
state |5〉 has period two, hence we find only two nonzero states in the fifth column.
All the other states have period 4, hence period 1 in the acceptable values of k.

Also, the spin Stot
z of each state is determined (note that the translations do not

affect this value). We now label the sectors by Sz, k (we omit the superscript ‘tot’
with Sz). Each time we find a state in this sector we add it to the basis of that sector.
Note that we consider only k = 0, . . . , L/2, and construct an even and an odd set
(using cosine and sine as indicated above) for each sector Sz, k. When we have
gone through all states in this way, we have complete basis sets for each sector.
In a following step, we construct the Hamiltonian block matrix 〈K|H|K ′〉 for each
sector, where |K〉 and |K ′〉 are basis states for the sector under consideration. For this
calculation we use the procedure written in the previous subsection for calculating
H|K ′〉. Then we feed the resulting matrices into a library routine for diagonalising
symmetric matrices.

programming exercise

Write a program which implements these symmetries and calculates the full
spectrum of the antiferromagnetic spin-1/2 Heisenberg chain.

Check You can check you results by comparing the lowest states with those
obtained in the previous section. Furthermore, a useful check is whether the
dimensions of all sectors add up to (MS)

L. Also, you can run the program for
L = 4 and check whether the sectors and basis vectors correspond to those given
above, in the Table.

11.6 Quantum renormalisation in real space 355

You have now seen group theory ‘at work’. The possible improvements in perform-
ance are really impressive – for this reason, group theoretical methods are very
important in computational physics. A particular example is solid state physics; in
Chapter 6 we have already briefly mentioned the use of symmetry, in particular to
reduce the Brillouin zone to the so-called ‘irreducible wedge’. A nice discussion
of the symmetry-issues in quantum systems can be found in Ref. [21].

11.6 Quantum renormalisation in real space

Calculations for systems whose behaviour is characterised by large length scales
are usually time-consuming. Often, the systems have short-range interactions, but
these generate correlations over large distances. The most obvious example is the
Poisson equation for a point charge:

∇2V(r) = δ(r). (11.40)

Discretising the Laplace operator on a grid in a first order approximation couples
only nearest neighbour lattice sites. On the other hand, the solution has long range
character. In Appendix A7.2 we consider the multigrid method for treating this
problem. This method uses successive coarsenings and refinements in order to find
the solution very efficiently.

The multigrid method is reminiscent of the renormalisation method for critical
phenomena. There we perform successive coarse grainings of the system, in order
to extract its long-wavelength behaviour which is responsible for the occurrence of
critical phenomena. In renormalisation procedures, we usually tend to throw away
details relating to the short-wavelength behaviour. This causes the critical point to
be found at the wrong value, but critical exponents are still found correctly or to a
good approximation.

Often we are interested in the full solution, and not only the long-range beha-
viour. In these cases we must still treat the short-range behaviour accurately. The
multigrid method accomplishes this by the refinements which alternate with the
coarsenings. Another possible approach, which is closer to the standard renormal-
isation procedure, is to take a small sample system and extend the size of this and
see whether it is possible to find a self-consistent limit which gives us the solution
of the infinite system. Wilson has followed this approach with great success for the
Kondo problem [22]. We shall not treat the Kondo problem in detail, but emphas-
ise at the same time that the reason why this numerical renormalisation procedure
worked so well is due to the special structure of the Kondo Hamiltonian, which
contains couplings that decay exponentially with distance.

The lack of success when applying the renormalisation procedure to other prob-
lems has been nagging researchers until White and Noack [18, 23] came up with

356 Transfer matrix and diagonalisation of spin chains

Figure 11.4. Two fixed-boundary solutions for a narrow box (solid triangles) and
the ground state (open squares) for a large box. It is clear that the approximation
of the ground state will be poor.

a solution for a quantum particle in a potential and for a quantum spin chain. The
particle in a potential illustrates where the standard renormalisation procedure fails
[18]. Consider a particle in a box with impenetrable walls (infinite potential outside
the box). An idea for solving this problem efficiently is first to solve the prob-
lem in a box of half the width of the full box and then solve the problem for the
full box using the ground state wave functions for the half-width boxes as basis
functions in a variational calculation. Figure 11.4 illustrates why this method fails.
The Schrödinger equation is solved for fixed boundary conditions, and building the
ground state of the full problem from two functions that vanish at the centre is not
efficient.

In order to improve the method, White and Noack built the solution of the larger
box from solutions obtained for a smaller box with different kinds of boundary
conditions. Consider two solutions, one of which has fixed zero boundary conditions
on both sides, whereas the other has an open boundary condition on one side. The
first has value zero, but (in general) a nonzero derivative. The second one has
nonzero value at the open boundary, but its derivative is zero. Any type of boundary
condition can be obtained by linear combination of the two solutions. This notion
leads to the following algorithm.

1. Find the solutions of a small box, with fixed and open boundary conditions on
both sides (four cases in total). Keep the lowest M/4 eigenstates of the
Hamiltonian for each case.

2. Construct a Hamiltonian for the large box (twice as large as the small box)
with respect to the basis found in step 1, for the same four cases as in step 1.
See below for how this is done. The dimension of these Hamiltonians is 2M.

11.6 Quantum renormalisation in real space 357

3. Calculate the eigenstates of these four matrices and keep the lowest M. Now
the large box is considered as a small box, and we proceed with step 1.

We shall now fill in the details of the algorithm. When having the small matrices
at our disposal, we must construct the large matrices from these. For a large matrix
with boundary conditions b and b′ (the b’s denote ‘fixed’ or ‘free’) on the left and
right hand side respectively, the recipe is

HL
bb′(2M) =

(
HS

b,fixed(M) T S(M)

(TS)†(M) HS
fixed,b′(M)

)
, (11.41)

where we have used the superscripts ‘S’ and ‘L’ to denote the matrices for the short
and the long chain respectively. The arguments (M) and (2M) specify the sizes of
the matrices. We must carry out a similar procedure for the off-diagonal matrix:

TL(2M) =
(

0 0
TS(M) 0

)
. (11.42)

For each of the four possibilities (b, b′) we diagonalise the large matrix, yielding
2M eigenvectors for each case. We keep only the M/4 corresponding to the lowest
energies, yielding a set of M basis states. These states are not necessarily orthogonal,
so we use an orthogonalisation procedure such as Gram–Schmidt to transform them
into an orthonormal basis. The matrices of the large box are now reduced to size
M × M according to the standard procedure:

HL
bb′(M) = V†HL

bb′(2M)V , (11.43)

where V is an 2M × M matrix whose M columns are the vector representations of
the (orthogonal) basis states used.

We start off the procedure with a simple Hamiltonian arising from a real-space
discretisation of the Schrödinger equation:

Hfixed,fixed =
(

2 −1
−1 2

)
; Hfixed,free =

(
2 −1

−1 1

)
etc. (11.44)

The information concerning the type of boundary conditions is supplied exclusively
in these matrices. They are preserved in the subsequent transformations to larger
boxes. Note that we start off with M = 2 states. Suppose we envisage keeping
M = 8 states. The 2 × 2 matrices will lead to a 4 × 4 matrices of the large box.
Of each of these matrices, we keep the lowest two states, in order to arrive at 8 × 8
matrices at the next step. From then on we continue glueing these matrices together
to 16 × 16 matrices of which we keep only the lowest two eigenstates, etc. It is
important to note that after N steps, the box width is given by 2N+1 + 1. This is
because initially, with two boxes, we have a box width of 5, and at each step, the
small box width (which starts at 2) is doubled.

358 Transfer matrix and diagonalisation of spin chains

Table 11.1. Energies for the particle in
a box after N = 10 steps.

Energies

E0 2.3508 × 10−6

E1 9.4032 × 10−6

E2 2.1157 × 10−5

E3 3.7613 × 10−5

These are the values n2π2/L2, with L = 2049.

programming exercise

You have now enough information for writing a program for this ‘real-space
quantum renormalisation group’.

Check For the starting matrices given, you should after 10 steps arrive at the
spectral values given in Table 11.1.

There is an interesting initiative, called ALPS, to construct a C++ library for
quantum algorithms [24, 25]. The programs for this and those in the following
sections can be found as examples on the ALPS website.

11.7 The density matrix renormalisation group method

In this section we shall describe how the ideas of the previous section can be
extended to many-body systems in one dimension. First of all, we note that the
renormalisation procedure of the previous section doubled the box size at each
step, and thereby the dimension of the Hilbert space. In the case of a quantum
chain, adding a single spin to a spin-1/2 chain already doubles the dimension of the
Hilbert space, whereas the dimension of the physical space covered increases only
by a small fraction. If we were to double the actual (physical) space, the dimension
of the Hilbert space would increase by such a large factor that we would make
gigantic steps in complexity, which is bound to fail. Therefore we add only a single
site (spin) at a time.

To illustrate how the method works, consider a finite chain of which the lower
energy states are properly described by a (small) basis set |m〉 of size M (that is, m
runs from 1 to M). The left end of the chain does not couple to a neighbouring spin:
we consider an ‘open end’ boundary condition there. When we add a new spin, we
have states

|m, s〉 (11.45)

11.7 The density matrix renormalisation group method 359

We have generated a new basis set of size M × MS (remember MS = 2S + 1). The
main problem now is to find a procedure for reducing this set to a new one of size
M. In order to find such a procedure, we must realise ourselves that the system
is always part of a larger system. The larger system is called the ‘universe’, the
system under consideration is called the ‘system’, and the remainder (the universe
without the system) is called the ‘environment’. Universe, system and environment
are denoted by U, S and E respectively.

We want the system U to be in the ground state, and the question is how we
can represent the state of our system S. The answer lies in the notion of the density
matrix. Density matrices are described in many quantum textbooks. We shall briefly
recall this concept here. The density operator or matrix ρ can be given as

ρ =
∑

i

pi|ψi〉〈ψi|. (11.46)

The states |ψi〉 are accessible to our system, and they occur with probability pi.
This means that the exact state of the system is not known, but we have a set of
‘candidate states’ |ψi〉 with probabilities pi. It is easy to see that for an arbitrary
Hermitian operator Q, its expectation value is given as

〈Q〉 = Tr(ρQ). (11.47)

We distinguish knowing the quantum state of a system, the pure state case, from
the situation in which we do not have this knowledge, the mixed state. The density
matrix corresponding to a pure state is |ψ〉 is obviously given by

ρ = |ψ〉〈ψ |. (11.48)

Now consider a system U consisting of two parts, S and E. This system is in a
pure state |ψU〉. The basis vectors of the system U can be chosen to be of the form
|ψS
σ 〉⊗|ψE

ε 〉, where the constituents form complete orthonormal basis sets on S and
on E. In the following we shall abbreviate these basis states as |σε〉. The behaviour
of the part S is completely determined by the expectation values of operators QS

acting within the Hilbert space of S. Now let us evaluate this expectation value for
the case where the system U is in the (pure) ground state. This is given by

〈QS〉 = 〈ψU|QS|ψU〉. (11.49)

Now we expand the ground state in our basis set:

|ψU〉 =
∑
σ ,ε

Cσ ,ε |σε〉. (11.50)

The density matrix then becomes

ρ =
∑

σ ,ε,σ ′,ε′
CσεC

∗
σ ′ε′ |σε〉〈σ ′ε′|. (11.51)

360 Transfer matrix and diagonalisation of spin chains

Now we work out Eq. (11.49) using the basis set |σε〉. We obtain

〈QS〉 =
∑

σ ,ε,σ ′,ε′
C∗
σεCσ ′ε′ 〈σε|QS|σ ′ε′〉. (11.52)

We note that QS only affects the states of S, so the states of E can immediately be
contracted. Using orthonormality of the |ε〉 we obtain

〈QS〉 =
∑
σ ,ε,σ ′

C∗
σεCσ ′ε〈σ |QS|σ ′〉. (11.53)

Noting that

ρS ≡ TrEρ =
∑
ε

〈ε|ρ|ε〉 =
∑
σ ,εσ ′

CσεC
∗
σ ′ε |σ 〉〈σ ′|, (11.54)

we conclude that
〈QS〉 = TrS(ρ

SQS). (11.55)

What have we just shown? Starting from a pure state of the entire (U) system,
we have generated a so-called reduced density matrix ρS for S, which in general
describes a mixed state, and which is the most complete description of that system.
In other words, when a system S is coupled to an environment E, its state must in
general be described as a mixed state, although system plus environment together
(that is, U) are in a pure state.

A system whose state is mixed due to coupling with an environment is said to
be entangled with that environment. The simplest example of entanglement is a
system consisting of two degrees of freedom which can both be in two states, |0〉
and |1〉. For a state

|ψ〉 = |00〉, (11.56)

where the first 0 refers to S and the second one to E, the reduced density matrix is
ρS = |0〉〈0| which describes a pure state, reflecting the fact that we know that the
system S is in state |0〉. However, the state

|ψ〉 = 1√
2
(|00〉 + |11〉) (11.57)

leads to the reduced density matrix

ρS = 1

2
(|0〉〈0| + |1〉〈1|) (11.58)

which describes a mixed state. The state |ψ〉 is therefore an example of an entangled
state – this particular state is one of the four Bell states [26].

Now let us return to the renormalisation procedure. Knowing that U is in the
ground state, we should describe S by a mixed state. But which mixed state? After
all, we do not know the ground state of U, and therefore we cannot take the trace

11.7 The density matrix renormalisation group method 361

S E

l l +3l +1 l +2

Figure 11.5. Schematic representation of the DMRG procedure. A spin is added
to the ‘old’ system S, which before this addition represented a block of l spins. An
environment E is created by reflecting the new S (including the extra spin). Both
states are now perfectly known.

over the environment. We can, however, use the information that we have generated
on S to create an artificial environment E of which all is known. More specifically,
we take for E the reflection of system S as shown in Figure 11.5. As stated above,
we have a basis |m, sl+1〉 for S. Note that the two indices together belong to S; they
can together be viewed as the state |σ 〉 of our general discussion of the density
matrix above. The reflected system E has a basis |sl+2, n〉, where we have reversed
the indices (and replaced m by n) to represent the structure of E. The combined
system U, described by the basis |m, sl+1, sl+2, n〉 should be in the ground state. If
we can find this state, then we can trace out the degrees of freedom of E in order to
find the density matrix ρS describing S. Remember the aim was to find the M most
representative basis states of system S, whose Hilbert space has dimension M · MS .
We should therefore find the M states which best represent the density matrix ρS.
For this we use the idea behind the singular value decomposition, well known from
numerical linear algebra [27]: we simply take the M eigenstates of ρS with the
highest eigenvalues (all eigenvalues of the density matrix are positive). In practice,
these eigenvalues rapidly decrease so that the errors made in this procedure are very
small. The new density matrix is then given as a truncated expansion

ρS(M) = 1∑M
m=1 λm

M∑
m=1

λm|m〉〈m| (11.59)

where |m〉 are the eigenstates of ρS. The states |m〉 are the ones which are carried
over to the next stage, analogous to the quantum renormalisation method of the
previous section: the Hamiltonian of S is transformed according to

HS(M) = V†HS(M · MS)V , (11.60)

where V contains the M ‘most important’ eigenstates of ρS(M · MS). The fact
that this procedure is indeed the best we can follow is addressed in Problems 11.4
and 11.5. The fact that the states kept are derived from an estimate of the density
matrix of the system S is reflected in the name density matrix renormalisation group
(DMRG) for this method.

362 Transfer matrix and diagonalisation of spin chains

We still have to address one more question: how can we calculate the Hamiltonian
of the system S after a spin has been added to it? After all, we only have some states
|m〉 for which we know the Hamiltonian matrix elements, but we do not know how
they relate to individual spins. That would be necessary in order to construct the
matrix elements of the Hamiltonian in the basis |m, sl+1〉, as we need the matrix
elements of, for example, the operator S+,lS−,l+1, where l is the rightmost spin of
the ‘old’ block S, i.e. before adding the new spin sl+1 to it. Note, however, that this
matrix element can be written as

〈m, sl+1|S+,lS−,l+1|m′, s′
l+1〉 = 〈m|S+,l|m′〉〈sl+1|S−,l+1|s′

l+1〉, (11.61)

a product of two matrix elements. So we must keep track not only of the Hamiltonian
in the basis at each step, but also of the rightmost spin operators (in a Heisenberg
chain these are the operators Sz, S+ and S− at site l). If we want to keep track of
physical quantities such as correlation functions, we must keep track of the matrix
elements of additional operators in a similar way.

The structure of the algorithm is now as follows:

1. Set up an initial chain of length L, as we did above in the straightforward
diagonalisation of the Heisenberg chain. This is the (first approximation to the)
system U. The dimension of the Hilbert space is called N .

2. Calculate the ground state of this chain using the Lanczos method.
3. Trace out the degrees of freedom of the right half (E) of the chain U to obtain a

reduced density matrix ρS.
4. Diagonalise the reduced transfer matrix of the left half S of U. Fill a matrix V

with the M eigenvectors corresponding to the highest eigenvalues of the
density matrix ρS as columns.

5. Reduce the
√

N × √
N Hamiltonian H of S to a size M × M using this matrix

V . Do the same for the operators Sl acting on the rightmost spin sl.
6. Add a spin sl+1 to S, so that its Hilbert space now has dimension

√
N = M ·MS .

7. Find the ground state of the N × N Hamiltonian of the system U = S + E
which is spanned by the basis |m, sl+1, sl+2, n〉.

8. Return to step 3.

If we repeat the algorithm until the density matrix no longer, we have reached a
fixed point which corresponds to an infinite chain with open ends.

We now specify how to calculate the product of the Hamiltonian with a n arbitrary
vector. At each stage we have the Hamiltonian HS,E of the system S, E without the
spin sl+1 added. These Hamiltonians are given in the basis |m〉. We also have
the matrix elements of spin operators Sα,l and Sβ,l+3 with respect to this basis. The

11.7 The density matrix renormalisation group method 363

total Hamiltonian is then

HU
m,sl+1,sl+2,n;m′,s′

l+1,s′
l+2,n′ = HS

mm′ +
∑
αβ

Jαβ [Sα,l]mm′ [Sβ,l+1]sl+1,s′
l+1

+
∑
αβ

Jαβ [Sα,l]sl+1,s′
l+1

[Sβ,l+1]sl+2,s′
l+2

+
∑
αβ

Jαβ [Sα,l+2]sl+2,s′
l+2

[Sβ,l+3]n,n′ + HE
nn′ , (11.62)

where it is understood that every term in this expression must be multiplied by a
few Kronecker deltas involving all quantum numbers which do not occur in it. The
indices αβ are zz, +− and −+ for the Heisenberg Hamiltonian.

Now we consider the complexity of a matrix–vector multiplication. Evaluating
the product of the first term in (11.62) with the vector |ψ〉 is carried out as follows:

〈m, sl+1, sl+2, n|HS|ψ〉 =
∑
m′

HS
mm′ 〈 m′, sl+1, sl+2, n|ψ〉, (11.63)

and this requires M3M2
S steps, since for each of the M2M2

S elements, a sum over m′
must be carried out.

The multiplication for the second term starts by evaluating an intermediate vector
|φ〉 which is |ψ〉 multiplied by the term involving Sβ,l+1:

〈m, sl+1, sl+2, n|φ〉 =
∑
s′

l+1

[Sβ,l+1]sl+1,s′
l+1

〈m, s′
l+1, sl+2, n|ψ〉 (11.64)

which takes M2M3
S steps. Then we multiply the intermediate state |φ〉 by the term

involving Sα,l:

〈m, sl+1, sl+2, n|Sα,l|φ〉 =
∑
m′

[Sα,l]m,m′ 〈m′, sl+1, sl+2, n|φ〉. (11.65)

This is obviously of the same complexity (M3M2
S) as the first term.

The remaining terms can now easily be worked out analogous to this procedure.

programming exercise

Write a DMRG program for the one-dimensional Heisenberg chain.

Check You should be able to reproduce the ground state energies for the spin-
1/2 and spin-1 chain. The first is analytically known to be − ln 2 + 1/2 =
−0.443 147 . . . per site, and the second should be found at −1.40 148 . . . per
site. Note that the best way to calculate the energies per site is to subtract the
energies found in subsequent steps of the algorithm: this takes into account the
energy of the central spins and this converges much faster to a fixed value than
the total energy divided by the number of sites.

364 Transfer matrix and diagonalisation of spin chains

So far, we have considered the simplest DMRG method in fair detail. It is possible
to extend the method to periodic chains by not reversing E with respect to S and
coupling the right hand side of E to the left hand side of S. Another interesting
extension concerns the finite chain instead of the infinite one: sometimes (especially
when disorder or incommensurability plays a role) the ground state changes its
global structure markedly when varying the chain length, so that studying a fixed
length chain is indeed desirable. Another problem in which fixed length chains are
very important is finite-size scaling. Although the DMRG method provides a useful
way of finding ground states for the infinite chain, finite-size scaling is relevant for
finding information about scaling exponents.

The finite-size algorithm works as follows. First the infinite-system algorithm is
run for a number of steps, until the universe has the desired length L. Meanwhile,
the Hamiltonian and other operators are stored in memory for each system size
encountered so far. Then the system S is increased at the expense of the environment
E, such that U remains constant in size. After E is shrunk to the lowest possible size
(one, two or three spins), it is increased again in a stepwise fashion, while reducing
the size of S, and this goes on until convergence has been achieved. In more detail,
the algorithm for a system of finite size L proceeds along the following steps.

1. Carry out steps of the infinite-size algorithm until the size of the universe (S
plus E plus two central spins) is L. During this step, store all the Hamiltonians
and other necessary operators (see above) for all sizes in memory.

2. Reduce the matrices (Hamiltonian and necessary spin-operators) of S (which is
the left half of the system generated in the previous step) to size M by tracing
out E and identifying the most relevant eigenstates of ρS, followed by a
projection of HS and the spin-operators onto the space spanned by these most
relevant eigenstates. We now have the Hamiltonian HS for the left half of
size L/2.

3. Add two spins to HS, and an environment of length L/2 − 2 (the Hamiltonian
and other matrices of this has been stored in memory). The system S is
therefore increased, but E is decreased.

4. The procedure of the last two steps is repeated until the system S has size
L − 3 (that is, E has size 1, but 2 or 3 is also possible). The matrices for S
should still be stored for each size.

5. Now reduce the size of S in a similar way to the increase of the size of S. The
environment therefore grows. For the environment, the stored matrices are
used, whereas for the system, the matrices are updated at each step. Carry on
until the system S has reached size 1 (and E has size L − 3).

6. Repeat the up and down sweeps of the previous steps until convergence has
been achieved.

Exercises 365

l l +3l +1 l + 2

S E

S E

Figure 11.6. The third step in the finite-size DMRG algorithm.

Each time the sweep has reached one of the ends of the chain, the representation of
the corresponding end is exact, as it contains only one (or a few) spins. This exact
representation is responsible for the improvements in successive sweeps. Step 3 is
shown in Figure 11.6. In the particular example of finite-size scaling, the matrices
stored for size L can be used for the next size L − 2. So part of the work is used
later again. Interestingly, the dynamics of polymer chains, which is governed by a
Master equation, can also be treated within the DMRG approach, and for reptation
and electrophoresis, useful results have been obtained [28, 29].

The major effort in constructing a program for the finite-size chain consists of
storing the relevant operator matrices H, Sz etc. for the various sizes in memory.
The algorithm can then be implemented straightforwardly. As a check, you can
verify whether the ground state energy found corresponds to that found for finite
Heisenberg chains in Section 11.5.1.

A major point is whether the DMRG method is applicable to systems in
more than one dimension. This turns out to be difficult. Trials have been made
in two directions. The first is to consider a two-dimensional system as a one-
dimensional chain, ‘wrapped up’ to fill the plane [30]. The second is to formulate
the Hubbard Hamiltonian in k-space, which renders the hopping term diagonal and
the Coulomb interaction no longer local. Reviews concerning DMRG can be found
in Refs. [31–33].

Exercises

11.1 The Pauli matrix σx is given as

σx =
(

0 1
1 0

)
.

Using σ 2
x = 1, show that

eβLσx = cosh(βL)+ σx sinh(βL).

366 Transfer matrix and diagonalisation of spin chains

�
5�1 �6

�
3

��
�

n

n�

ν�

ν

Figure 11.7. Action of the transfer matrix in the six-vertex model. The transfer
matrix connects two adjacent horizontal rows of vertical arrows – the possible
configurations of horizontal arrows are summed over. The index µ indicates the
orientation of the leftmost arrow, and µ′ represents the direction of the horizontal
arrows in the iterative multiplication process. In this figure, it labels the second
horizontal link, as in the first step of the multiplication. Only a single configuration
of vertices is shown.

Comparing this with the transfer matrix of the one-dimensional Ising model with
zero magnetic field, show that

tanh(βL) = exp(−2βJ).

11.2 In this problem we consider the implementation of the transfer matrix method for
the six-vertex model. The vertices and weights are represented in Figure 11.3. The
transfer matrix connects a row of vertical arrows to the next one as in Figure 11.7.
This implies that for each pair of adjacent rows of vertical arrows a sum must be
performed over all possible configurations of horizontal arrows that are compatible
with the vertical ones, in the sense that the number of ingoing arrows equals the
number of outgoing ones at each site.

The multiplication of the transfer matrix with an arbitrary vector φ is again
carried out site by site, similar to the procedure followed for the Ising model. Let us
first consider the multiplication including the first (leftmost) vertex (j = 1). It turns
out to be necessary to introduce a vector ψ(n,µ,µ′) in the multiplication routine.
Here, n represents a row configuration of vertical arrows and µ and µ′ are indices
assuming the values 0 and 1 – they represent the direction of the leftmost horizontal
arrow and the horizontal arrow on the link connecting sites j and j + 1 (µ = 0
denotes a right-pointing arrow, µ = 1 a left-pointing one), which is the second
horizontal arrow from the left as we are considering the first (leftmost)
vertex.

As the two horizontal arrows of the first site are known, there is a unique relation
between the upper and lower vertical arrows. These arrows correspond to the least
significant bits ν and ν′ which are given by n mod 2 and n′ mod 2 respectively
(ν = 0 is an upward-pointing arrow, ν = 1 a downward-pointing one). Therefore
we have

ν + µ = ν′ + µ′. (E11.1)

Exercises 367

This leads to the following code for the multiplication routine involving the first
(leftmost) vertex:

FOR n = 0 TO 2M−1 − 1 DO {n runs over half the number of
row states }

l = 2n; {l is a number with least significant
bit equal to 0}

ψ ′(l, 0, 0) = ω1ψ(n);
ψ ′(l, 1, 1) = ω3ψ(n);
ψ ′(l + 1, 1, 0) = ω6ψ(n);
l = l + 1 {l is now a number with least

significant bit equal to 1}
ψ ′(l, 0, 0) = ω2ψ(n);
ψ ′(l, 1, 1) = ω4ψ(n);
ψ ′(l − 1, 0, 1) = ω6ψ(n);

END FOR

Now the second vertex must be treated. We start from the vector ψ ′(n,µ,µ′) and
calculate the next vector ψ ′′(n,µ,µ′). The index µ remains the leftmost horizontal
arrow (we need this to ensure PBC in the end), and the second corresponds to the
link connecting sites 1 and 2. The procedure is analogous to that for the first vertex.

After completing the sequence through the full row, we calculate the resulting
vector φ(n) from the last vector ψ last(n,µ,µ′) obtained in the foregoing procedure
by taking the trace:

FOR N = 0 TO 2M−1

φ(n) = ψ last(n, 0, 0)+ ψ last(n, 1, 1);
END FOR

The results can be analysed in a similar fashion to the Ising model. For the
weights of the F-model, the central charge should be equal to 1.

11.3 The Hamiltonian of the periodic Heisenberg chain can be written as

H = J
L∑

l=1

SlSl+1

with SL+1 ≡ S1.

(a) Show that this can be transformed into

H = J
L∑

l=1

[
1

2
(S+,lS−,l+1 + S−,lS+,l+1)+ Sz,lSz,l+1

]
,

where S± = Sx ± iSy. Give the matrix forms of S± for s = 1/2 and s = 1.

368 Transfer matrix and diagonalisation of spin chains

(b) Show that Sz = ∑L
l=1 Sz,l commutes with H . Also show that

S2 =
(

L∑
l=1

Sl

)2

commutes with H.

11.4 In the DMRG, we take the set of eigenvectors |m〉 with the highest eigenvalues of ρS

as representatives of the system S. To show that this is indeed the best procedure, we
consider the representation of an arbitrary state |ψ〉, of the universe U, which can be
expanded as

|ψ〉 =
∑
mn

Cmn|mn〉,

where, as usual, m labels a basis vector of S and n one of E.
We now replace the basis |m〉 of S by a smaller basis |uα〉, α = 1, . . . , M where

we choose the orthonormal basis vectors |uα〉 such that the state |ψ〉 can be
optimally represented by them. This means that the norm of the difference between
the exact and the expanded state∣∣∣∣∣

∑
mn

Cmn|mn〉 −
∑
αn

Dαn|uαn〉
∣∣∣∣∣
2

is minimal.
We can expand the basis vectors |uα〉 in terms of the basis |m〉:

|uα〉 =
∑

m

uαm|m〉.

(a) Formulate the error (i.e. the norm of the difference) in terms of the coefficients
Dαn and uαm. Minimise this error with respect to both the Dαn and the uαm and
show that this leads to the equation

−
∑

m

Cnmuαm +
∑
mα′

Dαnuαmuα′m = 0

and
−
∑

n

CmnDαn +
∑
nα′

DαnDα′nuα′m = 0.

(b) Use the orthonormality of the |uα〉 to infer from the first equation:∑
m

Cmnuαm = Dαn.

(c) Substitute this into the second equation to find∑
nm′

CmnCm′nuαm′ =
∑

nm′m′′
Cm′nCm′′nuαm′uα′m′′uα′m.

Using
ρS

mm′ =
∑

n

CmnCm′n,

Exercises 369

the last equation can be written in the more compact form:

ρS|uα〉 =
∑
α′

〈uα|ρS|uα′ 〉|uα′ 〉.

Show that the last equation can be satisfied by requiring that |uα〉 is a normalised
eigenvector of the operator ρS.

Also show that the above error is minimised by taking the eigenvectors
corresponding to the largest eigenvalues of the density operator.

(d) The previous analysis was a bit sloppy as the minimisation is subject to the
constraint that

∑
αn Dαn|uαn〉 be normalised, and that the |uα〉 are orthonormal.

These constraints should be taken into account through Lagrange parameters.
Show that this analysis leads to the conclusion that the |uα〉 form an invariant set
under the action of ρS, very similar to what we have seen in the derivation of the
Hartree–Fock formalism (see Section 4.5.2). Similar to the analysis there, we
see that a set of eigenvalues of ρS can therefore be chosen as a basis.

11.5 We now approach the same problem as in the previous exercise from another point
of view. We consider again the Hilbert spaces of the system S, the environment E
and the universe U which is the system and environment together. For simplicity, we
take all coefficients and basis functions to be real.

Suppose U is in a pure state |ψ〉. To this state there corresponds a density matrix
ρU which can be reduced to a density matrix ρS of S or a density matrix ρE of E. We
call λα the eigenvalues of ρS and λβ those of E. The corresponding eigenstates are
denoted |uα〉 and |vβ〉 respectively.

Obviously we can write the states |ψ〉 in terms of the eigenstates |uαvβ〉:
|ψ〉 =

∑
αβ

Cαβ |uαvβ〉.

(a) Derive the following equations:

λα =
∑
β

C2
αβ

and
λβ =

∑
α

C2
αβ .

By considering Cαβ as a matrix, show that the set of numbers λα must be equal
to the set λβ . In the following, we shall denote both by λα .

(b) Show that |ψ〉 can be expanded as

|ψ〉 =
∑
α

λα |uαvα〉.

and that the eigenvalues of ρU are wα = λ2
α . Show that the error in the

representation of |ψ〉 on S by using a truncated set of eigenstates as a basis is
given as the sum over the discarded weights wα .

370 Transfer matrix and diagonalisation of spin chains

References

[1] H. W. J. Blöte and M. P. Nightingale, ‘Critical behaviour of the two-dimensional Potts model
with a continuous number of states: a finite size scaling analysis,’ Physica, A 112 (1982), 405–65.

[2] F. R. Gantmacher, The Theory of Matrices, vol. II. New York, Chelsea, 1959.
[3] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, ‘Conformal invariance, the central charge,

and universal finite size amplitudes at criticality,’ Phys. Rev. Lett., 56 (1986), 742–5.
[4] J. Cardy, ‘Conformal invariance,’ in Phase Transitions and Critical Phenomena, vol. 11

(C. Domb and J. Lebowitz, eds.) London, Academic Press, 1987, pp. 55–126.
[5] M. Krech and D. P. Landau, ‘Casimir effect in critical systems: a Monte Carlo simulation,’ Phys.

Rev. E, 53 (1996), 4414–23.
[6] R. J. Baxter, Exactly Solved Models in Statistical Mechanics. London, Academic Press, 1982.
[7] M. P. M. den Nijs, ‘Extended scaling relations for the magnetic critical exponents of the Potts-

model,’ Phys. Rev. B, 27 (1983), 1674–9.
[8] M. P. Nightingale, ‘Scaling theory and finite systems,’ Physica, A 83 (1976), 561–72.
[9] R. J. Baxter, S. B. Kelland, and F. Y. Wu, ‘Equivalence of the Potts model or Whitney polynomial

with an ice-type model,’ J. Phys. A, 9 (1976), 397–406.
[10] B. Nienhuis, ‘Coulomb gas formulation of two-dimensional phase transitions,’ Phase Transitions

and Critical Phenomena, vol. 11 (C. Domb and J. Lebowitz, eds.) London, Academic Press,
1987, 1–53.

[11] E. H. Lieb, ‘Exact solution of the F model of an antiferroelectric,’ Phys. Rev. Lett., 18 (1967),
1046–8.

[12] M. P. Nightingale and H. W. J. Blöte, ‘Monte Carlo calculation for the free energy, critical point
and surface critical behaviour of three-dimensional Heisenberg ferromagnets,’ Phys. Rev. Lett.,
60 (1988), 1562–5.

[13] A. N. Vasil’ev, L. A. Ponomarenko, H. Manaka, et al. ‘Magnetic and resonant properties of
quasi-one-dimensional antiferromagnet LiCuVO4,’ Phys. Rev. B, 64 (2004), 024419.

[14] R. M. Noack and S. R. Manmana, ‘Diagonalization- and numerical renormalization-group-
based methods for interacting quantum systems,’ in Proceedings of the IX Training Course in
the Physics of Correlated Electron Systems and High-Tc Superconductors, 2004, AIP Conf.
Proc. vol. 78. New York, American Institute of Physics, 2005, pp. 93–163.

[15] P. Fulde, Electron correlations in Molecules and Solids, 3rd edn. Heidelberg, Springer, 1995.
[16] E. H. Lieb, T. Shultz, and D. Mattis, ‘Two soluble models of an antiferromagnetic chain,’ Ann.

Phys., 16 (1961), 407–66.
[17] F. D. M. Haldane, ‘Nonlinear field theory of large-spin Heisenberg antiferromagnets: semi-

classically quantized solitons of the one-dimensional easy-axis Néel state,’ Phys. Rev. Lett., 50
(1983), 1153–6.

[18] S. R. White, ‘Density matrix formulation for quantum renormalization groups,’ Phys. Rev. Lett.,
69 (1992), 2863–6.

[19] N. G. van Kampen, Stochastic Processes in Physics and Chemistry. Amsterdam, North-Holland,
1981.

[20] H. W. Blöte, ‘The specific heat of magnetic linear chains,’ Physica, 79B (1975), 427–66.
[21] A. L. Malvezzi, ‘An introduction to numerical methods in low-dimensional quantum systems,’

Braz. J. Phys., 33 (2003), 55–72.
[22] K. G. Wilson, ‘The renormalization group: critical phenomena and the Kondo problem,’ Rev.

Mod. Phys., 47 (1975), 773–840.
[23] S. R. White and R. M. Noack, ‘Real-space quantum renormalization groups,’ Phys. Rev. Lett.,

68 (1992), 3487–90.
[24] ALPS (Algorithms and Libraries for Physics Simulations) homepage. http://alps.comp-

phys.org/.

http://alps.compphys.org/
http://alps.compphys.org/

References 371

[25] F. Alet et al., ‘The ALPS project: open source software for strongly correlated systems.’ ar Xiv:
cond-mat/0410407, (15 October 2004).

[26] M. A. Nielsen and I. L. Chuang, Quantum Computing and Quantum Information Theory.
Cambridge, Cambridge University Press, 2000.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd edn.
Cambridge, Cambridge University Press, 1992.

[28] E. Carlon, A. Drzewiński, and J. M. J. van Leeuwen, ‘Crossover behavior for long reptating
polymers,’ Phys. Rev. E, 64 (2001), 010801(R).

[29] A. Drzewiński, E. Carlon and J. M. J. van Leeuwen, ‘Pulling reptating polymers by one end:
magnetophoresis in the Rubinstein–Duke model,’ Phys. Rev. E, 68 (2003), 061801.

[30] R. M. Noack, S. R. White, and D. J. Scalapino, ‘The density matrix renormalization group for
Fermion systems, Computer Simulations in Condensed Matter Physics VII’. Berlin, Heidelberg,
Springer, 1994, pp. 93–163.

[31] U. Schollwöck, ‘The density-matrix renormalization group,’ Rev. Mod. Phys., 77 (2003),
259–315.

[32] K. Hallberg, ‘Density matrix renormalization: a review of the method and its applications,’
in Theoretical Methods for Strongly Correlated Electrons (D. Senechal, A-M. Tremblay, and
C. Bourbonnais, eds.), CRM Series in Mathematical Physics. Berlin, Heidelberg, Springer, 2003.

[33] I. Peschel, X. Wang, M. Kaulke, and K. Hallberg, eds., Density Matrix Renormalization: A New
Numerical Method in Physics. Lecture Notes in Physics. Berlin, Heidelberg, Springer, 1999.

12

Quantum Monte Carlo methods

12.1 Introduction

In Chapters 1 to 4 we studied methods for solving the Schrödinger equation for
many-electron systems. Many of the techniques described there carry over to other
quantum many-particle systems, such as liquid helium, and the protons and neut-
rons in a nucleus. The techniques which we discussed there were, however, all of
a mean-field type and therefore correlation effects could not be taken into account
without introducing approximations. In this chapter, we consider more accurate
techniques, which are similar to those studied in Chapter 10 and are based on using
(pseudo-)random numbers – hence the name ‘Monte Carlo’ for these methods.
In Chapter 10 we applied Monte Carlo techniques to classical many-particle sys-
tems; here we use these techniques for studying quantum problems involving many
particles. In the next section we shall see how we can apply Monte Carlo tech-
niques to the problem of calculating the quantum mechanical expectation value of
the ground state energy. This is used in order to optimise this expectation value by
adjusting a trial wave function in a variational type of approach, hence the name
variational Monte Carlo (VMC).

In the following section we use the similarity between the Schrödinger equation
and the diffusion equation in order to calculate the properties of a collection of
interacting quantum mechanical particles by simulating a classical particle diffusion
process. The resulting method is called diffusion Monte Carlo (DMC).

Then we describe the path-integral formalism of quantum mechanics, which is
a formulation elaborated by Feynman, based on ideas put forward by Dirac [1],
in which a quantum mechanical problem is mapped onto a classical mechanical
system (at the expense of increasing the number of degrees of freedom). This
classical many-particle system can then be analysed using methods similar to those
used in Chapter 10. This is called the path-integral Monte Carlo method (PIMC).

The last section of this chapter is dedicated to a stochastic technique, based on
diffusion Monte Carlo, for diagonalising the transfer matrix of a lattice spin model

372

12.2 The variational Monte Carlo method 373

on a strip, for cases where the matrix size renders even sparse matrix diagonalisation
methods unusable.

Some important applications of quantum Monte Carlo methods are to the elec-
tronic structure of molecules [2], to dense helium-4 [3, 4], and to lattice spin-systems
[5]. The cited literature also contains detailed accounts of the various methods.

12.2 The variational Monte Carlo method

12.2.1 Description of the method

In Chapter 3 we studied the variational method for finding the ground state and the
first few excited states of the quantum Hamiltonian. This was done by parametrising
the wave function – in a linear or nonlinear fashion – and then finding the minimum
of the expectation value of the energy in the space of parameters occurring in the
parametrised (trial) wave function. We described in some detail how this calculation
can be carried out if the parametrisation is linear, and we have seen in Chapters 4
to 6 that the choice of basis functions in the linear parametrisation is crucial for the
feasibility of the method. Calculating the expectation value of the energy involves
integrals over the degrees of freedom of the collection of particles, which can only
be carried out if the basis does not include correlations (single-particle picture) and
if parts of the integration can be done analytically, for example by using Gaussian
basis functions.

In this section we consider the variational method again, but we want to relax
some of the above-mentioned restrictions on the trial wave functions and calculate
the high-dimensional integrals using Monte Carlo methods, which are very efficient
for this purpose as we have seen in Chapter 10. This is called the variational Monte
Carlo approach. It should be noted that for some simple atoms, such as hydrogen
and helium, the integrations can often be carried out analytically or using direct
numerical integration (as opposed to MC integration). However, if there are many
more electrons, these methods are no longer applicable.

Let us briefly recall the variational method in the form of an algorithm:

1. Construct the trial many-particle wave function ψααα(R), depending on the S
variational parameters ααα = (α1, . . . ,αS). ψααα depends on the combined position
coordinate R of all the N particles R = r1, . . . , rN .

2. Evaluate the expectation value of the energy

〈E〉 = 〈ψααα|H|ψααα〉
〈ψααα|ψααα〉 . (12.1)

3. Vary the parameters ααα according to some minimisation algorithm and return to
step (1).

374 Quantum Monte Carlo methods

The loop stops when the minimum energy is reached according to some criterion.
It is the second step in this algorithm that we consider in this section. However,
below, we shall describe a variational method in which the parametersααα are adjusted
according to some numerical scheme within the Monte Carlo simulation.

It turns out that in realistic systems the many-body wave function assumes very
small values in large parts of configuration space, so a straightforward procedure
using homogeneously distributed random points in configuration space is bound to
fail. This suggests that it might be efficient to use a Metropolis algorithm in which
a collection of random walkers is pushed towards those regions of configuration
space where the wave function assumes appreciable values. Suppose that we can
evaluate HψT for any trial function ψT, which we shall always assume to be real,
and let us define

EL(R) = HψT(R)

ψT(R)
(12.2)

(we omit theααα-dependence ofψT). EL(R) is called the local energy: it is a function
that depends on the positions of the particles and it is constant if ψT is the exact
eigenfunction of the Hamiltonian. The more closely ψT approaches the exact wave
function (apart from a multiplicative constant), the less strongly will EL vary with R.

The expectation value of the energy can now be written as

〈E〉 =
∫

dR ψ2
T(R)EL(R)∫

dR ψ2
T(R)

. (12.3)

Let us now construct a Metropolis-walk in the same spirit as in ordinary Monte
Carlo calculations, but now with a stationary distribution ρ(R) given by

ρ(R) = ψ2
T(R)∫

dR′ ψ2
T(R

′)
. (12.4)

The procedure is now as follows.

Put N walkers at random positions;
REPEAT

Select next walker;
Shift that walker to a new position, for example by moving one

of the particles in the system within a cube with a suitably
chosen size d;

Calculate the fraction p = [ψT(R′)/ψT(R)]2, where R′ is the new and
R the old configuration;

If p < 1 the new position is accepted with probability p;
If p ≥ 1 the new position is accepted;

UNTIL finished.

12.2 The variational Monte Carlo method 375

The expectation value of the local energy is now calculated as an average over the
samples generated in this procedure, excluding a number of steps at the beginning,
necessary to reach equilibrium. The decision to stop the simulation is based on the
precision achieved and on the available processor time.

The algorithm should work in principle with a single walker. However, chances
are that this walker gets stuck in one favourable region surrounded by barriers which
are difficult to overcome. Using a large collection of walkers reduces this effect.

12.2.2 Sample programs and results

We demonstrate the VMC approach with some simple programs. Here and in the
rest of this chapter, when dealing with many-particle systems, we shall assume units
of mass, distance and energy to be such that the kinetic energy operator occurs in
the Schrödinger equation as −∇2/2.

We start with the harmonic oscillator in one dimension, described by the
Hamiltonian (in dimensionless units):

Hψ(x) =
[
−1

2

d2

dx2 + 1

2
x2
]
ψ(x). (12.5)

The exact solution for the ground state is given by exp(−x2/2) with energy EG =
1/2; we shall use the trial function exp(−αx2). The exact solution lies therefore in
the variational subspace. The local energy is given by

EL = α + x2
(

1

2
− 2α2

)
. (12.6)

For α = 1/2 the local energy is 1/2, independent of the position, and we shall
certainly find an energy expectation value 1/2 in that case (this might happen
even when the program contains errors!). The crucial test is whether this energy
expectation value is a minimum as a function of α. In Table 12.1 we show that this is
indeed the case. We also show the variance of the energy. This quantity will be small
if EL is rather flat, and this will be the case whenψT is close to the exact ground state:
the closerψT is to the ground state wave, the smaller the variance, and this quantity
reaches its minimum value at the variational minimum of the energy itself. Again,
in this particular case where the trial wave function can become equal to the exact
ground state, the variance becomes zero. From the table we see that the variance
does indeed decrease to 0 when the ground state is approached. Interestingly, for
this simple case, it is possible to calculate the expectation value of the energy as a
function of α by integrating the local energy weighted by ψ2

T. The Gaussian form
of the trial wave function makes the integral solvable with the result

Ev = 1

2
α + 1

8α
. (12.7)

Ta
bl

e
12

.1
.

Va
ri

at
io

na
lM

on
te

C
ar

lo
en

er
gi

es
.

H
ar

m
on

ic
os

ci
lla

to
r

H
yd

ro
ge

n
at

om
H

el
iu

m
at

om

α
〈E

〉
va

r(
〈E

〉)
E

v
va

r(
E
) v

α
〈E

〉
va

r(
〈E

〉)
α

〈E
〉

va
r(

〈E
〉)

0.
4

0.
51

24
(1
)

0.
02

52
1(

5)
0.

51
25

0.
02

53
12

5
0.

8
−0

.4
79

6(
2)

0.
02

43
(6

)
0.

05
−2

.8
71

3(
4)

0.
17

49
(2
)

0.
45

0.
50

27
6(

4)
0.

00
55

6(
2)

0.
50

27
8

0.
00

55
7

0.
9

−0
.4

94
9(

1)
0.

00
78

(2
)

0.
07

5
−2

.8
75

3(
4)

0.
15

31
(2
)

1/
2

1/
2

0
1/

2
0

1.
0

−1
/2

0
0.

10
−2

.8
77

0(
3)

0.
13

60
(2
)

0.
55

0.
50

23
2(

6)
0.

00
45

4(
1)
(1
)

0.
50

22
72

7
0.

00
45

55
8

1.
1

−0
.4

95
1(

2)
0.

01
21

(4
)

0.
12

5
−2

.8
78

0(
4)

0.
12

23
(2
)

0.
6

0.
50

84
(1
)

0.
01

68
(4
)

0.
50

83
33

0.
01

68
05

6
1.

2
−0

.4
80

1(
3)

0.
05

8(
2)

0.
15

−2
.8

77
8(

3)
0.

11
14
(2
)

0.
17

5
−2

.8
78

1(
3)

0.
10

28
(2
)

0.
20

−2
.8

76
7(

4)
0.

09
68
(2
)

0.
25

−2
.8

74
6(

10
)

0.
08

83
(2
)

V
M

C
en

er
gi

es
ar

e
gi

ve
n

fo
r

th
e

ha
rm

on
ic

os
ci

lla
to

r,
th

e
hy

dr
og

en
at

om
an

d
th

e
he

liu
m

at
om

fo
r

va
ri

ou
s

va
lu

es
of

th
e

va
ri

at
io

na
l

pa
ra

m
et

er
s.

In
ea

ch
ca

se
,4

00
w

al
ke

rs
ha

ve
be

en
us

ed
an

d
30

00
0

di
sp

la
ce

m
en

ts
pe

r
w

al
ke

r
w

er
e

at
te

m
pt

ed
.T

he
fir

st
40

00
of

th
es

e
w

er
e

re
m

ov
ed

fr
om

th
e

da
ta

to
en

su
re

eq
ui

lib
ri

um
.T

he
ex

pe
ct

at
io

n
va

lu
e

〈E
〉o

f
th

e
gr

ou
nd

st
at

e
en

er
gy

is
gi

ve
n,

to
ge

th
er

w
ith

th
e

va
ri

an
ce

in
th

is
qu

an
tit

y,
va

r(
〈E

〉).
Fo

r
th

e
ha

rm
on

ic
os

ci
lla

to
r,

th
e

an
al

yt
ic

al
va

lu
es

fo
r

th
e

en
er

gi
es

an
d

va
ri

an
ce

ar
e

al
so

gi
ve

n
(E

v
an

d
va

r(
E
) v

).

12.2 The variational Monte Carlo method 377

The same can be done for the variance with the result

var(E)v = (1 − 4α2)2

32α2
. (12.8)

The Monte Carlo results match the analytical values as is clear from the table. Also
in Table 12.1 we show results for the hydrogen atom with the Hamiltonian

H = −1

2
∇2 − 1

r
. (12.9)

The exact ground state with energy E = −1/2 is given as e−r ; we take variational
trial functions of the form e−αr , so that the ground state is again incorporated in the
variational subspace. Although we could consider the present problem as a one-
dimensional one by using the spherical symmetry of the potential and the ground
state wave function, we shall treat it here as a fully three-dimensional problem to
illustrate the general approach. For this case, the analytical values of the average
local energy and variance can also be calculated. This is left as an exercise for the
reader.

The local energy is given by

EL(r) = −1

r
− 1

2
α

(
α − 2

r

)
. (12.10)

It is seen from Table 12.1 that the energy is minimal at the ground state and that its
variance vanishes there too.

Finally we consider the helium atom, which we have already studied extensively
in Chapters 4 and 5. Constructing good trial functions is a problem on its own –
here we shall use the form:

ψ(r1, r2) = e−2r1e−2r2er12/[2(1+αr12)] (12.11)

where r12 = |r1−r2|. This function consists of a product of two atomic one-electron
orbitals and a correlation term. The local energy now has the form:

EL(r1, r2) = −4 + (r̂1 − r̂2) · (r1 − r2)
1

r12(1 + αr12)2

− 1

r12(1 + αr12)3
− 1

4(1 + αr12)4
+ 1

r12
(12.12)

With r̂ we denote a unit vector along r, and r12 is the distance between the two
electrons. Energies and variances are also displayed in Table 12.1. The variance
does not have a sharp minimum for the same value of α as the energy. The reason
is that most of the variance is due to the trial wave function not being exact, even
for the best value of α. The optimum value of the energy, −2.878 1 ± 0.000 5,
should be compared with the Hartree-Fock value of −2.861 7 a.u. and the DFT value

378 Quantum Monte Carlo methods

of −2.83 a.u., and with the exact value of −2.903 7 a.u. The VMC value can obvi-
ously be improved by including more parameters in the wave function. The wave
function is apparently not perfect. One of its deficits can be appreciated by con-
sidering the case where one of the electrons is far away from the nucleus and the
other electron. Then the trial wave function depends on the position of this particle
like the wave function of the helium ion, i.e. it is the asymptotic wave function for
an electron in the field of a Z = 2 nucleus. In reality, however, the wave function
should ‘see’ a charge Z = 1 as the other electron shields off one unit charge.

It is possible to adjust the value of the parameters α in these simulations ‘on
the fly’ [6]. To this end, we need a minimum finder. The most efficient minimum
finders use the gradient of the function to be minimised (see Appendix A). This
is a problem, as a finite difference calculation of the gradient is bound to fail: the
derivatives of stochastic variables are subject to large numerical errors. However,
from the analytic derivative of the wave function with respect to α, we can sample
this derivative over the population of walkers. From (12.3) we see that

dE

dα
= 2

(〈
EL

d lnψT

dα

〉
− E

〈
d lnψT

dα

〉)
. (12.13)

Using a simple damped steepest decent method:

αnew = αold − γ

(
dE

dα

)
old

, (12.14)

the method then finds the optimal value (and therefore also the energy) for α. This
method works remarkably well for the harmonic oscillator, where, starting from
α = 1.2, the correct value α = 0.5 is found in a small fraction of the time needed
for accurately evaluating one of the points in Table 12.1. However, the success in
this particular case is partly due to the exact solution being in the family of solutions
considered. The method is generalised straightforwardly to more parameters. It has
been applied successfully to electrons in quantum dots [6].

The reader is invited to write the programs described and check the results with
those given in Table 12.1.

12.2.3 Trial functions

The trial wave function for helium, Eq. (12.11), is the two-particle version of the
general ground state trial wave function used in quantum Monte Carlo (QMC)
calculations of fermionic systems:

ψ(x1, . . . , xN) = �AS(x1, . . . , xN) exp


1

2

N∑
i,j=1

φ(rij)


 . (12.15)

12.2 The variational Monte Carlo method 379

�AS is the Slater determinant (see Chapter 4) and φ is a function which contains
the two-particle correlation effects. For identical bosons, all the minus-signs in the
determinant are replaced by pluses. The particular form we chose in the helium case
is a simple form of a class called Padé–Jastrow wave functions [7]. Inclusion of three
and four point correlations is obviously possible. We shall not go into the problem
of finding the best Slater determinants and φ-functions but restrict ourselves to
a short discussion of the requirements which we can derive for special particle
configurations – these are the ‘cusp conditions’: boundary conditions satisfied at
the points where the potential diverges. Near these points the kinetic and potential
energy contributions of the Hamiltonian are both very large, and they should cancel
out for a large part. This leads to large statistical fluctuations which are avoided
by respecting the cusp conditions. In the next section we shall see that these cusp
conditions are essential for trial wave functions used in the DMC method. We
have already dealt with a similar problem in Chapter 2 of this book, when we
found appropriate boundary conditions for the numerical solution of the radial
Schrödinger equation with a Lennard–Jones potential, which diverges strongly at
r = 0. Now we consider singularities in the Coulomb potential.

In the helium atom, the potential diverges when one of the electrons approaches
the nucleus, or when the electrons are close to each other. The Schrödinger equation
can be solved analytically for these configurations since the Coulomb potential
dominates all other terms except the kinetic one. Suppose that one of the electrons,
labelled i, is very close to a nucleus (which we take at the origin) with charge Z . In
that case the Schrödinger equation becomes approximately[

−1

2
∇2

i − Z

ri

]
ψ(r1, . . . , rN) = 0. (12.16)

Writing out the kinetic energy in spherical coordinates of particle i, we arrive at a
radial Schrödinger equation of the form (r = ri)[

d2

dr2 + 2

r

d

dr
+ 2Z

r
− l(l + 1)

r2

]
R(r) = 0. (12.17)

If, as is usually the case, the wave function is radially symmetric in ri for ri small,
we have exclusively an l = 0 contribution, and the two terms containing the factor
1/r must cancel (the first term does not contribute for a function which is regular
at the origin). For R(0) �= 0 this leads to

1

R

dR

dr
= −Z , r = 0; (12.18)

so that R(r) = exp(−Zr).

380 Quantum Monte Carlo methods

For l > 0, the radial wave function is written in the form rlρ(r) where ρ does
not vanish at r = 0. Analysing this in a way similar to the l = 0 case leads to the
cusp condition

1

ρ(r)

dρ(r)

dr
= − Z

l + 1
. (12.19)

Note that this form is the same as (12.18) if we put l = 0.
Another cusp condition is found for two electrons approaching each other. Con-

sidering the trial wave function of the helium atom, Eq. (12.11), we see that it is the
dependence on the separation r between the two electrons which must incorporate
the correct behaviour in this limit. The resulting radial equation for the r depend-
ence is the same as for the electron–nucleus cusp except for the −Z/r potential
being replaced by 1/r (the Coulomb repulsion between the two electrons), and the
kinetic term being twice as large (because the reduced mass of the two electrons is
half the electron mass):[

2
d2

dr2
+ 4

r

d

dr
− 2

r
− l(l + 1)

r2

]
R(r) = 0. (12.20)

The cusp condition, written in terms of ρ(r) = r−lR(r), is therefore

1

ρ(r)

dρ(r)

dr
= 1

2(l + 1)
. (12.21)

The right hand side reduces to 1/2 in the usual case of an s-wave function (l = 0).
For like spins, the value of the wave function must vanish if the particles approach
each other; therefore the wave function with lowest energy is a p-state and the
right hand side will reduce to 1/4. For a general system, containing more than two
electrons, we have this cusp condition for each electron pair ij. It is recommended
to have a look at Problem 12.5 to see how cusp conditions are implemented in
practice.

12.2.4 Diffusion equations, Green functions and Langevin equations

In the following sections we shall discuss several QMC methods in which the
ground state of a quantum Hamiltonian is found by simulating a diffusion process.
In the next section for example, we shall use such a simulation to improve on the
variational method described above. In this section, we give a brief overview of
diffusion and the related equations.

Consider a one-dimensional discrete axis with sites located at na, with integer
n. We place a random walker on a site, and this walker jumps from site to site with
time intervals h. The walker can only jump from a site to its left or right neighbour.
Both jumps have a probability α, and the walker remains at the current position with

12.2 The variational Monte Carlo method 381

probability 1 − 2α. This is clearly a Markov process as described in Section 10.3.
We are interested in the probability ρ(x, t) to find the walker at site x = na at
time t = mh, where n and m are both integer. This probability satisfies the master
equation of the Markov process:

ρ(x, t + h)− ρ(x, t) = α[ρ(x + a, t)+ ρ(x − a, t)− 2ρ(x, t)] ≈ αa2 ∂
2ρ(x, t)

∂x2
.

(12.22)

For small h, the left hand side can be written as h(∂ρ/∂t), and defining γ = a2α/h,
we can write the continuum form of the master equation (for small a) as

∂ρ(x, t)

∂t
= γ

∂2ρ(x, t)

∂x2
. (12.23)

This equation is called the diffusion equation: it describes how the probability
distribution of a walker evolves in time. It may equivalently be interpreted as the
density distribution for a large collection of independent walkers.

Consider the following function:

G(x, y; t) = 1√
4πγ t

e−(x−y)2/(4γ t). (12.24)

This function has the following properties:

• Considered as a function of y and t, keeping x fixed, it is a solution of the
diffusion equation for t > 0.

• For t → 0, G reduces to a delta-function:

G(x, y; t) → δ(x − y) for t → 0. (12.25)

G is called the Green’s function of the diffusion equation. This function can be
used to write the time evolution of any initial distribution ρ(x, 0) of this equation
in integral form:

ρ(y, t) =
∫

dx G(x, y; t)ρ(x, 0), (12.26)

which can easily be checked using the properties of G. Inspection of the Green’s
function shows that it is normalised, that is,

∫
dy G(x, y; t) = 1, independent of x

and t.
The Green’s function can be interpreted as the probability distribution of a single

walker which starts off at position x at t = 0. We can use G to construct a new
Markov process corresponding to the diffusion equation. We discretise the time in
steps
t. We start with a walker localised at x at t = 0. Then we move this walker
to a new position y at time
t with probability distribution G(x, y;
t). From this,

382 Quantum Monte Carlo methods

we move the walker to a new position z at time 2
t with probability distribution
G(y, z;
t). We have therefore a Markov process with transition probability given
by G:

T
t(x → y) = G(x, y;
t). (12.27)

Using the properties of the Green’s function it can be shown that the detailed
balance condition for the master equation for the Markov process leads to the
integral form (12.26), so that the Markov process does indeed model the diffusion
process described by (12.23) (check this). The difference between this process and
the previous one on the discrete lattice is that we now use the continuum solution
of the former version, which should be much more efficient, as a single step in
the continuum diffusion process represents a large number of steps in the discrete
diffusion process. The Markov process described by (12.27) can be summarised by
the equation

x(t +
t) = x(t)+ η
√

t, (12.28)

where η is a Gaussian random variable with variance 2γ :

P(η) = 1√
4πγ

e−η2/(4γ). (12.29)

This result can be understood by realising that a step in the Markov process (12.27)
is distributed according to a Gaussian with width

√
2γ
t. In this form, the process is

recognised as a Langevin equation for discrete time. Note that a random momentum
rather than a random force is added at each step, in contrast to the Langevin equation
discussed in Section 8.8.

The general form of the diffusion equation is

∂ρ

∂t
= Lρ(x, t), (12.30)

where L is a second order differential operator. The formal solution of this equation
with a given initial distribution ρ(x, 0) can be written down immediately:

ρ(x, t) = etLρ(x, 0) (12.31)

but as this involves the exponential of an operator (which is to be considered as an
infinite power series), it is not directly useful. Using Dirac notation, the Green’s
function can formally be written as

G(x, y; t) = 〈x|etL|y〉, (12.32)

which indeed satisfies the equation (12.31) as a function of y and t, and which
reduces to δ(x − y) for t = 0. The diffusion equation can only be used to con-
struct a Markov chain if the Green’s function is normalised, in the sense that∫

dy G(x, y; t) = 1, independent of t. This is not always the case, as we shall
now see.

12.2 The variational Monte Carlo method 383

A particular diffusion equation which we shall encounter later in this chapter is

∂ρ

∂τ
= 1

2

∂2ρ(x, τ)

∂x2
− V(x)ρ(x, τ). (12.33)

This looks very much like the one-dimensional time-dependent Schrödinger
equation for a zero-mass particle; in fact, this equation is recovered when we con-
tinue the time analytically into imaginary time τ = it (we use τ for imaginary
time). Using (12.31), we can write the solution as

ρ(x, τ) = eτ(−K−V)ρ(x, 0) (12.34)

where K is the kinetic energy operator K = p2/2 = −1/2(∂2/∂x2) (p is the
momentum operator p = −i(∂/∂x) of quantum mechanics). The exponent cannot
be evaluated because the operators K and V do not commute. However, we might
neglect Campbell–Baker–Hausdorff (CBH) commutators – this is only justified
when τ is small. To emphasise that the following is only valid for small τ , we shall
use the notation
τ instead of τ . We have

e−
τ(K+V) = e−
τKe−
τV + O(
τ 2) (12.35)

where the order
τ 2 error term results from the neglect of CBH commutators.
To find the Green’s function explicitly, we must find the matrix element of the
exponential operator on the right hand side. The term involving the potential is
not a problem as this is simply a function of x. It remains then to find the matrix
elements of the kinetic operator:

GKin(x, y;
τ) = 〈x|e−
τ p̂2/2|y〉 (12.36)

where p̂ is the momentum operator – we have used the caret ˆ to distinguish the
operator from its eigenvalue.

The Green’s function can be evaluated explicitly by inserting two resolutions of
the unit operator of the form

∫
dp |p〉〈p| and using the fact that

〈x|p〉 = 1√
2π

eipx (� ≡ 1). (12.37)

As the kinetic operator is diagonal in the p-representation, the matrix element is
then found simply by performing a Gaussian integral. The result is

GKin(x, y;
τ) = 1√
2π
τ

e−(x−x′)2/(2
τ). (12.38)

This form is recognised as the Green’s function of the simple diffusion equation;
indeed our imaginary-time Schrödinger equation reduces to this equation for V ≡ 0,
and therefore the kinetic part of our Green’s function should precisely be equal to
the Green’s function of the simple diffusion equation. We have derived this form

384 Quantum Monte Carlo methods

explicitly here, because we need to find the Green’s function for a more complicated
type of diffusion equation along the same lines below.

The full Green’s function for the diffusion equation (12.33) reads:

G(x, y;
τ) = GKin(x, y;
τ)e−
τV(y) + O(
τ 2). (12.39)

Unfortunately, the term involving the potential destroys the normalisation of the
full Green’s function, and this prevents us from using it to construct a Markov chain
evolution, which is convenient, if not essential, for a successful simulation as we
shall see later. We can make the transition rate Markovian by normalising it, which
can be done by multiplying the Green’s function by a suitable prefactor exp(τET).
Of course we do not know beforehand what the value of this prefactor is, but we
shall describe methods for sampling its value in Section 12.3. The new, normalised,
Green’s function is no longer the proper Green’s function for Eq. (12.33), but for
a modified form of this equation, in which the potential has been shifted by an
amount ET:

∂ρ

∂τ
= 1

2

∂2ρ(x, τ)

∂x2
− [V(x)− ET]ρ(x, τ). (12.40)

If we choose ET such that the Green’s function is normalised, it describes a Markov
process, hence there will be an invariant distribution. This invariant distribution is
determined by Eq. (12.40), which for stationary distributions reduces to

−1

2

∂2ρ(x)

∂x2
+ V(x)ρ(x) = ETρ(x), (12.41)

which is the stationary Schrödinger equation.
For many problems, it is convenient to construct some Markovian diffusion pro-

cess which has a predefined distribution as its invariant distribution. This turns out
to be possible, and the equation is called the Fokker–Planck (FP) equation. It has
the form

∂ρ(x, t)

∂t
= 1

2

∂

∂x

[
∂

∂x
− F(x)

]
ρ(x, t). (12.42)

The ‘force’ F(x) is related to the invariant distribution ρ(x): the relation is given by

F(x) = 1

ρ(x)

dρ(x)

dx
. (12.43)

It can easily be checked thatρ(x) satisfies (12.42) when the time derivative occurring
in the left hand side of this equation is put equal to zero.

The Green’s function can be found along the same lines as that of the kinetic
part of the Green’s function for the imaginary-time Schrödinger equation. We must
work out

G(x, y; t) = 〈x|e−
tp̂[p̂−iF(x̂)]/2|y〉. (12.44)

12.2 The variational Monte Carlo method 385

We again separate the exponent into two terms, one containing x̂ and the other p̂, at
the expense of an O(
t2) error. Calculating Gaussian Fourier transforms as before,
we obtain the result:

G(x, y;
t) = 1√
2π
t

e−[y−x−F(x)
t/2]2/(2
t). (12.45)

Note that this expression is a first order approximation in
t of the exact Green’s
function. This is normalised, and we can therefore use it again for constructing a
Markov chain. This is done by moving the random walker first from its old position
x to the position x + F(x)
t/2 and then adding a random displacement η

√

t,

where η is drawn from a Gaussian distribution with a variance 1 (see Eq. (12.29)).
In formula, the method reads

x(t +
t) = x(t)+
tF[x(t)]/2 + η
√

t, (12.46)

so it is a discrete Langevin equation with ‘force’ F.
We end this section with a few remarks. First, all results can be extended straight-

forwardly to higher dimensions. Using a 3N-dimensional variable R instead of
the one-dimensional variable x (R denotes the positions of a set of particles in
three dimensions as usual), the Green’s function of the simple diffusion equation
Eq. (12.23) with γ = 1/2 is

G3N (R, R′; t) = 1

(2π t)3N/2
e−(R′−R)2/(2t). (12.47)

The Green’s function of the Fokker–Planck equation (12.42) becomes

G3N (R, R′;
t) = 1

(2π
t)3N/2
e−[R′−R−
tF(R)/2]2/(2
t), (12.48)

where F(R) is a three-dimensional vector, given by

F(R) = ∇Rρ(R)/ρ(R). (12.49)

You might have been surprised by the way in which the exponential containing
noncommuting operators was split in Eq. (12.35). After all, the following splitting

e−
τ(V+K) = e−
τV/2e−
τK e−
τV/2 + O(
τ 3) (12.50)

is more accurate: you can check that the first order CBH commutator vanishes,
hence the O(
τ 3) error. The reason we use the simpler splitting (12.35) is that
diffusion steps are carried out successively, hence the rightmost term in the right
hand side of (12.50) at one step combines with the leftmost term at the next step,
so that the total effect of the more accurate splitting is reduced to a different first
and final step. This difference is, however, of the same order of magnitude as the
accumulated error of the sequence of steps, and therefore it does not pay to use
(12.50).

386 Quantum Monte Carlo methods

12.2.5 The Fokker–Planck equation approach to VMC

The VMC method described in Sections 12.2.1 and 12.2.2 has an important dis-
advantage: typical many-particle wave functions are very small in large parts of
configuration space and very large in small parts of configuration space. This means,
first, that we might have difficulty in finding the regions where the wave function is
large, and second, that attempted moves of walkers from a favourable region (where
the wave function is large) will be rejected when they move out of that region. Hav-
ing a substantial fraction of rejected moves is part of any Metropolis Monte Carlo
scheme, and we could live with that if there did not exist a more efficient approach,
based on the Fokker–Planck equation described in the previous section.

In this method we try to sample the function ρ(R) = ψ2
T(R) rather than the trial

function ψT(R) itself: that is, we use

F = 2∇RψT(R)/ψT(R) (12.51)

in the FP equation.
The distribution ρ(R, t) can be sampled by simulating a diffusion process. The

algorithm is close to that of ordinary VMC. Now we let a collection of walkers
diffuse with probabilities given by the Green’s function (12.45):

Put N walkers at random positions;
REPEAT

Select next walker;
Shift that walker from its current position R to R + F(R)
t/2;
Displace that walker by an amount ηηη

√

t, where ηηη is a

random vector with a Gaussian distribution (see (12.29) and (12.28));
UNTIL finished.

We see that there is no acceptance/rejection step; this causes the gain in efficiency
when using the FP approach.

Note that we have made a time-step error of order (
t)2. It is possible to eliminate
this error by combining this Langevin approach with a Metropolis procedure. The
point is that we know the form of stationary distribution ρ (it is the square of the
trial function ψT), and the Langevin process leads to a distribution which is close
to but not exactly equal to this distribution. The Metropolis algorithm can give
us the desired distribution ρ by acceptance/rejection of the Langevin steps, which
themselves are considered as trial moves in the Metropolis algorithm. Referring
back to Section 10.3, we call the transition probability of the Langevin equation
ωRR′ = G(R, R′;
t), where G is given in (12.48). This is not symmetric in R and
R′ as F depends only on R, and therefore we have to use the generalised Metropolis
algorithm, described at the very end of Section 10.3. The Langevin trial move is

12.3 Diffusion Monte Carlo 387

accepted with probability min(1, qRR′), where

qRR′ = ωR′Rρ(R′)
ωRR′ρ(R)

. (12.52)

Note that the fraction ωR′R/ωRR′ is in equilibrium approximately equal to the ratio
ρ(R)/ρ(R′) – if no time step error was made in constructing ωRR′ , they would have
been exactly equal – so qRR′ is always close to 1. The acceptance rate is therefore
always high when
t is taken small, and the method is very efficient. The Metropolis
acceptance/rejection step is merely a correction for the time step discretisation error
made in the Langevin procedure.

The implementation of the algorithm is straightforward. The resulting energies
must be the same as for the standard VMC method, but the error bars are smaller. As
an example, an MC simulation for the harmonic oscillator using 300 walkers which
perform 3000 steps and α = 0.4 yields for the energy expectation in the ordinary
VMC program value E = 0.51 ± 0.03, to be compared with E = 0.515 ± 0.006 in
the Fokker–Planck program.

Variational Monte Carlo has the advantage that it is simple and straightforward.
An important disadvantage is that it relies on the quality of the trial function, hence
subtle but important physical effects are sometimes neglected when they are not
taken into account when constructing the trial function.

12.3 Diffusion Monte Carlo

12.3.1 Simple diffusion Monte Carlo

The second quantum Monte Carlo method that we consider is the so-called diffusion
or projector Monte Carlo method, abbreviated as DMC. This method does not use
variational principles for obtaining ground state properties, but as we shall see,
the convergence rate of the practical version of this method relies heavily on the
accuracy of the trial functions. The idea of this method has already been sketched in
Section 12.2.4. We use the imaginary time form of the time-dependent Schrödinger
equation. This is a diffusion equation with a potential. We use the Green’s function
in the ‘normalised’ form, i.e. with the normalisation factor exp(−
τET) present:

G(R, R′;
τ) = e−
τ [V(R)−ET] 1√
2π
τ

e−(R−R′)2/(2π
τ) + O(
τ 2). (12.53)

This Green’s function is a short-time approximation of the imaginary-time operator
exp[−τ(H + ET)]. If we resolve this operator in its eigenstates |φn〉, we obtain

e−τ(H−ET) =
∑

n

|φn〉e−τ(En−ET)〈φn|. (12.54)

388 Quantum Monte Carlo methods

For large τ the ground state energy EG dominates in the sum by a factor exp[−τ(E1−
EG)]; therefore it acts as a projector onto the ground state (for large enough times).

As we have the explicit form of the time-evolution operator at our disposal only
in a short-time approximation, we have to perform many short time steps before
the distribution will approach the ground state wave function.

In the simulation, a collection of walkers diffuses through configuration space.
Every diffusion step consists of two stages: a diffusion step and a branching step.
In the diffusion step, the walkers are moved to a new position with a transition
rate given by the diffusive part of the Green’s function, i.e. the part due to the
kinetic energy. The term involving the potential is dealt with in the second stage.
Suppose we were to assign a weight to each walker, then the effect of the potential
term could be taken into account by multiplying this weight for a walker which
has arrived at a position R′ by a factor exp{−
τ [V(R′) − ET]}.1 It turns out that
this procedure is not very efficient. In the end quite a few walkers might have
moved to unfavourable regions and represent small weight, but they require similar
computational effort to the more favourable ones. This problem was previously
encountered in Section 10.6. It would be more efficient to use computational effort
proportional to the significance of the region probed by a particular walker. This
is possible by a ‘birth and death’, or ‘pruning and enrichment’ (Section 10.6) or
branching process: poor walkers die, favourable ones give rise to new walkers.
More precisely, if a walker moves from a point R to a new point R′, we calculate
q = exp{−
τ [V(R′)−ET]}. If q < 1, the walker survives with a probability q and
dies with probability 1−q. If q > 1, the walker gives birth to either [q−1] or [q] new
ones at R, where [q] represents the integer part (truncation) of q. The probability
for having [q] new walkers is given by q − [q], and [q − 1] new walkers will come
into existence with the complementary probability 1 +[q]− q. An efficient way of
coding this is to add a uniform random number r between 0 and 1 to q: for s = q+r,
[s] new walkers are created; if [s] = 0 then the walker is deleted.

Finally, we must specify how ET is found. Remember that this value is ideally
chosen such as to normalise the overall transition rate in the process. This is neces-
sary to prevent the population from growing or decreasing steadily. A growing
population would cause a steady increase in the computer time per diffusion step,
whereas a decrease leads to bad statistics, if not a vanishing population! The energy
ET is in fact determined by keeping track of the change in population and adjusting
it at each step in order to keep the population stable. The average value of ET after
many steps will then converge to the ground state energy as we have already seen
in Section 12.2.4. Suppose we have a target number of M̃ walkers in our simulation

1 It is also possible to multiply the weight by exp{−τ [(V(R′)+ V(R))/2 − ET]}, which corresponds to the
symmetric distribution of the potential terms in the Green’s function as in (12.50).

12.3 Diffusion Monte Carlo 389

and that after the last branching step their actual number is M, then we adjust ET as

ET = E0 + α ln

(
M̃

M

)
(12.55)

where E0 is close to the ground state energy (our ‘best estimate’), and α is some
small parameter.

In an algorithmic form, the resulting procedure can be presented as follows:

Put the walkers at random positions in configurational space;
REPEAT

FOR all walkers DO
Shift walker from its position R to a new position R′

according to the Gaussian transition probability (12.24);
Evaluate q = exp{−
τ [V(R′)−
τET]};
Eliminate the walker or create new ones at R′,

depending on s = q + r, where r is random,
uniform between 0 and 1;

END FOR;
Update ET;

UNTIL finished.

The major difference with the variational Monte Carlo method described in the
previous section is that the present method does not rely on a trial function and
therefore the results have no systematic error due to the trial function being (in
general) not exact. There is, however, an error due to the fact that we have split the
time-evolution operator into two parts, one depending on the kinetic energy and
the other on the potential, by neglecting CBH commutators. By reducing
τ we
can make this error arbitrarily small, but the convergence speed will be reduced
accordingly. In Section 12.3.3, we shall describe a Metropolis algorithm to correct
for the discretisation error.

The population itself should represent the ground state wave function. For a one-
dimensional problem (or a radially symmetric three-dimensional problem) this can
be checked by constructing a histogram in which we record the frequencies with
which the various positions are occupied. Below we shall give some results of DMC
simulations for the harmonic oscillator and the helium atom.

The DMC procedure outlined here might fail in some cases. The distribution
of walkers can only represent a density which is positive everywhere. Therefore,
it can sample the ground wave function only if the latter is everywhere positive.
Fortunately, the ground state of a boson system is indeed everywhere positive.
However, for fermions this is no longer the case. Moreover, the Green’s function is
no longer positive in that case and it is not clear how to perform the diffusion, as

390 Quantum Monte Carlo methods

0 0.5 1 1.5 2 2.5 3 3.5 4

�

r

Figure 12.1. Ground state wave function (times r2) for the three-dimensional
harmonic oscillator as resulting from the DMC calculation (dots) compared with
the exact form, scaled to match the numerical solution best.

the transition probability should be positive. This is called the fermion problem. We
shall come back to this later. Another problem arises when the interaction potential
assumes strongly negative values. This will be discussed in some detail in the next
section and then we shall consider a refinement of the DMC which is not susceptible
to this problem.

12.3.2 Applications

We apply the DMC procedure first to the three-dimensional harmonic oscillator.
The exact ground state wave function is given by

ψ(r) = 1

(2π)3/2
e−r2/2; (12.56)

the energy is 3/2 (in dimensionless units). It should be noted that the probability
distribution for finding a walker at a distance r from the origin is given by the
wave function times r2, because the volume of a spherical shell of thickness dr
is 2πr2dr. For an average population of 300 walkers executing 4000 steps and
a time step τ = 0.05, we find EG = 1.506 ± 0.015, to be compared with the
exact value 11

2 . The distribution histogram is shown in Figure 12.1, together with
the exact wave function, multiplied by r2 and scaled in amplitude to fit the DMC
results best. Ground state energy and wave function are calculated with reasonable
accuracy. Note that these results are obtained without using any knowledge of the
exact solution: the diffusion process ‘finds’ the ground state by itself.

12.3 Diffusion Monte Carlo 391

Next we analyse the helium atom using the diffusion Monte Carlo method. This
is less successful. The reason is that writing the time-evolution operator as a product
of a kinetic and potential energy evolution operator

e−
τ(K+V−ET) = e−
τKe−
τ(V−ET) + O(
τ 2) (12.57)

is not justified when the potential diverges, as is the case with the Coulomb potential
at r = 0. Formally, this equation is still true, but the prefactor of the O(
τ 2) term
diverges. However, even if the potential does not diverge but varies strongly, the
statistical efficiency of the simulation is low. This is due to the fact that if a walker
moves to a very favourable region, it will branch into many copies. But these are
all the same, and together they form a rather biased sample of the distribution in
that region. It requires some time before they have diffused and branched in order
to form a representative ensemble. Frequent occurrence of such strong branching
events will degrade the efficiency considerably. Quite generally one can say that
the efficiency increases with the flatness of the potential.

There exist, in principle, two ways to solve the divergent potential problem.
The first one consists of finding a better alternative to the simple approximation
to the time-evolution operator than in (12.57). Such approximations have been
devised and we shall consider these in the context of path-integral Monte Carlo
(see Section 12.4). The common procedure, however, is to use a guide function,
which transforms the original Schrödinger equation into a new one with a flatter
potential, just as in the case of the Fokker–Planck variational Monte Carlo method.
This method will be described in the next section.

12.3.3 Guide function for diffusion Monte Carlo

As we have just seen, the diffusion Monte Carlo method causes problems if the
potential is unbounded, and this is the case in almost every many-particle system.
Sampling some other function instead of the ground state wave function ψ might
cure this problem.

A suitable function is ρ(R, τ) = ψ(R, τ)�T(R) where�T(R) is some trial func-
tion which models the exact wave function in a reasonable way. It turns out that ρ
satisfies a Fokker–Planck type of equation:

∂ρ(R, τ)

∂τ
= 1

2
∇R[∇R − F(R)]ρ(R, τ)− [EL(R)− ET]ρ(R, τ). (12.58)

Here, the ‘force’ F(R) is again given as 2∇R�T(R)/�T(R). This form differs
from (12.49) because (12.58) is not a ‘pure’ Fokker–Planck equation: it contains a
‘potential term’ EL(R)− ET. The ‘local energy’ EL(R) is given as usual by

EL(R) = H�T(R)

�T(R)
= −∇2�T(R)/2 + V(R)�T

�T(R)
. (12.59)

392 Quantum Monte Carlo methods

The FP-diffusion term will be used to diffuse the walkers, whereas the ‘potential’
EL(R)− ET is used in a branching process. By writing out all the terms on the left
and right hand sides of Eq. (12.58), it can be checked that this equation reduces to
the imaginary time-dependent Schrödinger equation (12.33).

The procedure is now a combination of the Fokker–Planck VMC and of the
DMC method without guide function: we let the walkers diffuse just as in the
Fokker–Planck VMC method, with a transition probability

T
τ (Rn → Rn+1) = 1√
2π
τ

exp{−[Rn+1 − Rn − F(Rn)
τ/2]2/(2
τ)}.
(12.60)

Then branching is performed, according to the value q = exp{−
τ [EL(R)− ET]}.
What do we gain by this method? We avoid problems of the kind encountered above
with strongly varying potentials. The role of V in standard DMC is now taken over
by EL(R), which is (we hope) rather flat. If�T(R)were an exact eigenstate, then EL

would be independent of R. If�T is a reasonable approximation to the ground state,
then EL(R) is reasonably flat, and the method will be reliable. It is clear now why the
cusp conditions are so important: they guarantee that the trial function converges
to the exact solution in those regions where the potential diverges strongly. These
are the points that cause problems. The method using trial – or guide – functions
was introduced by Kalos [8] and is commonly called importance sampling Monte
Carlo.

We can again correct for the time step error using a Metropolis procedure, just
as we did for VMC in Section 12.2.5. Note that G is not symmetric, so we must use
the generalised Metropolis method in order to guarantee detailed balance (see also
the variational Fokker–Planck simulation). A trial displacement is accepted with
probability

min

(
1,

T
τ (R′ → R)ρ(R′)
T
τ (R → R′)ρ(R)

)
(12.61)

and rejected otherwise.
With importance sampling, the algorithm reads:

Put the walkers at random positions in configurational space;
REPEAT

FOR all walkers DO
Shift walker from its position R to a new position R′

by first moving it over a distance F
τ/2 and then
adding a random displacement according to the
transition probability (12.24);

Accept the move with a probability given by (12.61);
IF Accepted THEN

12.3 Diffusion Monte Carlo 393

Evaluate q = exp{−
τ [ELocal(R′)+ ELocal(R)]/2 − ET};
Eliminate the walker or create new ones at R′,

depending on s = q + r, where r is random,
uniform between 0 and 1;

END IF;
END FOR
Update ET using (12.55);

UNTIL finished.

Let us first apply the importance sampling method to the one-dimensional har-
monic oscillator. We use the same trial (or guide) function�T(x) = e−αx2

as in the
VMC simulation. In that case the quantum force is given by

F(x) = −4αx, (12.62)

and the local energy by Eq. (12.6). Indeed, the local energy is a constant if α = 1/2
and it will be slowly varying ifα is close to 1/2. Forα = 0.4, a target number of 6000
walkers and 4000 steps, we find for the ground state energy E = 0.5002 ± 0.0003
and with α = 0.6, E = 0.4998 ± 0.0003.

We can now do the hydrogen and the helium atom problems. For hydrogen we
use a guide function exp(−αr) and a target number of 2000 walkers performing
4000 steps. The local energy is given by (12.10). Obviously, for α = 1 we find the
exact ground state energy of −0.5 Hartree as the local energy is constant and equal
to this value. For α = 0.9, we find a ground state energy of −0.4967(5) and for
α = 1.1 we find EG = 0.5035(5). Neither of these values agrees with the exact
value. The reason is that the guide function should solve the divergence problem at
r = 0, but it can do this only if the cusp conditions are satisfied. For α �= 1 this is
not the case. This shows the importance of the cusp conditions being satisfied for
the trial function.

Finally we present results for the helium atom. We use the Padé–Jastrow wave
function (12.11). Varying the parameter α gives values above and below the exact
energy. If we monitor the variance of the energy, we find a minimum atα ≈ 0.15 and
an energy EG = −2.9029(2) for 1000 walkers performing 4000 steps. Remember
the exact energy is −2.903 and the variational energy for the uncorrelated wave
function (the Hartree–Fock energy) is −2.8617 atomic units.

programming exercise

Modify the DMC programs of the previous section to include a guide function
and compare the results with those given in this section.

394 Quantum Monte Carlo methods

12.3.4 Problems with fermion calculations

We have described how the simulation of a diffusion process can generate an average
distribution of random walkers which is proportional to the ground state wave
function or (in the case of guide function DMC) to the product of this function and a
trial function. But a distribution of walkers can only represent wave functions which
are positive everywhere. For bosons, this property is satisfied by the ground state,
but the same does not hold in the case of fermions. The difficulties associated with
treating fermions in quantum Monte Carlo are generally denoted as ‘the fermion
problem’. It should be noted that there is no fermion problem in VMC.

The fixed-node method

There are several approaches to the fermion problem. The simplest approximation is
the fixed-node method, in which the diffusion process is simulated as before, except
for steps crossing a node of the trial function being forbidden. The nodes of the
trial function divide the configuration space up into simply connected volumes in
which the trial wave function has a unique sign. These volumes are separated from
each other by nodal surfaces: hypersurfaces on which the wave function vanishes.
To understand why the fixed-node method is useful, suppose that we know the
nodes of the exact ground state wave function. If we could solve the ground state
of the Schrödinger equation in each simply connected region bounded by the nodal
surfaces of the ground state wave function with vanishing boundary conditions
on these surfaces, this solution would be proportional to the exact ground state
of the full Hamiltonian in each region. In the fixed-node solution, we solve the
Schrödinger equation in connected regions bounded by the nodal surfaces of the
trial function instead of the exact function, and therefore the quality of the solution
depends on how close these surfaces are to those of the exact ground state. It can be
shown that the resulting energy is a variational upper bound to the exact ground state
energy [2]. It should be noted that the fixed-node method often gives a substantial
improvement over the variational Monte Carlo method (which does not suffer from
the fermion problem).

An additional problem with the fixed-node method is the fact that moves in which
two (or any even number of) nodal surfaces are crossed are accepted. This introduces
an error as the number of walkers in two regions separated by an even number of
node crossings does not necessarily represent the norm of the wave functions on
those regions. The degree to which we suffer from this increases with the time step,
as a larger time step will result in larger steps to be taken. It introduces an extra
time-step bias error which goes by the name cross–recross error.

Let us study the nodes more carefully. The requirement that ψ(x1, . . . , xN) = 0
(xi denotes the spin-orbit coordinate of electron i) defines the nodal surfaces. If

12.3 Diffusion Monte Carlo 395

we assume the spins of the N fermions to be given, then the nodes form (3N −
1)-dimensional hypersurfaces in the 3N-dimensional configurational space. The
obvious zeroes of ψ whenever xi = xj for any pair i �= j define a (3N − 3)-
dimensional scaffolding for the nodal surface structure. This scaffolding does not
depend on the particular form of the trial function. A node of a one-electron orbital
in the Slater determinant occurring in the wave function should not be confused
with a ‘fermionic zero’, as such an orbital node does not force the many-electron
wave function to vanish: one of the electrons, say i, might be at a zero of some
orbital, but the wave function also contains contributions with the coordinates of
the electrons permuted, and in general the coordinates of the other electrons are
different from those of electron i.

Changing the diffusion Monte Carlo method to a fixed-node simulation is easy.
Simply add the following step just after having generated a new trial position
of a particle, say i. Check whether the trial wave function changes sign for this
displacement. If this is the case, the move is not accepted, otherwise proceed as in
the boson case. The interested reader can implement the fixed-node extension and
test it, for example, for the lithium atom, taking an appropriate Slater determinant
for the guide function. More details can be found in Ref. [9].

∗The transient estimator method

In view of the variational error present in the fixed-node method it is worthwhile to
devise other methods. A method which does not depend on fixed nodal surfaces is
the transient estimator method. To understand how and why this method works, it is
important to realise that the Hamiltonian and hence the time-evolution operator are
the same for fermions and for bosons. However, because the time-evolution operator
is symmetric with respect to particle permutations, an antisymmetric (fermionic)
initial state will remain antisymmetric and a symmetric (bosonic) state remains
symmetric.

Let us split an arbitrary fermion wave function φ into two parts, φ− and φ+,
which contain the negative and positive parts of φ respectively (all wave functions
depend on all the spin-orbit coordinates X = (x1, x2, . . . , xN), and on imaginary
time τ):

φ+ = 1
2 (|φ| + φ) (12.63a)

φ− = 1
2 (|φ| − φ), (12.63b)

so that

φ = φ+ − φ−. (12.64)

396 Quantum Monte Carlo methods

Now perform two independent DMC calculations, one with φ− and the other
with φ+ as a starting distribution, where φ is a trial fermion wave function. What
will happen? Applying the (exact) imaginary-time evolution operator T(X → Y ; τ)
to φ we obtain

φ(Y ; τ) =
∫

dX T(X → Y ; τ)φ(X; 0)

=
∫

dX T(X → Y ; τ)φ+(X , 0)−
∫

dX T(X → Y ; τ)φ−(X, 0)

= φ+(Y , t)− φ−(Y , t). (12.65)

This suggests that we can follow the time evolution of φ by subtracting φ+(t) and
φ−(t) as produced in the two simulations. As φ−(0) and φ+(0) are both positive,
and as the imaginary time-evolution operator is always positive, the application of
the DMC approach causes no problems. In fact, one could also say that if the initial
wave function is positive everywhere, it contains no fermion character and hence
we have an unambiguous bosonic time evolution for such an initial state. A guide
function approach can be used in the two boson simulations.

As the time-evolution operator contains no fermion-like features (see above),
both simulations will tend to the bosonic ground state solution for long times. The
fermion ground state wave function is an excited state solution of the many-particle
Hamiltonian, so the boson ground state contribution to the solution at imaginary
time τ will dominate the fermion contribution by a factor exp[τ(EF − EB)], where
EB and EF are the fermion and boson ground state energies respectively. Note that
this factor grows exponentially with time. The fermion ground state wave function
is the difference between the two distributions resulting from φ− and φ+, which
because of the foregoing analysis are both essentially boson-like. If we are to find
a fermion wave function as a small difference of two large, essentially boson wave
function distributions we must be prepared for large statistical errors. The analysis
given here is represented pictorially in Figure 12.2.

The analysis so far leads to the conclusion that, at the beginning, the difference
between the distributions is equal to the trial function φ, and for large times it
converges to the exact fermion wave function, but it will be buried in the noise of
the boson solutions forming the bulk of the two distributions. We might be lucky: if
the trial function relaxes to the exact Fermi wave function quickly enough, before
the latter is buried in the ‘boson noise’, then we have an intermediate (‘transient’)
regime in imaginary time during which we might extract useful data from the
simulation. The trial energy which is adjusted to keep the respective population
sizes stable is no longer a suitable energy estimator as this will converge to the

12.3 Diffusion Monte Carlo 397

�(� = 0)

�+(� = 0) �−(� = 0)

�−(�)

�(�)

�+(�)

(a)

(b)

(c)

(d)

Figure 12.2. Evolution of the distributions in the transient energy estimator
method. The wave function φ(τ = 0) is shown in (a); it can be written as the
difference of the φ+ and φ−. These two functions evolve separately and tend
therefore to the same boson ground state solution, as shown in (c). Subtracting the
two wave functions in (c) gives the small difference in (d), and this will be soon
buried in the noise in the solutions in (c).

boson energy. Therefore we use the ‘transient estimator’:

ETE(τ) =
∫

dX φ(τ)Hφ(τ = 0)∫
dX φ(τ)φ(τ = 0)

=
∫

dX φ−(τ)Hφ(τ = 0)∫
dX [φ+(τ)− φ−(τ)]φ(τ = 0)

−
∫

dX φ+(τ)Hφ(τ = 0)∫
dX [φ+(τ)− φ−(τ)]φ(τ = 0)

.

(12.66)

As the wave function φ(τ) converges to the exact fermion ground state, this estim-
ator will indeed relax to the exact fermion energy. As mentioned already, the
problem resides in φ(τ) to be extracted as the small difference between two large
distributions.

The estimator (12.66) is evaluated as follows. At time τ , the walkers occupy
points in configuration space which are distributed according toφ±(τ). For a walker
at the point X in the φ+-simulation we evaluate Hφ(X , τ = 0) (for the numerator)
and φ(X , τ = 0) (for the denominator), and sum over walkers. We do the same
with the φ− simulation, but now give the contributions a minus sign. The quantity
Hφ(X , τ = 0) can be evaluated because φ(X, τ = 0) is a trial function, given in
analytic form. The sum is divided by the sum of φ(X, τ = 0) over all the walkers.

There exist several extensions to and refinements of the transient estimator
method, which are beyond the scope of this book. A common characteristic of
these methods is that they are subject to instability in the errors for large τ .

398 Quantum Monte Carlo methods

12.4 Path-integral Monte Carlo

In Chapter 11 we saw that the partition function of a classical lattice spin system
on a strip can be evaluated by diagonalising the transfer matrix. The transfer matrix
can be considered as a kind of ‘time-evolution operator’, which projects out the
eigenvector belonging to the largest eigenvalue (in absolute value). The relation
with the time-evolution process described in the previous section is evident. The
transfer matrix effectively reduces the dimension of the classical system by one, but
the price we pay for this reduction is that the diagonalisation of the transfer matrix is
an expensive operation. In this section we consider the reverse transformation: we
shall transform a quantum mechanical system in d dimensions, which can be solved
by diagonalising the Hamiltonian matrix, to a classical system in d +1 dimensions.
This system can then be simulated with the Monte Carlo procedures described in
Chapter 10. The new formulation enables us to obtain time-dependent properties,
or physical quantities of the system at finite temperature. For a very clear discussion
of the path-integral concept, see the book by Feynman and Hibbs [10].

12.4.1 Path-integral fundamentals

The path-integral method provides a way to calculate matrix elements and traces
of the time-evolution operator of a quantum system in imaginary time:

T (τ) = e−τH (12.67)

which we have encountered in the previous section. If we interpret the imaginary
time as an inverse temperature τ ↔ β and take the trace of the time-evolution
operator, we obtain the partition function Z of the quantum system at a finite
temperature T :

Z(β) = Tr(e−βH) =
∫

dR 〈R|e−βH |R〉. (12.68)

R denotes the coordinates of N particles. The path-integral method enables us
to sample system configurations with the appropriate Boltzmann factor, so that
expectation values for a quantum system at a finite temperature can be evaluated.

The problem with expression (12.68) is that it contains the exponential of the
Hamiltonian, which, as mentioned in Section 12.2.4, makes the trace of the time-
evolution operator difficult to evaluate. For short times τ (or β), this is not a problem
as we can write the Hamiltonian as a sum of several terms (e.g. kinetic and potential
energy) which themselves are easily tractable in an exponential – the neglected CBH
commutators yield systematic errors of order τ 2. What can we do if τ is not small?
In that case, we divide the time τ up into many (say M) small segments
τ = τ/M
which can be treated in the short-time approximation. For a system consisting of

12.4 Path-integral Monte Carlo 399

N spinless particles with coordinates Ri, the partition function can be written as∫
dR0〈R0|e−τH |R0〉 =

∫
dR0 dR1 . . . dRM−1

〈R0|e−
τH |R1〉〈R1|e−
τH |R2〉 · · · 〈RM−1|e−
τH |R0〉. (12.69)

We have inserted M −1 unit-operators
∫

dRi |Ri〉〈Ri| between the short-time evolu-
tion operators. The procedure in which time is divided up into many short segments
is called time-slicing. The fact that the first and the last state in the product of matrix
elements are identical (|R0〉) implies that we have periodic boundary conditions in
the τ -direction.

We know the matrix elements of the short-time evolution operator: it has been
derived in Section 12.2.4:

T(R, R′;
τ) = 〈R|e−
τH |R′〉 = 1

(2π
τ)3N/2
e−
τV(R)e−(R−R′)2/(2
τ). (12.70)

The potential could have been distributed symmetrically over R and R′, but we shall
see that the final result does not depend on this distribution. The first order CBH com-
mutator can be shown to vanish in this case, so that this short-time approximation
is accurate to order
τ 2. Substituting this result into (12.69), we obtain∫

dR0〈R0|e−τH |R0〉 ≈ 1

(2π
τ)3NM/2

∫
dR0 dR1 dR2 . . . dRM−1

exp

{
−
τ

M−1∑
m=0

[
1

2

(
Rm+1 − Rm

τ

)2

+ V(Rm)

]}
.

(12.71)

In this expression, RM = R0. The prefactor before the integral seems dangerous in
the sense that it explodes when we take the limit
τ → 0. However, this is balanced
by the fact that, of the huge integration volume, only a tiny part gives significant
contributions to the integrand – in fact, the smaller we take
τ , the narrower the
Gaussian kinetic energy integrands will be and the limit for large M therefore still
exists.

You might recognise the summand in the exponent as the Lagrangian (in discrete
imaginary time) of the classical many-particle system with coordinates Ri if we take

τ → 0. The sum is then the action, which assumes its minimum for the classical
trajectory. The integral is a sum over all possible sets of coordinates R0, . . . , RM .
Such a set denotes a path in configuration space. We see that the trace of the
time-evolution operator is written as a sum, or rather an integral, over all possible
paths. It is important to realise what the classical system represents. The quantum
many-particle system we are describing contains N particles, interacting with each
other and with an external potential through the potential V(R). We have M copies

400 Quantum Monte Carlo methods

Figure 12.3. Classical system described by the path integral of the two elec-
trons in the helium atom. Periodic boundary conditions are imposed along the
quantum imaginary time (the circle). The small full circles denote the helium
nuclei, the heavy ones the electrons. The circle is the time axis with periodic
boundary conditions. The dashed lines represent harmonic couplings between the
electrons of adjacent copies (along the time axis). The heavy solid lines denote
the electron–electron interaction, and the heavy dotted lines the electron–nucleus
interactions.

of this many-particle system along the quantum imaginary-time direction, so that
the classical system consists of NM particles. The first term in the sum in (12.71)
derives from the kinetic part of the quantum Hamiltonian, but in the classical system
it denotes a harmonic coupling between corresponding particles in adjacent copies:
they are connected by springs. Figure 12.3 shows the classical particle system and
couplings for the two electrons in helium with M = 5.

The quantum partition function for a system of N three-dimensional particles
is given as Tr exp(−βH). The right hand side of Eq. (12.71) can be interpreted
as the classical partition function of NM particles in three dimensions (without
momentum degrees of freedom – these can be thought of as being integrated over),
because it is an integral over all the configurations of the coordinates Ri with an
appropriate Boltzmann factor. The energyHof the classical system is identified with
the Lagrangian associated with the quantum Hamiltonian H. An unusual feature is
the inverse temperature occurring in the denominator of the harmonic interactions of
the classical Hamiltonian H (remember
τ = β/M). We see that the path integral
maps the partition function of a 3N-dimensional system onto a (3N+1)-dimensional
system where the extra dimension can be interpreted either as an imaginary-time
or as an inverse-temperature axis – it corresponds to the sub-index i of the Ri.

The path integral provides a very clear insight into the nature of quantum mech-
anics. Up to now, we have put � ≡ 1. Had we kept � in the problem, we would have

12.4 Path-integral Monte Carlo 401

�

R

Figure 12.4. The path integral for a one-dimensional system. The vertical axes
are R-axes at different times. A path is a set of points given on these axes. The
heavy drawn path is the stationary path of the action, which is the solution to the
classical equations of motion. The thin lines represent neighbouring paths. For
these paths, the action is not stationary, but they are taken into account in the
quantum mechanical path integral.

seen that the prefactor in the exponent occurring before the sum was
τ/� instead
of
τ . The classical limit corresponds to � = 0, which implies that the path with
minimal action dominates all the other paths. This is in fact Hamilton’s principle:
the classical path corresponds to the minimal action. If we ‘switch Planck’s con-
stant on’, we see a contribution from the nonminimal paths emerging. If we had
not identified R0 with RM and if we had not integrated over this coordinate, we
would have a system with fixed end points, which brings the analogy with classical
mechanics even closer. Figure 12.4 gives a pictorial representation of the idea of
the path integral.

In this section and in the previous one, we have assumed that the errors in the
individual short-time approximations do not add up to significant errors for large
times. The justification of this assumption is a theorem, which is usually denoted
as the Lie–Trotter–Suzuki formula, which says that for a Hamiltonian H which can
be written as the sum of K operators:

H =
K∑

k=1

Hk (12.72)

it holds that
e−αH → (e−αH1/Me−αH2/M . . . e−αHK/M)M (12.73)

402 Quantum Monte Carlo methods

for large M. The error is then given by [11, 12]

α2

M

∑
m>m′

|[Hm, Hm′]|e−α∑m |Hm|, (12.74)

where | . . . | denotes the norm of an operator.
It is very easy to get confused with many physical quantities having different

meaning according to whether we address the time-evolution operator, the quantum
partition function, or the classical partition function. Therefore we summarise the
different interpretations in Table 12.2. The classical time in the last row of Table 12.2
is the time that elapses in the classical system and is analogous to the time in a Monte
Carlo simulation. This quantity has no counterpart in quantum mechanics or in the
statistical partition function.

The quantum partition function is now simulated simply by performing a standard
Monte Carlo simulation on the classical system. The PIMC algorithm is

Put the NM particles at random positions;
REPEAT

FOR m = 1 TO M DO
Select a time slice m̃ at random;
Select one of the N particles at time slice m̃ at random;
Generate a random displacement of that particle;
Calculate r = exp[−
τ(Hnew − Hold)];
Accept the displacement with probability min(1, r);

END FOR;
UNTIL finished.

In this algorithm we have used H to denote the Hamiltonian of the classical system,
which is equal to the Lagrangian occurring in the exponent of the path integral –
see Eq. (12.71).

Let us compare the path integral method with the diffusion Monte Carlo approach.
In the latter we start with a given distribution and let time elapse. At the end of the
simulation the distribution of walkers reflects the wave function at imaginary time
τ . Information about the history is lost: physical time increases with simulation
time. The longer our simulation runs, the more strongly will the distribution be
projected onto the ground state. In the path integral method, we change the positions
of the particles along the imaginary-time (inverse-temperature) axis. Letting the
simulation run for a longer time does not project the system more strongly onto the
ground state – the extent to which the ground state dominates in the distribution is
determined by the temperature β = M
τ , i.e. for fixed
τ , it is determined by the
length of the chain. The PIMC method is not necessarily carried out in imaginary

Ta
bl

e
12

.2
.

M
ea

ni
ng

of
se

ve
ra

lp
hy

si
ca

lq
ua

nt
it

ie
s

in
di

ffe
re

nt
in

te
rp

re
ta

ti
on

s
of

th
e

pa
th

in
te

gr
al

.

Q
ua

nt
um

m
ec

ha
ni

cs
Q

ua
nt

um
st

at
is

tic
al

m
ec

ha
ni

cs
C

la
ss

ic
al

m
ec

ha
ni

cs
St

at
is

tic
al

ph
ys

ic
s

d
-d

im
en

si
on

al
d

-d
im

en
si

on
al

d
-d

im
en

si
on

al
su

bs
pa

ce
d

-d
im

en
si

on
al

co
nfi

gu
ra

tio
n

sp
ac

e
co

nfi
gu

ra
tio

n
sp

ac
e

of
co

nfi
gu

ra
tio

n
sp

ac
e

co
nfi

gu
ra

tio
n

sp
ac

e
im

ag
in

ar
y

tim
e
τ

in
ve

rs
e

te
m

pe
ra

tu
re

1-
di

m
en

si
on

al
ax

is
in

ve
rs

e
te

m
pe

ra
tu

re
β

=
1/

k B
T

in
co

nfi
gu

ra
tio

n
sp

ac
e

β
=

1/
k B

T
tim

e-
ev

ol
ut

io
n

op
er

at
or

B
ol

tz
m

an
n

op
er

at
or

e−
β

H
–

tr
an

sf
er

m
at

ri
x

ki
ne

tic
en

er
gy

ki
ne

tic
en

er
gy

ha
rm

on
ic

in
te

rp
ar

tic
le

po
te

nt
ia

l
in

te
r-

ro
w

co
up

lin
g

of
tr

an
sf

er
m

at
ri

x
L

ag
ra

ng
ia

n
L

ag
ra

ng
ia

n
L

ag
ra

ng
ia

n
H

am
ilt

on
ia

n
pa

th
in

te
gr

al
qu

an
tu

m
pa

rt
iti

on
fu

nc
tio

n
–

pa
rt

iti
on

fu
nc

tio
n

of
d

-d
im

en
si

on
al

sy
st

em
of

(d
+

1)
-d

im
en

si
on

al
sy

st
em

cl
as

si
ca

ll
im

it
ze

ro
te

m
pe

ra
tu

re
st

at
io

na
ry

pa
th

ze
ro

te
m

pe
ra

tu
re

404 Quantum Monte Carlo methods

time – there exist versions with real time, which are used to study the dynamics of
quantum systems [13–15].

The analysis so far is correct for distinguishable particles. In fact, we have simply
denoted a coordinate representation state by |R〉. For indistinguishable bosons, we
should read for this state:

|R〉 = 1

N !
∑

P

|r1, r2, . . . , rN 〉, (12.75)

where the sum is over all permutations of the positions. The boson character is
noticeable when we impose the periodic boundary conditions along the τ -axis,
where we should not merely identify rk in the last coordinate |RM〉 with the corres-
ponding position in |R0〉, but also allow for permutations of the individual particle
positions in both coordinates to be connected.

This feature introduces a boson entropy contribution, which is particularly notice-
able at low temperatures. To see this, let us consider the particles as diffusing from
left (R0) to right (RM). On the right hand side we must connect the particles to
their counterparts on the left hand sides, taking all permutations into account. If the
Boltzmann factor forbids large steps when going from left to right, it is unlikely
that we can connect the particles on the right hand side to the permuted leftmost
positions without introducing a high energy penalty. This is the case when τ = β

is small, or equivalently when the temperature is high. This can be seen by noticing
that, keeping
τ = β/N fixed, a decrease β must be accompanied by a decrease in
the number of segments N . Fewer segments mean less opportunity for the path to
wander away from its initial position. On the other hand, we might keep the num-
ber of segments constant, but decrease
τ . As the spring constants are inversely
proportional to
τ (see Eq. (12.71)), they do not allow, in that case, for large dif-
ferences in position on adjacent time slices; hence permutations are quite unlikely.
When the temperature is high (τ = β small), large diffusion steps are allowed and
there is a lot of entropy to be gained from connecting the particles to their starting
positions in a permuted fashion. This entropy effect is responsible for the superfluid
transition in 4He [14–16]. Path-integral methods also exist for fermion systems. A
review can be found in Ref. [19].

What type of information can we obtain from the path integral? First of all,
we can calculate ground state properties by taking β very large (temperature very
small). The system will then be in its quantum ground state. The particles will be
distributed according to the quantum ground state wave function. This can be seen by
considering the expectation value for particle 0 to be at position R0. This is given by

P(R0) = 1

Z

∫
dR1dR2 . . . dRM−1

〈R0|e−
τH |R1〉〈R1|e−
τH |R2〉 . . . 〈RM−1|e−
τH |R0〉. (12.76)

12.4 Path-integral Monte Carlo 405

Note that the numerator differs from the path integral (which occurs in the denom-
inator) in the absence of the integration over R0. Removing all the unit operators
we obtain

P(R0) = 〈R0|e−τH |R0〉∫
dR0〈R0|e−τH |R0〉 . (12.77)

Large τ is equivalent to low temperature. But if τ is large indeed, then the operator
exp(−τH) projects out the ground state φG:

e−τH ≈ |φG 〉e−τEG〈 φG|, largeτ . (12.78)

Therefore we have

P(R0) = 1

Z
e−τEG |〈φG|R0〉|2, largeτ . (12.79)

Because of the periodic boundary conditions in the τ direction we obtain the same
result for each time slice m. To reduce statistical errors, the ground state can be
therefore obtained from the average distribution over the time slices via a histogram
method.

The expectation value of a physical quantity A for a quantum system at a finite
temperature is found as

〈A〉β = Tr(Ae−βH)

Tr e−βH
. (12.80)

The denominator is the partition function Z. We can use this function to determine
the expectation value of the energy

〈E〉β = Tr(He−βH)

Z
= − ∂

∂β
ln Z(β). (12.81)

If we apply this to the path-integral form of Z , we obtain for the energy per particle
(in one dimension):

〈 E

N
〉β = M

2β
− 1

N
(〈K〉 − 〈V〉). (12.82)

with

K =
M−1∑
m=0

(Rm − Rm+1)
2

2β2
(12.83)

and V is the potential energy (see also Problem 12.1). The first term in (12.82)
derives from the prefactor 1/

√
2π
β of the kinetic Green’s function. The angular

brackets in the second and third term denote expectation values evaluated in the
classical statistical many-particle system. It turns out that this expression for the
energy is subject to large statistical errors in a Monte Carlo simulation. The reason

406 Quantum Monte Carlo methods

is that 1/β and 〈K〉/(NM) are both large, but their difference is small. Herman et al.
[20] have proposed a different estimator for the energy, given by〈

E

N

〉
β

=
〈

1

M

M−1∑
m=0

[
V(Rm)+ 1

2
Rm · ∇RmV(Rm)

]〉
. (12.84)

This is called the virial energy estimator, and it will be considered in Problem 12.6.
The virial estimator is not always superior to the direct expression, as was

observed by Singer and Smith for Lennard–Jones systems [21]; this is presum-
ably due to the steepness of the Lennard–Jones potential causing large fluctuations
in the virial.

12.4.2 Applications

We check the PIMC method for the harmonic oscillator in one dimension. We have
only one particle per time slice. The particles all move in a ‘background potential’,
which is the harmonic oscillator potential, and particles in neighbouring slices are
coupled by the kinetic, harmonic coupling. The partition function reads

Z =
∫

dx0 . . . dxM−1 exp

{
− β

M

M−1∑
m=0

[
(xm − xm+1)

2

2
β2 + 1

2
x2

m

]}
. (12.85)

We have used β = 10 and M = 100. Thirty thousand MCS were performed, of
which the first two thousand were deleted to reach equilibrium. The maximum dis-
placement was tuned to yield an acceptance rate of about 0.5. The spacing between
the energy levels of the harmonic oscillator is 1; therefore β = 10 corresponds
to large temperature. We find for the energy E = 0.51 ± 0.02, in agreement with
the exact ground state energy of 1/2. The ground state amplitude can also be
determined, and it is found to match the exact form |ψ(x)|2 = e−x2

very well.
The next application is the hydrogen atom. This turns out to be less successful,

just as in the case of the diffusion MC method. The reason is again that writing
the time-evolution operator as the product of the exponentials of the kinetic and
potential energies is not justified when the electron approaches the nucleus, as the
Coulomb potential diverges there – CBH commutators therefore diverge too. The
use of guide functions is not possible in PIMC, so we have to think of something
else. The solution lies in the fact that the exact time-evolution operator over a time
slice
t does not diverge at r = 0; we suffer from divergences because we have
used the so-called primitive approximation

T(r → r′;
τ) = 1

(2π
τ)3/2
exp[−(r − r′)/(2
τ)] exp{−
τ [V(r)+ V(r′)]/2}

(12.86)

12.4 Path-integral Monte Carlo 407

to the time-evolution operator. The effect of averaging over all the continuous
paths from (r, τ) to (r′, τ +
τ), as is to be done when calculating the exact time
evolution, is that the divergences at r, r′ = 0 are rounded off. So if we could
find a better approximation to this exact time evolution than the primitive one, we
would not suffer from the divergences any longer. Several such approximations
have been developed [22, 23]. They are based either on exact Coulomb potential
solutions (hydrogen atom) or on the cumulant expansion. We consider the latter
approximation in some detail in Problems 12.2 and 12.3; here we shall simply
quote the result:

Vcumulant(r, r′;
τ) =
∫
τ

0
dτ ′ erf[r(τ ′)/

√
2στ ′]

r(τ ′)
, (12.87a)

where

r(τ ′) = r + τ ′

τ
(r′ − r) and σ(τ ′) = (
τ − τ ′)τ ′

τ
. (12.87b)

The cumulant approximation for V can be calculated and saved in a tabular form, so
that we can read it into an array at the beginning of the program, and then obtain the
potential for the values needed from this array by interpolation. In fact, for
τ fixed,
Vcumulant depends on the norms of the vectors r and r′ and on the angle between
them. Therefore the table is three-dimensional. We discretise r in, say, 50 steps
r
between 0 and some upper limit rmax (which we take equal to 4), and similarly for
r′. For values larger than rmax we simply use the primitive approximation, which
is sufficiently accurate in that case. For the angle θ in between r and r′ we store
cos θ , discretised in 20 steps between −1 and 1 in our table. For actual values
r, r′ and u = cos θ we interpolate linearly from the table – see Problem 12.4.
Figure 12.5 shows the cumulant potential V(r = r′, θ = 0;
τ = 0.2), together
with the Coulomb potential; the rounding effect of the cumulant approximation is
clear. In a path-integral simulation for the hydrogen atom we find a good ground
state distribution, shown in Figure 12.6. For the energy, using the virial estimator
with the original Coulomb potential (which is of course not entirely correct), we
find EG = −0.494 ± 0.014, using
τ = 0.2, 100 time slices and 60 000 MC steps
per particle, of which the first 20 000 were removed for equilibration.

Applying the method to helium is done in the same way. Using 150 000 steps
with a chain length of 50 and τ = 0.2, the ground state energy is found as 2.93 ±
0.06 atomic units. Comparing the error with the DMC method, the path-integral
method does not seem to be very efficient, but this is due to the straightforward
implementation. It is possible to improve the PIMC method considerably as will
be described in the next section.

The classical example of a system with interesting behaviour at finite temperature
is dense helium-4. In this case the electrons are not taken into account as independent

408 Quantum Monte Carlo methods

0 0.5 1 1.5 2 2.5 3 3.5 4

V

r

Figure 12.5. The cumulant potential for
τ = 0.2 (diamonds) and the Coulomb
potential. It is clearly seen that the cumulant potential is rounded off at r = 0.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

�

r

Figure 12.6. PIMC ground state amplitude |ψ(r)|2 (diamonds) and the exact result.
Sixty thousand Monte Carlo sweeps with a chain length of 100 and τ = 0.2 were
used.

particles; rather, a collection of atoms is considered, interacting through Lennard–
Jones potentials. We shall not go into details of implementation and phase diagram,
but refer to the work by Ceperley and Pollock [3, 4].

12.4.3 Increasing the efficiency

The local structure of the action enables us to use the heat-bath algorithm instead
of the classical sampling rule, in which particles are displaced at random uniformly

12.4 Path-integral Monte Carlo 409

within a cube (or a sphere). If we update the coordinate Rm, keeping Rm−1 and
Rm+1 fixed, then in the heat-bath algorithm, the new value R′

m must be generated
with distribution

ρ(R′
m) = exp

[
−
τ (R

′
m − Rm)

2

2
τ 2
−
τV(R′

m)

]
(12.88)

where Rm = (Rm+1 +Rm−1)/2. We may sample the new position directly from this
distribution by first generating a new position using a Gaussian random generator
with width 1/(2
τ) and centred around Rm, and then accepting or rejecting the
new position with a probability proportional to exp[−
τV(R′

m)]. This procedure
guarantees 100% acceptance for zero potential. If there are hard-core interac-
tions between the particles, the Gaussian distribution might be replaced by a more
complicated form to take this into account [4].

A major drawback of the algorithm presented so far is that only one atom is
displaced at a time. To obtain a decent acceptance rate the maximal distance over
which the atom can be displaced is restricted by the harmonic interaction between
successive ‘beads’ on the imaginary time-chain to ∼√

τ . The presence of the
potential V can force us to decrease this step size even further. It will be clear that
our local update algorithm will cause the correlation time to be long, as this time
is determined by the long-wavelength modes of the chain. As it is estimated that
equilibration of the slowest modes takes roughly O(M2)Monte Carlo sweeps (see
the next chapter), the relaxation time will scale as M3 single-update steps. This
unfavourable time scaling behaviour is well known in computational field theory,
and a large part of the next chapter will be dedicated to methods for enhancing the
efficiency of Monte Carlo simulations on lattices. An important example of such
methods is normal mode sampling in which, instead of single particle moves, one
changes the configuration via its Fourier modes [24, 25]. If one changes for example
the k = 0 mode, all particles are shifted over the same distance. The transition
probability is calculated either through the Fourier-transformed kinetic (harmonic
interaction) term, followed by an acceptance/rejection based on the change in poten-
tial, or by using the Fourier transform of the full action. We shall not treat these
methods in detail here; in the next chapter, we shall discuss similar methods for
field theory.

A method introduced by Ceperley and Pollock divides the time slices up in a
hierarchical fashion and alters the values of groups of points in various stages
[3, 4]. At each stage the step can be discontinued or continued according to some
acceptance criterion. It turns out [4] that with this method it is possible to reduce the
relaxation time from M3 to M1.4. The method seems close in spirit to the multigrid
Monte Carlo method of Goodman and Sokal, which we shall describe in the next
chapter.

410 Quantum Monte Carlo methods

It will be clear that for a full boson simulation, moving particles is not sufficient:
we must also include permutation moves, in which we swap two springs between
particles at subsequent beads, for example. However, the configurations are usually
equilibrated for a particular permutation, and changing this permutation can be so
drastic a move that permutations are never accepted. In that case it is possible to
combine a permutation with particle displacements which adjust the positions to
the new permutation [4].

12.5 Quantum Monte Carlo on a lattice

There are several interesting quantum systems which are or can be formulated on
a lattice. First of all, we may consider quantum spin systems as generalisations of
the classical spin systems mentioned in Chapter 7. An example is the Heisenberg
model, with Hamiltonian

HHeisenberg = −J
∑
〈ij〉

si · sj (12.89)

where the sum is over nearest neighbour sites 〈ij〉 of a lattice (in any dimensions),
and the spins satisfy the standard angular momentum commutation relations on the
same site (� ≡ 1):

[sx, sy] = isz

2
. (12.90)

Another example is the second quantised form of the Schrödinger equation. This
uses the ‘occupation number representation’ in which we have creation and anni-
hilation operators for particles in a particular state. If the Schrödinger equation is
discretised on a grid, the basis states are identified with grid points, and the cre-
ation and annihilation operators create and annihilate particles on these grid points.
These operators are called c†

i and ci respectively, and they satisfy the commutation
relations

[ci, cj] = [c†
i , c†

j] = 0; [ci, c†
j] = δij. (12.91)

In terms of these operators, the Schrödinger equation for a one-dimensional,
noninteracting system reads [26]∑

i

−t(c†
i ci+1 + c†

i+1ci)+
∑

i

Vini (12.92)

where ni is the number operator c†
i ci, and where appropriate boundary conditions

are to be chosen.
A major advantage of this formulation over the original version of the Schrödinger

equation is that the boson character is automatically taken into account: there is no
need to permute particles in the Monte Carlo algorithm. A disadvantage is that the
lattice will introduce discretisation errors.

12.5 Quantum Monte Carlo on a lattice 411

Finally, this model may be formulated for interacting fermions. A famous model
of this type is the so-called Hubbard model, which models the electrons which
are tightly bound to the atoms in a crystalline material. The Coulomb repulsion is
restricted to an on-site effect; electrons on different sites do not feel it. The creation
and annihilation operators are now called c†

i,σ , ci,σ , where σ = ± labels the spin.

They anticommute, except for [c†
i,σ , cj,σ ′]+ = δijδσσ ′ . The standard form of the

Hubbard model in one dimension reads

H =
∑
i,σ

−t[c†
i,σ ci+1,σ + c†

i+1,σ ci,σ] + U
∑

i

ni,σni,−σ (12.93)

where ni,σ is the number operator which counts the particles with spin σ at site i:
ni = c†

i,σ ci,σ . The first term describes hopping from atom to atom, and the second
one represents the Coulomb interaction between fermions at the same site.

We shall outline the quantum path-integral Monte Carlo analysis for one-
dimensional lattice quantum systems, taking the Heisenberg method as the principal
example. Extensions to other systems will be considered only very briefly. For a
review, see Ref. [5]; see also Ref. [27].

The quantum Heisenberg model is formulated on a chain consisting of N sites,
which we shall number by the index i. We have already discussed this model in
Section 11.5. The Hilbert space has basis states |S〉 = |s1, s2, . . . , sN 〉, where the si

assume values ±1; they are the eigenstates of the z-component of the spin operator.
The Heisenberg Hamiltonian can be written as the sum of operators containing
interactions between two neighbouring sites. Let us call Hi the operator −Jsi · si+1,
coupling spins at sites i and i + 1. Suppose we have N sites and that N is even. We
now partition the Hamiltonian as follows:

H = Hodd + Heven = (H1 + H3 + H5 + · · · + HN−1)

+ (H2 + H4 + H6 + · · · + HN). (12.94)

Hi and Hi+2 commute as the Hi couple only nearest neighbour sites. This makes the
two separate Hamiltonians Hodd and Heven trivial to deal with in the path integral.
However, Hodd and Heven do not commute. It will therefore be necessary to use the
short-time approximation.

The time-evolution operator is split up as follows:

e−τH ≈ e−
τHodd e−
τHeven e−
τHodd e−
τHeven . . . e−
τHodd e−
τHeven (12.95)

with a total number of 2M exponents in the right hand side;
τ = τ/M. In calculat-
ing the partition function, we insert a unit operator of the form

∑
S |S〉〈S| between

412 Quantum Monte Carlo methods

Figure 12.7. The checkerboard decomposition of the space-time lattice. Two world
lines are shown.

the exponentials, where
∑

S denotes a sum over all the spins si in S:

Z =
∑
Si,S̄i

〈S0|e−
τHodd |S̄0〉〈S̄0|e−
τHeven |S1〉〈S1|e−
τHodd |S̄1〉

× 〈S̄1|e−
τHeven |S2〉 · · · 〈SN/2−1|e−
τHodd |S̄N/2−1〉
× 〈S̄N/2−1|e−
τHeven |S0〉. (12.96)

The operators exp(
τHeven) and exp(
τHodd) can be expanded as products of
terms of the form exp(
τHi). Each such term couples the spins around a plaquette of
the space-time lattice and the resulting picture is that of Figure 12.7, which explains
the name ‘checkerboard decomposition’ for this partitioning of the Hamiltonian.
Other decompositions are possible, such as the real-space decomposition [5], but
we shall not go into this here.

The simulation of the system seems straightforward: we have a space-time lattice
with interactions around the shaded plaquettes in Figure 12.7. At each site of the
lattice we have a spin sim, where i denotes the spatial index and m denotes the index
along the imaginary-time or inverse-temperature axis. The simulation consists of
attempting spin flips, evaluating the Boltzmann weight before and after the change,
and then deciding to perform the change or not with a probability determined by
the fractions of the Boltzmann weights (before and after). But there is a snake in the
grass. The Hamiltonians Hm commute with the total spin operator,

∑
i sz

i ; therefore
the latter is conserved, i.e.

sim + si+1,m = si,m+1 + si+1,m+1 (12.97)

12.5 Quantum Monte Carlo on a lattice 413

for each plaquette (remember the si occurring in this equations are the eigenvalues of
the corresponding sz

i operators). Therefore a single spin flip will never be accepted
as it does not respect this requirement. This was already noted in Section 11.5:
letting a chain evolve under the Hamiltonian time evolution leaves the system in
the ‘sector’ where it started off. Simple changes in the spin configuration which
conserve the total spin from one row to another are spin flips of all the spins at the
corners of a nonshaded plaquette.

In the boson and fermion models, where we have particle numbers nim instead
of spins, the requirement (12.97) is to be replaced by

nim + ni+1,m = ni,m+1 + ni+1,m+1. (12.98)

In this case the simplest change in the spin configuration consists of an increase
(decrease) by one of the numbers at the two left corners of a nonshaded plaquette and
a decrease (increase) by one of the numbers at the right hand corners (obviously, the
particle numbers must obey nim ≥ 0 (bosons) or nim = 0, 1 (fermions)). Such a step
is equivalent to having one particle moving one lattice position to the left (right). The
overall particle number along the time direction is conserved in this procedure. The
particles can be represented by world lines, as depicted in Figure 12.7. The changes
presented here preserve particle numbers from row to row, so for a simulation of
the full system, one should consider also removals and additions of entire world
lines as possible Monte Carlo moves.

Returning to the Heisenberg model, we note that the operator exp(−
τHi)

couples only spins at the bottom of a shaded plaquette to those at the top. This
means that we can represent this operator as a 4 × 4 matrix, where the four pos-
sible states | + +〉, | + −〉, | − +〉 and | − −〉 label the rows and columns. For the
Heisenberg model one finds after some calculation

exp

[
−
τ J

4
σσσ i · σσσ i+1

]

= e−
J/4




e
τJ/2 0 0 0
0 cosh(
τJ/2) sinh(
τJ/2) 0
0 sinh(
τJ/2) cosh(
τJ/2) 0
0 0 0 e
τJ/2


 (12.99)

(σσσ is the vector of Pauli matrices (σx, σy, σz) – we have s = �σσσ/2; � ≡ 1). This
matrix can be diagonalised (only a diagonalisation of the inner 2 × 2 block is
necessary) and the model can be solved trivially. Some matrix elements become
negative when J < 0 (Heisenberg antiferromagnet). This minus-sign problem turns
out not to be fundamental, as it can be transformed away by a redefinition of the
spins on alternating sites [5, 28].

414 Quantum Monte Carlo methods

In the case where, instead of spin-1/2 degrees of freedom, we have (boson)
numbers on the sites, the matrix H1 becomes infinite-dimensional. In that case we
must expand exp(−
τHi) in a Taylor series expansion in
τ . We shall not go into
details but refer to the literature [5].

If we have fermions, there is again a minus-sign problem. This turns out to
be removable for a one-dimensional chain, but not for two and three dimensions.
In these cases one uses fixed-node and transient estimator methods as described
above [29].

12.6 The Monte Carlo transfer matrix method

In Chapter 11 we have seen that it is possible to calculate the free energy of a
discrete lattice spin model on a strip by solving the largest eigenvalue of the transfer
matrix. The size of the transfer matrix increases rapidly with the strip width and the
calculation soon becomes unfeasible, in particular for models in which the spins
can assume more than two different values. The QMC techniques which have been
presented in the previous sections can be used to tackle the problem of finding
the largest eigenvalues of the very large matrices arising in such models. Here
we discuss such a method. It goes by the name of ‘Monte Carlo transfer matrix’
(MCTM) method and it was pioneered by Nightingale and Blöte [30].

Let us briefly recall the transfer matrix theory. The elements T(S′, S) = 〈S′|T |S〉
of the transfer matrix T are the Boltzmann weights for adding new spins to a semi-
infinite system. For example, the transfer matrix might contain the Boltzmann
weights for adding an entire row of spins to a semi-infinite lattice model, or a single
spin, in which case we take helical boundary conditions so that the transfer matrix
is the same for each spin addition (see Figure 12.8). The free energy is given in
terms of the largest eigenvalue λ0 of the transfer matrix:

F = −kBT ln(λ0). (12.100)

From discussions in Chapter 11 and Section 12.4, it is clear that the transfer matrix
of a lattice spin model is the analogue of the time-evolution operator in quantum
mechanics.

We now apply a technique analogous to diffusion Monte Carlo to sample the
eigenvector corresponding to the largest eigenvalue. In the following we use the
terms ‘ground state’ for this eigenvector, because the transfer matrix can be written
in the formT = exp(−τH), so that the ground state of H gives the largest eigenvalue
of the transfer matrix. We write the transfer matrix as a product of a normalised
transition probability P and a weight factor D. In Dirac notation:

〈S′|T |S〉 = D(S′)〈S′|P|S〉. (12.101)

12.6 The Monte Carlo transfer matrix method 415

 s'0

 s'1(= s0)

 s'2(= s1)

 s'L-1(= sL-2)

 sL-1

Figure 12.8. Helical boundary conditions for the spin model with nearest neigh-
bour interactions on a strip. A step of the algorithm consists of evolving the ‘old’
walker S into a new one called S′. This is done by first adding a new ‘head’ s′

0 of
S′ according to a probability distribution like (12.104). Then the ‘old’ components
sL−2 to s0 are copied onto s′

L−1 to s′
1.

The ground state will be represented by a collection of random walkers {Sk} which
diffuse in configuration space according to the transition probability P. Each dif-
fusion step is followed by a branching step in which the walkers are eliminated or
multiplied, i.e. split into a collection of identical walkers, depending on the value
of the weight factor D(S′

k).
Let us describe the procedure for a p-state clock model with stochastic variables

(spins) which assume values

θ = 2πn

p
, n = 0, . . . , p − 1 (12.102)

and a nearest neighbour coupling

− H
kBT

=
∑
〈ij〉

J cos(θi − θj). (12.103)

For p = 2 this is equivalent to the Ising model (with zero magnetic field), with
J being exactly the same coupling constant as in the standard formulation of this
model (Chapter 7). For large p the model is equivalent to the XY model. The XY
model will be discussed in Chapter 15 – at this moment it is sufficient to know that
this model is critical for all temperatures between 0 and TKT, which corresponds to
βJ ≈ 1.1 (the subscript KT denotes the Kosterlitz–Thouless phase transition; see
Chapter 15). The central charge c (see Section 11.3) is equal to 1 on this critical line.

416 Quantum Monte Carlo methods

Table 12.3. Largest eigenvalues of the
transfer matrix of the Ising model on a strip
with helical boundary conditions
(Figure 12.8) versus strip width L.

L ln λ0 (MCTM) ln λ0 (Lanczos)

6 0.9368(2) 0.9369
7 0.9348(2) 0.9350
8 0.9337(2) 0.9338
9 0.9328(2) 0.9329

10 0.9321(2) 0.9323
11 0.9316(2) 0.9318

The target number of walkers is equal to 5000, and
they performed 10 000 diffusion steps. The third
column gives the eigenvalues obtained by diagon-
alising the full transfer matrix using the Lanczos
method. These values are determined with high
accuracy and are rounded to four significant digits.

The walkers are ‘columns’ of lattice spins, (s0, . . . , sL−1), as represented in
Figure 12.8. In the diffusion step, a new spin is added to the system, and its value
is the s0-component of the new configuration of the walker. The spin components
1 to L − 1 of the new configuration are filled with the components 0 to L − 2 of
the old walker – the walker is shifted one position over the cylinder. To sample the
new s′

0-value, we use the ‘shooting method’ in which the interval [0, 1] is divided
up into p segments corresponding to the conditional probability P(s′

0|S) which is
proportional to the Boltzmann factor for adding a spin s′

0 = 0, . . . , p − 1 to the
existing column S. In our clock model example, we have

P(s′
0|S) = eJ cos(s′

0−s0)+J cos(s′0−sL−1)/D(S), (12.104)

with normalisation factor

D(S) =
∑

s′
0

eJ cos(s′
0−s0)+J cos(s′

0−sL−1). (12.105)

A random number between 0 and 1 is then generated and the new spin value
corresponds to the index of the segment in which the random number falls.

The next step is then the assignment of the weight D(S′) to the walker with D
given in (12.105). Branching is then carried out exactly as in the DMC method. In
fact, the weights are also multiplied by a factor exp(Etrial), where Etrial is the same
for all walkers but varies in time. It is updated as in the DMC method according to

Etrial = E0 − α ln(N/N0), (12.106)

Exercises 417

4.418

4.42

4.422

4.424

4.426

4.428

4.43

4.432

0.01 0.014 0.018 0.022 0.026

ln
λ 0

1/L 2

Figure 12.9. The logarithm of the largest eigenvalue of the transfer matrix versus
the inverse of the square of the strip width L. The straight line has a slope π/6 and
is adjusted in height to fit the data.

where E0 is a guess of the trial energy (which should be equal to − ln λ0, λ0 is the
largest eigenvalue), N is the actual number of walkers and N0 is the target number
of walkers. This term aims at stabilising the population size to the target number N0.

The simplest information we obtain is the largest eigenvalue, which is given as
exp(Etrial), where the average value of Etrial during the simulation is to be used
(with the usual omission of equilibration steps). This can be used to determine
central charges. In Table 12.3 we compare the values of this quantity for the Ising
model with those obtained by a Lanczos diagonalisation of the transfer matrix.
The agreement is seen to be excellent. For the XY model, the eigenvalues cannot
be found using direct diagonalisation and we can check the MCTM method only
by comparing the central charge obtained with the known value: 1 in the low-
temperature phase and 0 at high temperatures. In Figure 12.9 we show the results
for βJ = 1.25. The points in a graph of the form ln λ0 vs. 1/L2 lie on a straight
curve with a slope of π/6 (c = 1).

Exercises

12.1 In this problem we consider the virial expression for the energy [20].
In a path-integral QMC simulation for a particle in one dimension in a potential

V(x) we want to find the energy E as a function of temperature T = 1/(kBβ). We do
this by using the thermodynamic relation

E = −∂ ln Z

∂β

418 Quantum Monte Carlo methods

where the quantum statistical partition function Z is given by

Z = Tre−βH .

We take � ≡ 1.

(a) Show by using the Lie–Trotter–Suzuki formula that

E = N

2β
+
∫

dx0dx1 . . . dxM−1[−T + U] exp(−βScl)∫
dx0dx1 . . . dxM−1 exp(−βScl)

with

T = M

2β2

M−1∑
m=0

(xm − xm+1)
2;

x0 ≡ xM ;

U = 1

M

M−1∑
m=0

V(xm)

and
Scl = T + V .

(b) Show that ∫
dx0dx1 . . . dxN−1

∑N−1
i=0 xi(∂Scl/∂xi)[exp(−βScl)]∫

dx0dx1 . . . dxN−1 exp(−βScl)
= N

β
.

Hint: use partial integration.
(c) Show that

M−1∑
m=0

xm
∂T

∂xm
= 2T .

(d) Show that the energy can also be determined by

E =
〈

1

N

N−1∑
m=0

[
V(xm)+ 1

2
xm
∂V

∂xm

] 〉
.

(e) Show that the generalisation to a three-dimensional particle is

E =
〈

1

N

M−1∑
m=0

[
V(rm)+ 1

2
rm · ∂V

∂rm

] 〉
.

12.2 A particle moves in three dimensions. It experiences no potential: V(r) = 0. At
imaginary time τ = 0 the particle is localised at r1.

(a) What is the wave function ψ0(r, τ) of the particle for τ ′ > 0?
(b) We assume that the particle moves from r1 at time 0 to r2 at time τ . When we

want to evaluate the matrix element

〈r1, 0|r2, τ 〉,

Exercises 419

in the path-integral formalism, we should include all paths satisfying these
boundary conditions. Using completeness, we can write, with 0 < τ ′ < τ :

〈r1, 0|r2, τ 〉 =
∫

d3r′〈r1, 0|r′, τ ′〉〈r′, τ ′|r2, τ 〉.

Show that the integrand in this equation can be written as

〈r1, 0|r′, τ ′〉〈r′, τ ′|r2, τ 〉 = 〈r10|r2, τ 〉 1

(2πστ ′)3/2
e−[r′−r(τ ′)]2/(2στ ′),

with

στ ′ = τ ′(τ − τ ′)
τ

and r(τ ′) = r1 + τ ′

τ
(r2 − r1).

12.3 In this problem we consider the cumulant expansion analysis for the Coulomb
potential [4, 22] using the result of the previous problem.

The cumulant expansion is a well-known expansion in statistical physics [31]. It
replaces the Gaussian average of an exponent by the exponent of a sum of averages:

〈eτV 〉 = eτ 〈V〉+ 1
2 (τ

2〈V 2〉−〈V〉2)+···.

First we note that the matrix between two positions r1 and r2 separated by an
imaginary time τ can be written in the following way:

〈r1, 0| exp

(
−
∫ τ

0
V(r′

τ)dτ
′
)

|r2, τ 〉.

where the time evolution leading from 0 to τ is that of a free particle and the
expression is to be evaluated in a time-ordered fashion.

If we evaluate this in the cumulant expansion approximation retaining only the
first term, it is clear that we must calculate∫ τ

0
dτ ′

∫
d3r′〈r1, 0|r′, τ ′〉V(r′)〈r′, τ ′|r2, τ 〉.

This is done in this problem.

(a) Show that the Fourier transform of the Coulomb potential is V(k) = 2π/k2.
(b) Show that the Fourier transform of the expression derived in Problem 12.2 is

given by

e−ik·r(τ ′)−στ ′ k2/2,

with στ ′ and r(τ) as given in the previous problem.
(c) Show, by transforming back to the r-representation, that the cumulant potential

is given by

Vcumulant(r1, r2; τ) =
∫ τ

0

erf[r(τ ′)/
√

2στ ′]
r(τ ′) dτ ′.

12.4 In the path-integral simulation for the hydrogen atom we use a table in which the
cumulant expression for the potential is stored and we want to linearly interpolate
this table.

420 Quantum Monte Carlo methods

(a) Show that for a two-dimensional table containing values of a function f (x, y) for
integer x and y, the value f (x, y) for arbitrary x and y within the boundaries set
by the table size is given as

f (x, y) = (2 − x − y + [x] + [y])f ([x], [y]) (12.107)

+ (1 + x − [x] − y + [y])f ([x] + 1, [y]) (12.108)

+ (1 + y − [y] − x + [x])f ([x], [y] + 1) (12.109)

+ (x − [x] + y − [y])f ([x] + 1, [y] + 1).

Here [x] denotes the largest integer smaller than x.
(b) Find analogous expressions for a table with a noninteger (but equidistant)

spacing between the table entries and also for a three-dimensional Table.

12.5 [C]
In this problem we consider applying variational Monte Carlo to the hydrogen

molecule. There are two complications in comparison with the helium atom. One is
the calculation of the local energy which is quite cumbersome, although
straightforward. The second one is the cusp condition.

To specify the trial wave function we take the nuclei at positions ±s/2. A
one-particle orbital has the form (in atomic units):

φ(r) = e−|r−sx̂/2|/a + e−|r+sx̂/2|/a

where a is some parameter. The two-electron wave function is given as

ψ(r1, r2) = φ(r1)φ(r2)f (r12)

with f the Jastrow factor

f (r) = exp

(
r

α(1 + βr12)

)
.

(a) Show that the Coulomb-cusp condition near the nuclei leads to the relation

1

1 + exp(−s/a)
= a.

For a given distance s, this equation should be solved numerically to give you
the value a.

(b) Show that the electron–electron cusp condition leads to the requirement a = 2.
This leaves a single parameter β in the wave function.

(c) Now you can implement the hydrogen molecule in VMC. Calculate the energy
as a function of the parameters β and s and find the minimum.

(d) You may also evaluate the ground state by applying the method of Harju et al.
[6] which was described in Section 12.2, in order to update the values of β and s
simultaneously.

(e) What would you need in order to calculate the molecular formation energy from
this? Note that this is the difference between the energy of the hydrogen
molecule and that of two isolated hydrogen atoms. Consider in particular the
contribution arising from the nuclear motion.

References 421

References

[1] P. A. M. Dirac, The Principles of Quantum Mechanics. Oxford, Oxford University Press, 1958.
[2] B. L. Hammond, W. A. Lester Jr, and P. J. Reynolds, Monte Carlo Methods in Ab Initio Quantum

Chemistry. Singapore, World Scientific, 1994.
[3] D. M. Ceperley and E. L. Pollock, ‘Path-integral computation of the low-temperature properties

of liquid-He-4,’ Phys. Rev. Lett., 56 (1986), 351–4.
[4] D. M. Ceperley, ‘Path integrals in the theory of condensed helium,’ Rev. Mod. Phys., 67 (1995),

279–355.
[5] H. De Raedt and A. Lagendijk, ‘Monte Carlo simulations of quantum statistical lattice models,’

Phys. Rep., 127 (1985), 233–307.
[6] A. Harju, S. Siljamäki, and R. M. Nieminen, ‘Wigner molecules in quantum dots: a quantum

Monte Carlo study,’ Phys. Rev. E, 65 (2002), 075309.
[7] R. J. Jastrow, ‘Many-body problem with strong forces,’ Phys. Rev., 98 (1955), 1479–84.
[8] M. H. Kalos, D. Levesque, and L. Verlet, ‘Helium at zero temperature with hard-sphere and

other forces,’ Phys. Rev. A, 9 (1974), 2178–95.
[9] R. N. Barnett, P. J. Reynolds, and W. A. Lester Jr, ‘Monte Carlo determination of the oscillator

strength and excited state lifetime for the Li 22S → 22P transition,’ Int. J. Quantum Chem., 42
(1992), 837–47.

[10] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals. New York, McGraw-
Hill, 1965.

[11] M. Suzuki, ‘Decomposition formulas of exponential operators and Lie exponents with some
applications to quantum-mechanics and statistical physics,’ J. Math. Phys., 26 (1985), 601–12.

[12] M. Suzuki, ‘Transfer-matrix method and Monte Carlo simulation in quantum spin systems,’
Phys. Rev. B, 31 (1985), 2957–65.

[13] J. D. Doll, R. D. Coalson, and D. L. Freeman, ‘Towards a Monte Carlo theory of quantum
dynamics,’ J. Chem. Phys., 87 (1987), 1641–7.

[14] V. S. Filinov, ‘Calculation of the Feynman integrals by means of the Monte Carlo method,’ Nucl.
Phys. B, 271 (1986), 717–25.

[15] J. Chang and W. H. Miller, ‘Monte Carlo path integration in real-time via complex coordinates,’
J. Chem. Phys., 87 (1987), 1648–52.

[16] R. P. Feynman, ‘The λ-transition in liquid helium,’ Phys. Rev., 90 (1953), 1116–17.
[17] R. P. Feynman, ‘Atomic theory of the λ-transition in helium,’ Phys. Rev., 91 (1953), 1291–301.
[18] R. P. Feynman, ‘Atomic theory of liquid helium near absolute zero,’ Phys. Rev., 91 (1953),

1301–8.
[19] D. M. Ceperley and E. L. Pollock, ‘Path-integral computation techniques for superfluid 4He,’ in

Monte Carlo Methods in Theoretical Physics (S. Caracciolo and A. Fabrocini, eds.). Pisa, Italy,
ETS Editrice, 1992, p. 35.

[20] M. F. Herman, E. J. Bruskin, and B. J. Berne, ‘On path integral Monte-Carlo simulations,’
J. Chem. Phys., 76 (1982), 5150–5.

[21] K. Singer and W. Smith, ‘Path integral simulation of condensed phase Lennard–Jones systems,’
Mol. Phys., 64 (1988), 1215–31.

[22] D. M. Ceperley, ‘The simulation of quantum systems with random walks – a new algorithm for
charged systems,’ J. Comp. Phys., 51 (1983), 404–22.

[23] E. L. Pollock, ‘Properties and computation of the Coulomb pair density matrix,’ Comp. Phys.
Comm., 52 (1989), 49–60.

[24] M. Takahashi and M. Imada, ‘Monte Carlo calculation of quantum-systems,’ J. Phys. Soc. Jpn,
53 (1984), 963–74.

[25] J. D. Doll, R. D. Coalson, and D. L. Freeman, ‘Solid-fluid phase transition of quantum hard-
spheres at finite temperatures,’ Phys. Rev. Lett., 55 (1985), 1–4.

422 Quantum Monte Carlo methods

[26] M. Plischke and H. Bergersen, Equilibrium Statistical Physics. Englewood Cliffs, NJ, Prentice-
Hall, 1989.

[27] J. E. Hirsch, ‘Discrete Hubbard–Stratonovich transformation for fermion lattice models,’ Phys.
Rev. B, 28 (1983), 4059–61.

[28] J. W. Negele and H. Orland, Quantum Many-Particle Systems. Redwood City, Addison-Wesley,
1988.

[29] D. B. F. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen, W. van Saarloos, and D. M.
Ceperley, ‘Proof for an upper bound in fixed-node Monte Carlo for lattice fermions,’ Phys. Rev.
B, 51 (1995), 13039–45.

[30] M. P. Nightingale and H. W. J. Blöte, ‘Monte Carlo calculation for the free energy, critical point
and surface critical behaviour of three-dimensional Heisenberg ferromagnets,’ Phys. Rev. Lett.,
60 (1988), 1562–5.

[31] N. G. van Kampen, Stochastic Processes in Physics and Chemistry. Amsterdam, North-Holland,
1981.

13

The finite element method for partial
differential equations

13.1 Introduction

When we consider a partial differential equation, such as the ubiquitous Laplace
equation

∇2φ(r) = 0, (13.1)

together with some boundary condition(s), the obvious way of solving it that comes
to mind is to discretise this equation on a regular grid, hoping that this grid can
match the boundary in some way. Then we solve the discretised problem using,
for example, iterative methods such as the Gauss–Seidel or conjugate gradients
method (see Appendix A7.2). For many problems, this approach is adequate, but
if the problem is difficult in the sense that it has a lot of structure on small scales
in some region of the domain, or if the boundary has a complicated shape which
is difficult to match with a regular grid, it might be useful to apply methods that
allow for flexibility of the grid on which the solution is formulated. In this chapter
we discuss such a method, the finite element method.

One way of looking at the finite element method (FEM) is by realising that many
partial differential equations can be viewed as solution methods for variational
problems. In the case of the Laplace equation with zero boundary condition, for
example, finding the stationary solution of the functional∫

D
[∇φ(r)]2 ddr, (13.2)

where the integral is over the d-dimensional domain D and where we confine
ourselves to functions φ(r) which vanish on the domain boundary, yields the same
solution as that of the Laplace equation – in fact, the Laplace equation is the Euler
equation for this functional (see the next section).

423

424 The finite element method for partial differential equations

The integral can be discretised by dividing up the domain D into elements of – in
principle – arbitrary shape and size, and assuming a particular form of the solution
within each element, a linear function for example, together with continuity con-
ditions on the element boundaries. It turns out that finding the solution boils down
to solving a sparse matrix problem, which can be treated by conjugate gradient
methods, see (see Appendix A7.2).

In this chapter we discuss the finite element method, error estimation, and prin-
ciples of local grid refinement. This will be done for two different problems: the
Poisson/Laplace equation, and the equations for elastic deformation of a solid. Both
problems will be considered in two dimensions only. The aim is to explain the ideas
behind the finite element methods and adaptive refinement without going into too
much detail. For a more rigorous and complete treatment, the reader is referred to
the specialised literature [1–5].

Some special topics will be covered in the remaining sections: local adaptive grid
refinement, dynamics, and, finally, the coupling of two descriptions, finite element
and molecular dynamics, in order to describe phenomena at very different length
scales occurring in one system.

Most of the sections describe implementation of FEM for standard problems.
The reader is invited to try the implementation by him- or herself.

13.2 The Poisson equation

As mentioned in the previous section, the Laplace equation can easily be formulated
in a variational way. The same holds for the Poisson equation:

∇2φ(r) = f (r), (13.3)

with appropriate boundary conditions. We assume Dirichlet boundary conditions
on the edge of the domain, which we take as a simple square of size L × L. The
functional whose stationary solution satisfies this equation is

J[φ(r)] =
∫

D
{[∇φ(r)]2 + f (r)φ(r)} ddr, (13.4)

as is easily verified using Green’s first identity [6] together with the fact that φ
vanishes on the boundary. From now on, we shall use d� to denote a volume
element occurring in integrals.

We now divide up the square into triangular elements, and assume that the solution
φ(r) is linear within each element:

φ(x, y) = ai + bix + ciy (13.5)

within element i. Now consider a grid point. This will in general be a vertex of
more than one triangle. Naturally, we want to assign a single value of the solution

13.2 The Poisson equation 425

Figure 13.1. Two adjacent triangles on a square (ground plane) with a linear func-
tion φ(r) shown as the height (vertical) coordinate on both triangles. As φ is linear
for each triangle, the requirement that the values of the two triangles are the same
at their two shared vertices ensures continuity along their edges.

to that point, so we require the solution within each triangle sharing the same vertex
to have the same value at that vertex. Linearity of the solution within the triangles
then makes the solution continuous over each triangle edge (Figure 13.1). We see
that for each triangle, the solution is characterised by three constants, ai, bi and ci.
They can be fixed by the values of the solution at the three vertices of the triangle.
It is also possible to use rectangles as elements. In that case, we must allow for
one more degree of freedom of the solution (as there are now four vertices), and
the form may then be

φ(x, y) = ai + bix + ciy + dixy. (13.6)

It is also possible to use quadratic functions on the triangles:

φ(x, y) = ai + bix + ciy + dixy + eix
2 + fiy

2, (13.7)

requiring six conditions. In that case, we use the midpoints of the edges of the tri-
angles as additional points where the solution must have a particular value. We
shall restrict ourselves in this book to linear elements. In three dimensions, the
linear solution requires four parameters to be fixed, and this can be done by using
tetrahedra as elements (a tetrahedron has four vertices). The triangle and the tetra-
hedron are the elements with nonzero volume which are bounded by the smallest
possible number of sides in two and three dimensions respectively. Such elements
are called simplices. In one dimension, an element with this property is the line
segment.

Now that we have a discrete representation of our solution by considering just its
values on the vertices of the grid, we must find the expression for the integral within
the approximations made (i.e. linear behaviour of the solution within the elements).
To do this we digress a bit to introduce natural coordinates. For a triangle these are
linear coordinates which have a value 1 at one of the vertices and zero at the two

426 The finite element method for partial differential equations

P

Aa

Ab

Ac

1

2

3

Figure 13.2. The areas Aa, Ab and Ac for any point P within the triangle. The Ai
are used to define the natural coordinates ξi of the point P. A is the total surface
area.

others. Any point P within the triangle can be defined by specifying any two out of
three natural coordinates, ξa, ξb or ξc. These are defined by

ξi = Ai

A
, i = a, b, c, (13.8)

where Ai, A are the surface areas shown in Figure 13.2. The natural coordinates
satisfy the requirement

ξa + ξb + ξc = 1. (13.9)

The x- and y-coordinates of a point can be obtained from the natural coordinates
by the linear transformation

1
x
y


 =


 1 1 1

xa xb xc

ya yb yc




ξa

ξb

ξc


 (13.10)

where (xa, ya) are the Cartesian coordinates of vertex a etc.
The reverse transformation

ξa

ξb

ξc


 = 1

2A


xbyc − xcyb ybc xcb

xcyb − xbyc yca xac

xayb − xbya yab xba




1

x
y


 , (13.11)

with 2A = det(A) = xbayca − xcayba and xab = xb − xa etc., translates the x, y
coordinates into natural coordinates. All these relations can easily be checked.

Having natural coordinates, we can construct a piecewise linear approximation to
the solution from the values of the solution at the vertices of the triangles. Calling

13.2 The Poisson equation 427

φa, φb and φc these values at the corresponding vertices, the solution inside the
triangle is given by

φ̃(r) = φaξa + φbξb + φcξc. (13.12)

In order to evaluate integrals over the triangular element, we use the following
formula: ∫

A
ξ k

a ξ
l
bξ

m
c d� = 2A

k! l! m!
(2 + k + l + m)! (13.13)

for non-negative integers k, l and m, and for a, b and c assuming values 1, 2 and 3.
Remember, d� is the volume element.

We now have all the ingredients for solving the Laplace equation using triangular
finite elements. First, note that the integral (13.4) now becomes a quadratic expres-
sion in the values φi at the grid points. This quadratic expression can be written in
the form

J[φφφ] = −φφφTKφφφ − rTφφφ (13.14)

(we work out the specific form of the expressions below). Here, φφφ is the vector
whose elements are the values of the solutions at the grid points, K is a symmetric
matrix, and r is a vector. Minimising this expression leads to the matrix equation

Kφφφ = r. (13.15)

The matrix–vector product on the left hand side can be evaluated as a sum over all
triangles. Within a triangle, we deal with the values on its vertices.

To be more specific, let us calculate∫
elem

(∇φ)2 d�. (13.16)

Using (13.11) we have

∇ξa = 1

2A
(ybc, xcb) (13.17)

and similar expressions for the other two natural coordinates. From these we have,
with the parametrisation (13.12),

∇φ̃ = 1

2A
[φa(ybc, xcb)+ φb(yca, xac)+ φc(yab, xba)]. (13.18)

Note that on the left and right hand side, we have two-dimensional vectors, which
are given in row form on the right hand side. Also note that the components of the
vector are constant over the triangle, which is natural as the solution is assumed to
be linear within the triangle. The integral is the norm of this constant vector squared
times the surface area of the triangle. Obviously this yields a quadratic expression in
φa, φb and φc of a form similar to (13.14), but now formulated for a single triangle.

428 The finite element method for partial differential equations

This equation is defined by a matrix k which is called the local stiffness matrix for
the triangle under consideration. Introducing the vectors

b =

ybc

yca

yab


 (13.19)

and

c =

xcb

xac

xbc


 (13.20)

we see, after some calculation, that the stiffness matrix k can be evaluated as

k = bbT + ccT, (13.21)

which leads to the result

[k] = 1

4A


 y2

bc + x2
cb ybcyca + xcbxac ybcyab + xcbxba

ybcyca + xcbxac y2
ca + x2

ac ycayab + xacxba

ybcyab + xcbxba ycayab + xacxba y2
ab + x2

ba


 . (13.22)

We not only need the matrix representing the Laplacian operator, but we must also
evaluate the integral containing the source term f (r) in Eq. (13.4). The continuous
function f (r) is approximated by a piecewise linear function f̃ on the triangles –
just like the solution φ(r). For a particular triangle with vertices a, b, and c, we have

f̃ (r) = faξa + fbξb + fcξc. (13.23)

We must multiply this by the linear approximation for φ, Eq. (13.12), and then
integrate over the element, using (13.13). The result must then be differentiated
with respect to φa, φb, φc, which results in a vector element

ra = 2A

(
fa
12

+ fb
24

+ fc
24

)
, (13.24)

and similar for rb and rc.
The matrix–vector multiplication can be carried out as a loop over all triangular

elements where for each element the stiffness matrix is applied to the three ver-
tices of that triangle. Note that the stiffness matrix should always act on the old
vector containing the field values φa and that the result should be added to the
new vector (which initially is set to zero; see the next section). If we have a matrix–
vector multiplication and a right hand side of the form (13.15), we can apply the
conjugate gradients method to solve the matrix equation.

We have overlooked one aspect of the problem: if a triangle contains vertices on
the boundary where the value of the solution is given (Dirichlet boundary condition),
the corresponding values ofφ(r) are known and therefore not included in the vector.

13.3 Linear elasticity 429

In that case we apply the stiffness matrix only to those points which are in the interior
of the system. That is, we update only the interior points – the values at the boundary
points remain unchanged.

13.2.1 Construction of a finite element program

The program should contain an array in which the equilibrium positions of the
vertices are stored. Furthermore, we need a vector containing the displacements of
each vertex. Note that locations and displacements are both two-dimensional in our
case. Furthermore there is an array containing the relevant stiffness matrices for the
triangles. For each triangle, we must know the indices of its three vertices. From
this we can calculate

• The stiffness matrix for the triangle;
• The force vector of the triangle, which is the right hand side of the matrix

equation to be solved.

The heart of the program is the multiplication of the field vector by the stiffness
matrixes of the triangle. This can be done as follows.

Set the new global field vector to zero;
FOR each triangle DO

Store the three old values of the field at the vertices
in a local 3-vector;

Multiply this vector by the stiffness matrix;
Add the result to the appropriate entries of the new global

field vector;
END FOR

You should now be able to write such a program. If you study the the problem of
a point charge (delta function) on a 40 × 40 square grid, which is divided up into
3200 rectangular triangles with two 45o angles, you need 118 conjugate gradient
iterations to achieve convergence of the residue (the L2 norm of the vector [K][φ]−
[r]) within 10−10. Obviously, this is the error in the solution of the matrix equation.
The numerical error introduced by the discretisation of the grid may be (and will
be) substantially larger.

13.3 Linear elasticity

13.3.1 The basic equations of linear elasticity

For many materials, deformations due to applied forces can to a good approximation
be calculated using the equations of linear elasticity. These equations are valid in

430 The finite element method for partial differential equations

Figure 13.3. Two types of deformation, compression (left) and shear (right).

particular when the deformation is relatively small so that the total energy of the
deformed system can be well approximated by a second order Taylor expansion.

There are two types of deformation. The first is compression or expansion of
the system, and the second is shear. These effects are shown in Figure 13.3. We
restrict ourselves to homogeneous isotropic systems in two dimensions. Then the
resistance of a material to the two types of deformation is characterised in both
cases by an elastic constant – in the literature either the Lamé constants λ and µ
are used, or the Young modulus E and Poisson ratio ν. They are related by

E = µ(3λ+ 2µ)

λ+ µ
(13.25a)

ν = λ

2(λ+ µ)
. (13.25b)

To formulate the equations of deformation, consider the displacement field u(r).
This vector field is defined as the displacement of the point r as a result of external
forces acting on the system. These forces may either be acting throughout the
system (gravity is an example) or on its boundary, like pushing with a finger on
the solid object. In the equilibrium situation, the forces balance each other inside
the material. So, if we identify a small line (a planar facet in three dimensions) with
a certain orientation somewhere inside the object, the forces acting on both sides of
this line should cancel each other. These forces vary with the orientation of the line
or facet, as can be seen by realising that in an isotropic medium and in the absence
of external forces, the force is always normal to the line (it is due to the internal,
isotropic pressure). Another way to see this is by considering gravity. This acts on
a horizontal facet from above but not on a vertical facet. Therefore it is useful to
define the stress tensor σij which gives the jth component of the force acting on a
small facet with a normal along the ith Cartesian axis.

13.3 Linear elasticity 431

The stress plus the body forces results in the displacement. It is important that
the actual value of the displacement matters less than its derivative: if we displace
two points connected by a spring over a certain distance, the forces acting between
the two points do not change. What matters is the difference in displacement of
neighbouring points. Information concerning this is contained in the strain εij. It is
defined as

εij = dui

dxj
. (13.26)

For an isotropic, homogeneous material in two dimensions, only three components
of stress and strain are important:

σxx and εxx; (13.27a)

σyy and εyy; (13.27b)

σxy and 2εxy. (13.27c)

Stress and strain are related by Hooke’s law:

σσσ = Cεεε, (13.28)

where σσσ is the vector (σxx, σyy, σxy)
T and similarly for εεε. C is the elastic matrix:

C =

1 ν 0
ν 1 0
0 0 1

2 (1 − ν)


 . (13.29)

The body is at rest in a state where all forces are in balance. The force balance
equation reads

DTσσσ + f = 0 (13.30)

with

D =




∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x




(13.31)

This matrix can also be used to relate ε and u:

εεε = Du. (13.32)

There are two types of boundary conditions: parts of the boundary may be free
to move in space, and other parts may be fixed. You may think of a beam attached
to a wall at one end. In the example which we will work out below, we only
include gravity as a (constant) force acting on each volume element of the system.

432 The finite element method for partial differential equations

Just as in the case of the Laplace equation, we must find an integral formulation
of the problem, and approximate the various relevant functions by some special
form on the elements. As before, we will choose piecewise linear functions on the
elements. Note that in this case we approximate each of the two components of the
displacement field by these functions.

13.3.2 Finite element formulation

The finite element formulation can be derived from the continuum equations if we
can formulate the latter as a variational problem for a functional expression which
is an integral formulation of the problem.

To find this formulation in terms of integrals, we introduce the so-called ‘weak
formulation’, for the force balance equation, which has the form:∫

�

(δu)T(DTσσσ + f) d� = 0. (13.33)

Here, δu is an arbitrary displacement field satisfying the appropriate boundary
conditions. Using (13.32) this integral equation is cast into the form∫

�

(δεεε)Tσσσ d� = −
∫
�

(δu)Tf d� (13.34)

We then can divide up the space � into N elements (triangles for two dimensions)
and write

N∑
e=1

∫
�e

(δεεεe)
Tσσσ e d�e = −

N∑
e=1

∫
�e

(δue)
Tfe d�e. (13.35)

From this we can derive the form of the stiffness matrix for the elastic problem.
First note that the variables of the problem are the deformations vn on the vertices
n. This means that for each triangle we have six variables (two values at each of the
three vertices). Therefore, the stiffness matrix is 6 × 6. The deformations do not
enter as such into the problem but only through the strain tensor. We have

εεεe =

 εxx

εyy

2εxy


 = Due =




∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x



(

ux

uy

)
. (13.36)

This tensor, however, is linearly related to the vi. We write the displacement
field as

u = vaξa + vbξb + vcξc. (13.37)

13.3 Linear elasticity 433

The ξi depend on x and y – the relation is given in Eq. (13.11). From this, and from
(13.17), we find

εεεe =

yb − yy 0 yc − ya 0 ya − yb 0

0 xc − xb 0 xa − xb 0 xb − xa

xc − xb yb − yc xa − xb yc − ya xb − xa ya − yb






vax

vay

vbx

vby

vcx

vcy




.

(13.38)
We call the 3 × 6 matrix on the right hand side B. Using the relation

σσσ = Cεεε, (13.39)

we can rewrite the element integral of the left hand side of Eq. (13.35) as∫
�e

(δv)TBTCBv d�e, (13.40)

where v is a six-dimensional vector, B is a 3 × 6 matrix and C a 3 × 3 matrix.
Note that there is no dependence on the coordinates x and y in this expression.

This can be traced back to the fact that we can express the integrand in terms of
the strain, which contains derivatives of the deformation u which in turn is a linear
function within the element. The integral is obtained by multiplying the constant
integrand by the surface area A of the integrand. The stiffness matrix k is therefore
given by

k = ABTCB. (13.41)

This is a 6 × 6 matrix which connects the six-dimensional vectors v.
The right hand side of Eq. (13.35) also involves an integral expression. This

contains the external force. Taking this to be gravity, it is constant. We must evaluate
the integral

fe ·
∫
�e

[(δv)aξa + (δv)bξb + (δv)cξc] d�e. (13.42)

This can be written in the form

fe · Gv, (13.43)

where G is the 2 × 6 matrix:

A

3

(
1 0 1 0 1 0
0 1 0 1 0 1

)
. (13.44)

We have now reworked (13.35) to the form

δvTKv = δvTGf , (13.45)

434 The finite element method for partial differential equations

Figure 13.4. Deformation of a beam attached to a vertical wall, calculated with
the finite element method. The beam is supported on half of its base.

where v now represents the vector of all displacements (that is, for the whole grid),
K is the full stiffness matrix, which can be evaluated as a careful sum over the
stiffness matrices for all triangles in the same spirit as described for the Laplace
equation in Section 13.2.1, and the right hand side is a vector defined on the full
grid. The dimension of the matrix problem is 2N , where N is the number of vertices.
If points are subject to Dirichlet boundary conditions, they are excluded from the
vectors and matrices, so that for actual problems the dimension is less than 2N . The
matrix equation found must hold for all δv, which can only be true when

Kv = Gf (13.46)

and this can be solved for using the conjugate gradients method. In Figure 13.4, the
result of a deformation calculation is shown for a beam with the left end attached
to a wall.

13.4 Error estimators

Like every numerical method, the finite element method is subject to errors of sev-
eral kinds. Apart from modelling errors and errors due to finite arithmetic precision
in the processor, the discretisation errors are important, and we will focus on these.
Obviously the discretisation error can be made small by reducing the grid constant
homogeneously over the lattice, but this can only be done at the cost of increasing
the computer time needed to arrive at a stable solution. It might be that the error is
due to only a small part of the system under consideration, and reducing the mesh
size in those regions which are already treated accurately with a coarse mesh is
unnecessary and expensive overkill.

It is therefore very useful to have available a local estimator of the error which
tells us for a particular region or element in space what its contribution to the
overall error is. In that case, we can refine the mesh only in those regions where it is
useful. In this section, we first address the problem of formulating such a local error
estimator and then describe a particular refinement strategy for triangular meshes.

One type of local error estimator is based on the notion that, unlike the displace-
ment field, the stress usually is not continuous over the element boundaries. If a
number of triangles meet at a particular mesh point, they will all have slightly dif-
ferent values of their stress components (recall that the stress is defined in terms of

13.4 Error estimators 435

first derivatives of the displacement fields). A more accurate solution would lead
to continuous stresses and this can be achieved by some suitable averaging of the
stress components at the mesh points. To be specific, the nodal stress at a mesh
point p would be given by

σp = 1∑
elems welem

∑
elems

welemσelem (13.47)

where the stresses on the right hand side (in the sum) are the result of the finite
element calculation; the weights welem may be taken equal or related to the surface
area of the elements sharing the vertex p. The error is then the difference between the
‘old’ stresses resulting from the calculation and the improved values based on the
recipe above. We shall refer to the ‘old’ stress, resulting from the FEM calculation,
as the FEM stress.

The question arises how the weights welem can be chosen optimally. One answer
to this question is provided by the projection method [7–10]. In this method we
seek a continuous, piecewise linear stress field, which deviates to a minimal extent
from the FEM stress. The deviation can be defined as the L2-norm of the difference
between the FEM stress and the continuous stress σC which is a piecewise linear
FEM-type expansion, based on the values σσσ p:

 =
∫
�

(σC − σFEM)
T(σC − σFEM) d�. (13.48)

We write the continuous stress within a particular triangle (a, b, c), as usual, in the
form

σC = σaξa + σbξb + σcξc, (13.49)

where σa etc. are the values of the stresses at the three vertices (as the stress is
continuous, it must be single-valued at the mesh points). The optimal approximation
of the actual stress is defined by those values of σC at the vertices for which the
deviation
 is minimal. This directly leads to the condition

∂
[σC]
∂σp

= 2
∫
�

(
∂σC

∂σp

)T

(σC − σFEM) d� = 0. (13.50)

As the continuous stress field is a linear function of the values at the mesh points,
we immediately obtain∑

q

∫
�

ξpξqσq d�−
∫
�

ξpσFEM,p d� = 0. (13.51)

This expression needs some explanation. For the point p, the points q run over p
and all its neighbours. The functions ξp and ξq are defined within the same triangle;

436 The finite element method for partial differential equations

σFEM,p is the (constant) stress in that triangle. Therefore we can evaluate the product
of the matrix ∫

�

ξpξq d� (13.52)

with the vector σp again as a sum over all triangular elements.
We can evaluate the resulting matrix equation in exactly the same way as the full

matrix equation which we have solved in order to find the displacement. However,
the present problem is usually solved within about 10% of the time needed for the
full elasticity problem.

It is interesting to calculate the local error. For the problem we are focusing on,
a beam attached to a wall, the corners where the beam is attached to the wall are
the points where the error is maximal.

There exist other methods for calculating the local error. Superconvergent patch
recovery (SPR) is based on the notion that the error oscillates throughout the ele-
ments – hence, there exist points where the error vanishes. Even if those points
cannot be found, some points can be identified where the error is an order of mag-
nitude better than average. These points usually are somewhere near the centre of
the elements – the vertices are the worst possible points. Using the values at the
superconvergent points, a much more accurate stress field can be constructed, and
the difference between this field and the FEM field is used as the local error. For
details see Refs. [8,11, 12].

13.5 Local refinement

The local error can be used to decide which elements should be refined. Local
refinement of triangles is a subtle problem mainly for two reasons. The first is that
when a triangle is refined by dividing it up into two triangles as in Figure 13.5(a),
the resulting triangles might have an awkward shape. The point is that narrow, long
triangles are not suitable for FEM calculations because they give rise to large errors.
Therefore, it is good practice to construct the new triangles by bisecting the longest
edge of a triangle.

The second problem is that if we perform such a bisection, another triangle,
sharing the same long edge, should be partitioned as well, as it would be impossible
to have continuity of the solution otherwise (see Fig. 13.5(b)). Rivara therefore
devised the following refinement procedure [13]:

• If a triangle needs refinement, we bisect its longest edge;
• If this edge is also the largest edge of the neighbouring triangle, this triangle

should also be divided via bisection of the same edge;
• If the edge is not the longest edge of the neighbouring triangle, this triangle

should be refined by bisecting its longest edge.

13.5 Local refinement 437

(a) (b)

Figure 13.5. Refinement of triangular grid. (a) Two ways of partitioning a triangle –
partitioning according to the dashed line is undesired. (b) It is not allowed to
partition a triangle by bisecting an edge without partitioning its neighbour along
the same edge.

This procedure is recursive in nature. It boils down to the following algorithm,
starting from the triangle T which is to be refined:

ROUTINE RefineTriangle(T)
Find the longest edge E of T;
IF E is not the longest edge of the neighbouring triangle T′ THEN

RefineTriangle(T′);
END IF;
Create a new mesh point by bisection of E;

END ROUTINE RefineTriangle.

Note that the routine does not generate triangles, but vertices. It is important to
store the information concerning which vertices are neighbours. The new triangles
can then be constructed from these data. In order to do this, we must make sure that,
for each vertex, we have an array containing the neighbours of that vertex, ordered
anticlockwise. If the vertex is a boundary point, the list starts with the leftmost
neighbour and proceeds until the rightmost neighbour is reached. For vertices in
the bulk, there is obviously no natural ‘first’ and ‘last’ neighbour: the first point is
the right neighbour of the last point, and obviously the last point is then the left
neighbour of the first.

For each vertex, all neighbouring triangles can be found by taking the vertex
itself together with two subsequent neighbours. In this way, however, a triangle in
the bulk would be counted three times. A way to define the triangle uniquely is by

438 The finite element method for partial differential equations

1

2

3

4
5

6

7

8

5: 2,1,3,8,6,4,7
6: 8,5,4

Figure 13.6. The data structure proposed by Rivara [13]. The points of the mesh
are numbered in some way, and for each point, the neighbours are kept in a list.
The list for a central point (number 5) is cyclic: the first point is connected to the
last one, whereas a boundary point has a noncyclic neighbour list. Each triangle is
counted only from the vertex with the lowest index possible.

requiring that the vertex we start from has a lower index than the two neighbours
with which it forms the triangle.

The data structure is clarified in Figure 13.6.
Once we have a list of vertices with a list of neighbours for each vertex according

to the rules specified above, the triangles can be generated straightforwardly:

FOR each vertex DO
FOR each triangle spanned by the vertex

and two of its subsequent neighbours DO
IF the central vertex has a lower index than the two neighbours THEN

Add triangle to the list of triangles;
END IF;

END FOR;
END FOR

The line ‘FOR each triangle spanned by the vertex and two of its subsequent
neighbours DO’ is different for edge points, where we only look at subsequent
neighbour pairs between the first and the last neighbouring vertex, than for interior
points, where we also include the pair formed by the first and the last neighbouring
vertex.

13.6 Dynamical finite element method 439

Figure 13.7. Deformed elastic beam which is attached to a vertical wall and sup-
ported over half its length. The difference from Figure 13.4, which shows the same
beam, is the local refinement of the elements.

When the refinement procedure is carried out, we simply add the new vertices
to the list of vertices. After the mesh has been refined, we construct the new list of
triangles using the above algorithm.

The question is what the best measure of the error would be. We could take the
L2 norm of the difference between σ and σFEM. There are many other possibilities,
and a very common one is the ‘energy norm’, defined as

eE =
∫
�

(σ − σFEM)
TC(σ − σFEM) d3r. (13.53)

Figure 13.7 shows the deformation of a beam which is attached to a wall and to a
horizontal line over part of its lower edge. As is to be expected, the mesh is strongly
refined near the sharp edge where the horizontal fixed line ends.

The use of adaptive refinement may give tremendous acceleration when a highly
accurate solution is wanted for a heterogeneous problem.

13.6 Dynamical finite element method

In the previous sections we have assumed that dissipative forces remove all the
kinetic energy so that an elastic object subject to forces will end up in a shape in
which its potential energy is minimal. We may, however, also consider nondissipat-
ive dynamics in the elastic limit. We treat this case by formulating the total energy
as a sum of the elastic energy, the work done by external forces and the kinetic
energy:

H = 1

2

∫
�

εεεT(r)Cεεε(r) d3r +
∫
�

f(r) · u(r) d3r + 1

2

∫
�

ρ(r)u̇2(r) d3r. (13.54)

We can perform the integrals as above, taking the mass density constant over a
triangle, leading to

Mv̈ = −Kv + Gf . (13.55)

The matrix M is the mass matrix. Putting the expressions for the natural coordinates
in the integral containing the mass density, we find for the mass matrix m of a single
triangle

mpq = ρA

12
(1 + δpq). (13.56)

440 The finite element method for partial differential equations

Here ρ is the (average) mass density on the triangle. The global mass matrix is
constructed from the local mass matrices in the same way in which the global
stiffness matrix was found.

Adding dynamics to the program is a relatively small addition to the static pro-
gram which was described in the previous sections. The solution of the equations
of motion, however, is a bit more involved. This equation is not diagonal in the
mass as is the case in the many-body dynamics of molecular dynamics simulations.
Formulating the discrete solution using the midpoint rule

M[u(t + h)+ u(t − h)− 2u(t)] = h2(−Kv + Gf) (13.57)

shows that, knowing the solution u at the times t and t−h, we can predict its value at
t+h by solving an implicit equation. We can again use the conjugate gradient method
for this purpose. This algorithm should be applied at each time step. As the solution
to be found is close to the solution we had at the last time step, the conjugate gradient
method will converge in general much faster than for a stationary state problem for
which the initial solution is still far away from the final one (in the first case we
speak of a transient problem). The difference between the two problems is the same
as that between solving the diffusion equation (transient) and the Poisson/Laplace
equation. It is also possible to add friction to the dynamics. A damping matrix is
then introduced which has a shape similar to the mass matrix, but this is multiplied
by the first time derivative of u rather than the second derivative. Obviously, the
eigenvalues of the damping matrix must be negative (otherwise, there would be no
damping).

A dynamical simulation shows an object wobbling as a result of external forces
or of being released from a nonequilibrium state. In general, we see elastic waves
propagating through the material.

13.7 Concurrent coupling of length scales: FEM and MD

If we exert strong forces on an object, there will be deviations from elastic behaviour
due to the fact that a second order approximation of the potential energy in terms
of the strain breaks down. New phenomena may then occur: in the first place, we
see a change in speed of the elastic waves; moreover they start interacting, even
in the bulk.1 The most spectacular deviation from elastic behaviour occurs when
we break the material. The elastic description fails completely in that case. In fact,
when an object is broken or cut, the bonds between rows of atom pairs are broken
and an accurate description should therefore include atomic details, preferably at
the quantum level. The problem is that, although such a description is adequate for

1 Elastic waves can also interact at the boundary of an object by coupling between the transverse and
longitudinal components.

13.7 Concurrent coupling of length scales: FEM and MD 441

processes taking place near the fissure and far away from it, it becomes unfeasible
when we want to include substantially large (parts of) objects. You may ask why we
would bother about the processes far from a fissure, since the deviations of the atoms
from their equilibrium positions are very small there. However, the energy released
by breaking a bond will generate elastic waves into the bulk, which, when the bulk is
small, will bounce back at the boundary and reinject energy to the fissure region. It
is possible to couple an atomic description to an elastic medium which then carries
the energy sufficiently far away . This is done by concurrent coupling of length
scales [14, 15]. In this technique a quantum mechanical tight-binding description
is applied to the region where the most essential physics is taking place: in our
example this is the breaking of atomic bonds. The surrounding region is described
by classical MD. Farther away, this description is then replaced by an elastic one,
which is treated by finite elements. We shall not describe the full problem here –
for this we refer to the papers by Broughton, Rudd and others [14, 15]. We shall,
however, show that elastic FEM can be coupled to MD in a sensible way.

From the chapter on MD, it is clear that we would like to have dynamics described
by a Hamiltonian. The dynamic FEM method has this property, and this is also the
case for the MD method. We must ensure that this requirement is satisfied by the
coupling regime. The coupling between FEM and MD is called handshaking. To
show how this coupling is realised and to check that it gives sensible behaviour, we
consider a 2D rectangular strip through which an elastic wave is travelling. The left
hand side of the strip is treated using the FEM, the right hand side by MD. In order
to realise the handshaking protocol, the finite element grid should approach atomic
resolution near the boundary – grid points next to the boundary should coincide
with equilibrium atomic positions of the MD system.

Within the MD, we use a Lennard–Jones potential as in Chapter 8. The equilib-
rium configuration with this potential in two dimensions is a triangular lattice. The
situation is shown in Figure 13.8. The vertical dashed line in Figure 13.8 separates
the FEM from the MD region. The Hamiltonian is composed of three parts: a FEM
Hamiltonian for the points inside the FEM region, a MD Hamiltonian for the points
in the MD region, and a handshaking Hamiltonian which contains the forces that
the MD particles exert on the FEM points and vice versa. In order to have a smooth
transition from one region to the other, this handshake Hamiltonian interpolates
between a FEM and a MD Hamiltonian. It is built up as follows.

• The FEM triangles in the shaded region carry half of the FEM Hamiltonian; that
is, we formulate the usual FEM Hamiltonian in this region, but multiply it by 1/2.

• The points of the shaded region lying right of the dashed vertical line couple via
a MD Hamiltonian to the points on the left, but this Hamiltonian is also
multiplied by 1/2. Note that such couplings involve in general more than nearest
neighbour points on the triangular grid – we neglect those here.

442 The finite element method for partial differential equations

MD

FEM

Figure 13.8. Strip modelled partly by finite elements and partly by molecular
dynamics.

Three remarks are in place. In the original formulation [14], the MD region is
three-dimensional, whereas the FEM region is only two-dimensional. The transition
is made by averaging the MD points over the z-direction which is taken perpen-
dicular to the FEM grid. Here we shall consider the strictly two-dimensional case
for simplicity. The second remark concerns the treatment of the FEM masses. As
we have seen above, the mass matrix couples the kinetic degrees of freedom at
the vertices of the FEM triangles. However, in the handshake region, we strictly
want to assign the mass of a real atom to the point. For this reason, we use the
lumped mass approximation in the finite element description. In this formulation,
we assign one-third of the mass of each triangle to each of its vertices. This means
that the mass matrix has become diagonal, so that the numerical integration of
the equations of motion has become much simpler as the solution of an implicit
equation at each time step is avoided. The FEM mass is derived from the MD equi-
librium by requiring that the same amount of mass is present per unit area in both
descriptions.

The final remark is that the boundaries of the system in the MD and FEM descrip-
tion do not fit onto each other. In the FEM description, the triangles are taken
uniform, but a MD system with a boundary will have a slightly smaller distance
between the outermost layers than in the bulk, as a result of the fact that the next
nearest-neighbour interactions pull the outermost particles slightly more towards
the interior of the system. This deviation is minor so we do not correct for it.

13.7 Concurrent coupling of length scales: FEM and MD 443

Obviously, we could take periodic boundary conditions in the transverse direction,
which implies a cylindrical description (this could be useful for describing a carbon
nanotube). However, this is not compatible with longitudinal waves, as the Poisson
ratio causes the system to expand where it is longitudinally compressed and vice
versa. A periodic boundary condition would not allow for this to happen and cause
unphysical, strong stresses to build up.

Once a FEM and a MD program are working, it is not so much work to couple
them along the lines decribed above. We use the velocity Verlet algorithm which
naturally splits into two steps, separated by a force calculation.
First step:

pi(t + h) = pi(t)+ h

2
Fi[r(t)]; (13.58a)

ri(t + h) = ri(t)+ hpi(t); (13.58b)

Calculate Fi[r(t)];
Second step:

pi(t + h) = pi(t + h)+ h

2
Fi[r(t + h)]

These steps must be kept in mind when setting up the algorithm for the full system.
This algorithm looks as follows:

Calculate MD forces;
Calculate FEM forces;
Copy locations of leftmost MD points to a shadow array

in the FEM region;
Copy locations of rightmost FEM points to a shadow array

in the MD region;
FOR TimeStep = 1, MaxStep DO

Set Initial values of boundary points;
Do first integration step (see Eq. (13.58a));
Copy locations of leftmost MD points to a shadow array

in the FEM region;
Copy locations of rightmost FEM points to a shadow array

in the MD region;
Calculate forces in FEM region, including those on the MD particles;
Calculate forces in MD region, including those on the FEM particles;
Add FEM forces acting on MD particles to MD forces;
Add MD forces acting on FEM particles to FEM forces;
Do second integration step [see Eq. (13.58b)];

END FOR.

444 The finite element method for partial differential equations

Obviously, we should investigate which elasticity matrix should be used in the
FEM domain. This is fully determined by the MD interaction, for which we take
the pairwise Lennard-Jones interaction. We can evaluate the elastic constants by
allowing the MD unit cell to deform, as is done in the Parrinello–Rahman method
[16]. Another method is to measure the stretch resulting from a force applied to
the left- and rightmost particles for a strip of atoms, fully described by MD. The
lateral shrink as a result of the end-to-end stretch then gives us the Poisson ratio. For
simplicity, we shall consider here the T = 0 limit, for which we can calculate the
elasticity matrix analytically from the pair potential. The idea is that we can Taylor-
expand the total energy per unit area with respect to the strain to second order, which
corresponds precisely to how the elasticity matrix is defined: the change in energy
per unit area resulting from a strain field εεε is given by

δV = 1

2�

∫
�

εεεTCεεε d2r. (13.59)

In our case, we have for the total energy per unit area at small deviations, in the
bulk:

δV = 1

2�

∑
i �=j

[
∂V(R0)

∂rαij
(δrαi − δrαj)+ 1

2

∂2V(R0)

∂rαij∂rβij
(δrβi − δrβj)(δr

α
i − δrαj)

]
.

(13.60)

Greek indices α and β denote the Cartesian coordinates – they are summed over
according to the Einstein summation convention. Equation (13.60) is nothing but
a Taylor expansion to second order for the potential in terms of the coordinates.
In equilibrium, the second term vanishes as the total force on each particle van-
ishes. We may write δrαi = uαi , where ui has precisely the same meaning as in the
formulation of the finite element method: it is the deviation from equilibrium of
coordinate α of particle i. Now we write uij = rij − aij, where aij is the relative

coordinate of particles i and j in equilibrium. We therefore have uαij = aβijεαβ , so that
we obtain

δV = 1

4�

∑
i �=j

aαijεαβ
∂2V(R0)

∂rβij ∂rγij
εγ δa

δ
ij, (13.61)

and we can write

C̃αβγ δ = 1

2�

∑
i �=j

aαij
∂2V(R0)

∂rβij ∂rγij
aδij. (13.62)

Exercises 445

For a pair potential, this can be worked out further to yield

C̃αβγ δ = 1

2�

∑
i �=j

{
1

r2
ij

[
V ′′(rij)− 1

rij
V ′(rij)

]
aαija

β
ija
γ

ij a
δ
ij

}
. (13.63)

We have used the tilde (∼) for the elasticity matrix because it is given in terms of
the xy components of the strain. The relation with the C matrix given above for two
dimensions, which used (∂ux/∂y + ∂uy/∂x)/2 as the third component, is given by

C11 = C̃xxxx, C22 = C̃yyyy (13.64a)

C12 = C̃xxyy, C21 = C̃yyxx (13.64b)

C13 = 1

2
(C̃xxxy + C̃xxyx), C23 = 1

2
(C̃yyxy + C̃yyyx) (13.64c)

C33 = 1

4
(C̃xyxy + C̃xyyx +C̃yxxy + C̃yxyx) (13.64d)

For a Lennard–Jones potential we find, in reduced units:

C =

76.8 25.5 0

25.6 76.8 0
0 0 25.6


 . (13.65)

From this we find, for the case of plane stress: ν = 1/3 and E = 68. The fact that
ν = 1/3 shows an important shortcoming of a pair potential: irrespective of the
specific form of the potential, a pair potential always leads to ν = 1/3.

Exercises

13.1 In this problem, we study the natural coordinates for triangles. We consider an
‘archetypical’ triangle as shown in Figure 13.9. Now consider a mapping of this
triangle to some other triangle, also shown in Figure 13.9. This can be obtained from
the archetypical one by a translation over the vector raa′ , followed by a linear
transformation. The matrix U of this linear transformation can be found as

U =
(

x′
b − x′

a x′
c − x′

a
y′

b − y′
a y′

c − y′
a

)
, (13.66)

where (x′
a, y′

a) are the Cartesian coordinates of the vector ra′ etc. We have(
x′
y′
)

= U
(

x
y

)
+
(

xa

ya

)
(13.67)

Now we take for the natural coordinates in the archetypical triangle x, y and
1 − (x + y). It is clear that these coordinates assume the value 1 on a, b and c
respectively and vanish at the other points. We want the linear transformation of
these coordinates to have the same property. We therefore consider the function

g(x′, y′) = f (x, y)

446 The finite element method for partial differential equations

y

xa

c
a'

c'

b'

b

1

1

Figure 13.9. Archetypical triangle with two angles of 45◦ and sides 1, oriented
along the x- and y-axes. Another triangle is shown, which can be obtained from
the archetypical one through a linear transformation.

where f (x, y) = x, say, and where x′, y′ are the images of x, y under the
transformation U. It now is straightforward to verify that the expressions for the
natural coordinates (13.11) are correct.

References

[1] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Its Basis and Fundamentals,
6th edn. Oxford/Burlington (MA), Elsevier Butterworth-Heinemann, 2005.

[2] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural
Mechanics, 6th edn. Oxford/Burlington (MA), Elsevier Butterworth-Heinemann, 2005.

[3] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Fluid Dynamics, 6th edn.
Oxford/Burlington (MA), Elsevier Butterworth-Heinemann, 2005.

[4] K. J. Bathe, Finite Element Procedures. Upper Saddle River, NJ, Prentice Hall, 1996.
[5] J. Mackerle, A Primer for Finite Elements in Elastic Structures. New York, Wiley, 1999.
[6] W. Kaplan, Advanced Calculus, 4th edn. Reading (MA), Addison–Wesley, 1991.
[7] J. T. Oden and H. J. Brauchli, ‘On the calculation of consistent stress distributions in finite

element calculations,’ Int. J. Numer. Meth. Eng., 3 (1971), 317–25.
[8] E. Hinton and J. S. Campbell, ‘Local and global smoothing of discontinuous finite element

functions using a least squares method,’ Int. J. Numer. Meth. Eng., 8 (1974), 461–80.
[9] O. C. Zienkiewicz and J. Z. Zhu, ‘A simple error estimator and adaptive procedures for practical

engineering analysis,’ Int. J. Numer. Meth. Eng., 24 (1987), 337–57.
[10] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, vol. I. London, McGraw-Hill,

1988.
[11] J. Barlow, ‘Optimal stress locations in finite element models,’ Int. J. Numer. Meth. Eng., 10

(1976), 243–51.
[12] J. Barlow, ‘More on optimal stress points, reduced integration, element distortions and error

estimation,’ Int. J. Numer. Meth. Eng., 28 (1989), 1487–504.

References 447

[13] M.-C. Rivara, ‘Design and data structure of fully adaptive, multigrid, finite element software,’
ACM Trans. Math. Software, 10 (1984), 242–64.

[14] J. Q. Broughton, F. F. Abraham, N. Bernstein, and E. Kaxiras, ‘Concurrent coupling of length
scales: methodology and application,’ Phys. Rev. B, 60 (1999), 2391–403.

[15] R. E. Rudd and J. Q. Broughton, ‘Concurrent coupling of length scales in solid state systems,’
Phys. Stat. Sol. (b), 217 (2000), 251–91.

[16] M. Parrinello and A. Rahman, ‘Polymorphic transitions in single crystals: a new molecular
dynamics method,’ J. Appl. Phys., 52 (1981), 7182–90.

14

The lattice Boltzmann method for fluid dynamics

14.1 Introduction

Flow problems are widely studied in engineering because of their relevance to
industrial processes and environmental problems. Such problems belong to the
realm of macroscopic phenomena which are formulated in terms of one or more,
possibly nonlinear, partial differential equations. If there is no possibility of exploit-
ing symmetry, allowing for separation of variables, these equations are usually
solved using finite element or finite difference methods.

The standard problem is the flow of a one-component, isotropic nonpolar liquid,
which is described by the Navier–Stokes equations. These equations are based on
mass and momentum conservation, and on the assumption of isotropic relaxation
towards equilibrium. Finite element methods have been described in Chapter 13
for elasticity; the methods described there may be extended and adapted to develop
codes for computational fluid dynamics (CFD), which are widely used by engineers.
Such an extension is beyond the scope of this book.

A finite element solution of the Navier–Stokes equations may sometimes become
cumbersome when the boundary conditions become exceptionally complicated, as
is the case with flow through porous media where the pore diameter becomes
very small (and the number of pores very large). Other cases where finite element
methods run into problems are multiphase or binary systems, where two different
substances or phases exist in separate regions of space. These regions change their
shape and size in the course of time. Usually, the finite element points are taken
on the system boundaries, but that implies complicated bookkeeping, in particular
when the topology of the regions changes, as is the case in coalescence of droplets.

A possible solution to these problems characterized by difficult topologies is to
use regular, structured grids, and let the interfaces move over the grid. In that case,
we need special couplings for nearest neighbour grid points that are separated by the
interface (such as a phase boundary). This ‘immersed interface’ method has been

448

14.2 Derivation of the Navier–Stokes equations 449

pioneered by LeVeque and Li [1]. Another method is to replace the macroscopic,
finite element approach by a microscopic particle approach, such as molecular
dynamics, but this usually requires so many particles that it is no longer feasible
to do useful simulations. Since the Navier–Stokes equations are rather universal in
that they only include two viscosities and the mass density as essential parameters,
it seems that the details of the interactions between the particles do not all matter:
only few features of these interactions will survive in the macroscopic description.
This is in some sense similar to the macroscopic description of elasticity, where
the elasticity tensor, which is based on two elastic or Lamé constants, is the only
fingerprint surviving from the microscopic details of the interactions.

This suggests that an alternative approach may be to use a ‘mock fluid’, consist-
ing of ‘mock particles’ with very simple microscopic properties which are tuned
to yield the correct hydrodynamic behaviour. This scheme is adopted in the lattice
Boltzmann approach. The particles are put on a lattice and can move only to neigh-
bouring lattice sites. Interactions between the particles and relaxation effects are
included, and the resulting system yields hydrodynamic behaviour on large scales.
This method has been applied sucessfully to binary flows, complex geometries,
objects moving in a flow, etc.

We start this chapter by deriving the Navier–Stokes equations from the
Boltzmann equation in the continuum (Section 14.2). Then we formulate the
Boltzmann approach on a discrete lattice (Section 14.3) and consider an example. In
Section 14.4, we apply the method to binary systems. Finally, in Section 14.5, we
show that the lattice Boltzmann model leads in some limit to the Navier–Stokes
equations for fluids in the incompressible limit. For more information about the
method and its applications, the interested reader may consult Refs. [2–4].

14.2 Derivation of the Navier–Stokes equations

In this section we present a derivation of the Navier–Stokes equations from an
approximate Boltzmann equation through a Chapman–Enskog procedure [5]. This
works as follows. We start by defining the particle distribution function n(r, v, t)
which gives us the number density of particles with velocity v inside a small cell
located at r, at time t. This distribution for r and v will change in time because
particles have a velocity and therefore move to a different position, and because the
particles collide, which results in exchange of momentum and energy. The evolution
of the distribution function is described by the well-known Boltzmann equation
which describes a dilute system. The picture behind the Boltzmann equation is
that of particles moving undisturbed through phase space most of the time, but
experiencing every now and then a collision with other particles, and these collisions
are considered to be instantaneous. The Boltzmann equation works very well, even

450 The lattice Boltzmann method for fluid dynamics

in cases where the substance is not so dilute, such as a fluid. The Boltzmann equation
reads:

∂n

∂t
+ v · ∇rn =

(
dn

dt

)
collisions

. (14.1)

The second term describes the change due to particle flow, and the right hand side
is the change due to collisions.

If the particles were simply to flow according to their initial velocity, without
interaction, equilibrium would never be reached: the role of the collisions is to
establish local equilibrium, that is, a distribution which is in equilibrium in a small
cell with fixed volume, constant temperature, density and average velocity u. We
know this equilibrium distribution; it is given as

neq(r, v) =
(

mπ

2kBT

)3/2

n(r) exp{−m[v − u(r)]2/(2kBT)}, (14.2)

which holds for cells small enough to justify a constant potential. Once the liquid
is in (local) equilibrium, the collisions will not push it away from equilibrium. It
can be shown that the collisions have the effect of increasing the entropy – hence
they generate heat.

Before we continue, we note that the mass must always be conserved, whether
there are collisions or not. The mass density is found as

ρ(r, t) =
∫

mn(r, v, t) d3v = mn(r). (14.3)

Its evolution can be calculated by integrating equation (14.1), multiplied by the
single particle mass m, over the velocity:

∂ρ(r, t)

∂t
+
∫

mv · ∇rn(r, v, t) d3v =
∫ (

m
dn

dt

)
collisions

d3v. (14.4)

The second term of this equation can be written as ∇ · j(r, t) where j denotes the
mass flux, or momentum density, of the fluid:

j(r, t) =
∫

mvn(r, v, t)d3v = ρu, (14.5)

where u is the average local velocity. This equation can be checked using (14.2).
The collisions change the velocity distribution, but not the mass density of the
particles. Hence the right hand side of (14.4) vanishes and we obtain the familiar
continuity equation:

∂ρ(r, t)

∂t
+ ∇ · j(r, t) = 0. (14.6)

Another interesting equation describes the conservation of momentum. We would
like to know how j(r, t) changes with time. This is again evaluated straightforwardly

14.2 Derivation of the Navier–Stokes equations 451

by multiplying Eq. (14.1) by v and integrating over the velocity. Using the indices
α and β for the Cartesian coordinates, we obtain

∂jα
∂t

+
∫

mvα
∑
β

vβ∂βn(r, v, t)d3v =
∫

mvα

(
dn

dt

)
collisions

d3v, (14.7)

where ∂β denotes a derivative with respect to the coordinate rβ . For the right hand
side, a similar statement can be made as for the equivalent term in the mass equation:
although individual particles involved in a collision change their momenta, the total
momentum is conserved on collision. After thus putting the right hand side to zero,
we write (14.7) in shorthand notation as

∂jα
∂t

+ ∂β�αβ = 0, (14.8)

where we have introduced the momentum flow tensor

�αβ =
∫

mvαvβn(r, v, t)d3v, (14.9)

and where we have used the Einstein summation convention in which repeated
indices (in this case β) are summed over.

Assuming that we are in equilibrium, we can evaluate the momentum tensor by
substituting for n(r, v, t) the form (14.2):

�
eq
αβ =

∫
vαvβρ(r) exp[−m(v − u)2/(2kBT)]d3v

= ρ(r)(kBTδαβ + uαuβ). (14.10)

This result can be derived by separately consideringα = β andα �= β, and working
out the appropriate Gaussian integrals (using the substitution w = v − u). Noting
that ρkBT equals the pressure P,1 we arrive at the following two equations:

∂ρ(r, t)

∂t
+ ∇ · j(r, t) = 0 (mass conservation); (14.11a)

∂(ρu)
∂t

+ ∇r · (PI + ρuu) = 0 (momentum conservation). (14.11b)

Using the first equation, we can rewrite the second as

∂u(r, t)

∂t
+ [u(r, t) · ∇r]u(r, t) = − 1

ρ(r, t)
∇rP(r, t). (14.12)

The equations (14.11a) and (14.11b) or (14.12) are the Euler equations for a fluid
in equilibrium. These equations neglect dissipative effects.

When the fluid is not everywhere in local equilibrium, the collisions will drive
the system towards equilibrium – hence their effect can no longer be neglected.

1 Here, we consider the fluid as an ideal gas; a realistic equation of state may be used instead.

452 The lattice Boltzmann method for fluid dynamics

As mentioned above, the additional currents which arise on top of the equilibrium
currents increase the entropy and are therefore called dissipative. Hence these terms
describe the viscous effects in the fluid.

We now split the distribution function into an equilibrium and a nonequilibrium
part:

n(r, v, t) = neq(r, v)+ nnoneq(r, v, t). (14.13)

The equilibrium term satisfies (14.2).
How can we represent the effect of the collision term? There is an approach due

to Maxwell, which is based on the assumption that all relaxation processes have
the same, or are dominated by a single, relaxation time τ . In that case:

(
dn(r, v, t)

dt

)
collisions

= −n(r, v, t)− neq(r, v)
τ

= −nnoneq

τ
. (14.14)

As mentioned above, the collisions do not change the mass conservation equation,
which should always be valid. The equation for the flux will, however, acquire a
contribution from the nonequilibrium part of the distribution function, as we shall
see. The mass flux can still be written as ρu. Moreover, the collisions leave the total
momentum unchanged.

The flux j occurring in the mass conservation equation also occurs in the
momentum conservation equation. In this second equation, the momentum flux
�αβ occurs, which we have calculated above assuming equilibrium. If we consider
the evolution of this flux using the Boltzmann equation, we see that the collision
effects enter explicitly in this momentum flux.

To find the lowest-order contribution to a systematic expansion of the density,
we replace n on the left hand side of the Boltzmann equation by its equilibrium
version:

∂neq(r, v)
∂t

+ v · ∇rneq = −nnoneq(r, v, t)

τ
. (14.15)

This is an explicit equation for the nonequilibrium term. It can be shown that this
is an expansion in the parameter 	/L, where 	 is the mean free path, and L is the
typical length scale over which the hydrodynamic quantities vary [6]. Note that
if we integrate this equation over the velocity, the right hand side vanishes as the
collisions do not affect the mass density.

The momentum flux is defined in (14.9). This is calculated from the density
n(r, v, t) and it can therefore be split into an equilibrium and a nonequilibrium part.
The equilibrium part was calculated in Eq. (14.10), and the nonequilibrium part

14.2 Derivation of the Navier–Stokes equations 453

will now be calculated using (14.15):

�
noneq
αβ =

∫
mvαvβnnoneq d3v

= −τ
[∫

mvαvβ
∂neq

∂t
d3v +

∫
mvαvβv · ∇rneqd3v

]
. (14.16)

Before we proceed to work out (14.16) further, we note that the tensor �noneq
αβ has

an important property: its trace vanishes. This can be seen by writing out this trace:

∑
α

�
noneq
αα =

∫
v2nnoneq(r, v, t)d3v. (14.17)

Realizing that this expression represents the change in the average kinetic energy
due to the collisions, we immediately see that it vanishes as the (instantaneous)
collisions leave the total energy invariant:

Tr�noneq = 0. (14.18)

For the calculation of the nonequilibrium stress tensor, Eq. (14.16), we use
the following equations, which can easily be seen to hold for the equilibrium
distribution: ∫

mneq(r, v)d3v = ρ(r); (14.19a)∫
m(vα − uα)(vβ − uβ)n

eq(r, v)d3v = ρ
kBT

m
δαβ = Pδαβ ; (14.19b)

u̇α = −
∑
β

uβ∂βuα − 1

ρ
(∂αP); (14.19c)

where in the last equation it is understood that the velocities are those evaluated for
the equilibrium distribution: this equation is the Euler equation, (14.12).

We first work out the first term in the square brackets on the right hand side in
(14.16), which can also be written as ∂t�

eq
αβ (we use ∂t to denote a derivative with

respect to t). After some manipulation, using Eqs. (14.10), (14.11a) and (14.11b)
(or (14.19c)), this can be written as

∂t�
eq
αβ = ∂t(Pδαβ + ρuαuβ)

= Ṗδαβ −
∑
γ

[∂γ (ρuγ)uαuβ + ρuαuγ (∂γ uβ)+ ρuβuγ (∂γ uα)]

− uβ∂αP − uα∂βP. (14.20)

454 The lattice Boltzmann method for fluid dynamics

The second term in the square brackets of (14.16) can be written, using the quantity
wα = vα − uα (see also Eq. (14.10) and (14.19b)), in the form∫

(uα + wα)(uβ + wβ)(uγ + wγ)∂γ neq(r, v) d3v

= ∂γ (ρuαuβuγ + uαPδβγ + uβPδαγ + uγPδαβ). (14.21)

This term can now be worked out to yield∑
γ

[uαuβuγ ∂γ ρ + ρuβuγ (∂γ uα)+ ρuαuγ (∂γ uβ)+ ρuαuβ(∂γ uγ)

+ ∂γ (Puγ)δαβ + ∂γ (Puα)δβγ + ∂γ (Puβ)δαγ]. (14.22)

Adding the two terms of Eq. (14.16), many terms occurring in (14.20) and (14.22)
cancel. The ones that remain are

P(∂βuα + ∂αuβ)+ δαβ


Ṗ +

∑
γ

[uγ (∂γP)+ P∂γ uγ]

 . (14.23)

The terms
Ṗ +

∑
γ

uγ (∂γP) (14.24)

can be calculated using (14.19b) and the equilibrium distribution. When we write
this out, we obtain, again with wα = vα − uα:

∂

∂t

∫
mw2n d3w +

∑
γ

uγ ∂γ

∫
mw2n d3w

=
∫

mw2


∂n

∂t
+
∑
γ

uγ ∂γ n


 d3w = −1

τ

∫
mw2nnoneq d3w. (14.25)

This is the trace of the tensor

−1

τ

∫
mwαwβnnoneq d3v. (14.26)

Now we use the fact that Tr�noneq vanishes. This can only happen when the
trace occurring in the last equation cancels the trace of the remaining terms in the
expression for �noneq. This tensor must therefore be

�noneq = −Pτ
(
∂αuβ + ∂βuα − 2

3δαβ∂γ uγ
)

. (14.27)

Using this, we can formulate the momentum conservation equation, with ν =
τkBT/m, as

∂u
∂t

+ u · ∇u = − 1

ρ
∇P + ν∇2u + 1

3
ν∇(∇ · u). (14.28)

14.3 The lattice Boltzmann model 455

The mass conservation equation and the momentum conservation equation
together are insufficient to give us the four unknown field: ρ, ux, uy and P. We
therefore need an additional equation, which may be ρ = constant for an incom-
pressible fluid, or P ∝ ρ for the isothermal case (which we have analysed here).
Note that the case where ρ = constant also implies ∇ · u = 0 from the continuity
equation, which in turn causes the last term in the last equation to become negligible.

14.3 The lattice Boltzmann model

The idea of the lattice Boltzmann method is to use a ‘toy model’ for the liquid,
which combines the properties of mass, momentum and energy conservation (only
the first two are used in the derivation of the fluid equations) and isotropic relax-
ation of the stress. In the simplest case, the Maxwell Ansatz of a single dominant
relaxation time is used. Some time ago, the lattice gas model was studied intens-
ively [7–9]. In this model, the fluid consists of particles which can occupy lattice
sites. In two dimensions, the lattice can be square (with links to nearest and to next
nearest, diagonal neighbours) or hexagonal. The time is also taken discrete, and at
subsequent time steps, particles are allowed to move to a neighbouring position,
according to rules which guarantee mass and momentum conservation. Because of
the discrete nature of the model, the fluctuations in this method are substantial, and
an alternative formulation was developed: the lattice Boltzmann model. This is also
formulated on a lattice, and the time is discrete, but the particles are replaced by
densities on the lattice sites.

Let us specify the formulation on a hexagonal lattice. This is shown on the left
hand side of Figure 14.1. The arrows indicate possible velocities of particles at each
site: the particles with one of these velocities travel in one time step to the neighbour
at the other end of the link. On the hexagonal lattice, the velocities are all equal in
size: one lattice constant per time step. Particles can also stand still. In a lattice gas
cellular automaton, individual particles are distinguished; in the lattice Boltzmann
method, however, we only consider densities of particles with a particular velocity:
ni is the density of particles with velocity vi, which may be directed along a lattice
link or may be 0.

To be more specific, we have seven possible velocities at each link (including
the zero-velocity particles), and therefore we have seven densities, one for each
velocity. At each time step, two processes take place, which can be directly related
to the Boltzmann equation:

• At each site, all particles with a nonzero speed move to the neighbouring site to
which their velocity points (see the description above);

• At each site, the distribution is relaxed to the equilibrium distribution.

456 The lattice Boltzmann method for fluid dynamics

3

6

1

2

4

5

1

234

5

6
7 8

0 0

d2q6 d2q9

Figure 14.1. The two grids used in two-dimensional lattice Boltzmann simula-
tions. On the left hand side is the hexagonal grid (d2q6; see text) with the possible
particle velocities. On the right hand side, the d2q9 grid is shown. A square grid is
not suitable, as on such a grid all momenta along each horizontal and each vertical
grid line would be conserved.

The second step represents the effect of the collisions.
This algorithm is in fact a realisation of the following equation which governs

the evolution of the distribution in time:

ni(r + c�tei, t +�t) = ni(r, t)− 1

τ
[ni(r, t)− neq

i (r, t)]. (14.29)

Here, i labels the seven possible directions ei from each site (i = 0 represents the
rest particles), and neq is the equilibrium distribution. Furthermore, c is related to
the velocity at which the particles with i �= 0 move; in practice we take c and �t
both equal to 1 in the end, but for derivations it is useful to keep them as parameters
in the problem.

The first step can easily be carried out: for each site, we loop over the six nonzero
speeds, and move the particles to the neighbouring site. Care must be taken to
distinguish those which have not yet been moved from the ‘newcomers’, to avoid
the latter being moved twice. The relaxation is then straightforward, provided we
know the equilibrium distribution. We can construct this equilibrium distribution
as a second order polynomial in terms of the velocity components uα:

neq
i (u) = neq

i (0)(1 + Auαeiα + Buαuα + Cuαuβeiαeiβ), (14.30)

14.3 The lattice Boltzmann model 457

where α and β are Cartesian coordinates x and y; the dependence on the positions
is left out for convenience. All terms in this expression have been chosen to be
isotropic, i.e. there is no preferred direction.

An additional condition is Gallilean invariance: all moments

Mj(u) =
6∑

i=0

(u − ei)
jneq

i (14.31)

should satisfy Mj(u) = M(0), for j = 0, 1, 2, . . . After some calculation, this
condition leaves [10, 11]

neq
i (u) = wi

ρ

m

(
1 + 4

c2
uαeiα − 2

c2
uαuα + 8

c4
uαuβeiαeiβ

)
(14.32)

as the only possibility for the equilibrium distribution. In (14.32), an implicit
summation over repeating Cartesian indices (α,β) is understood. Furthermore,

w0 = 1/2; (14.33a)

wi = 1/12, i = 1, . . . , 6. (14.33b)

For a square lattice, we should allow the particles to visit the four neighbours
along the two Cartesian directions, and the four next-nearest neighbours as shown
in Figure 14.1. This is called the ‘d2q9’ model because it is two-dimensional
and at each site there are nine possible velocities. For this model, the equilibrium
distribution can be derived similarly – the result is:

neq
i = wi

ρ

m

(
1 + 3

c2
eiαuα + 9

2c4
eiαeiβuαuβ − 3

2

uαuα
c2

)
. (14.34)

Here,

wi =




4/9 for i = 0;

1/9 for i = 2, 4, 6, 8;

1/36 for i = 1, 3, 5, 7.

(14.35)

We now have all the ingredients to build the lattice Boltzmann program, if we
know how to handle the boundary conditions. In fluid dynamics, the boundary
condition at a wall is usually defined to correspond to zero velocity (this is called a
‘stick’ boundary condition as opposed to ‘slip’ boundary conditions). The simplest
scheme to realise this is to use the ‘bounce back’ boundary condition. This assumes
that boundaries lie in between neighbouring grid points. For a point lying just
inside the system, we move its particles pointing to a neighbouring point outside the
system to that neighbour and reverse its velocity there. On average, this boils down

458 The lattice Boltzmann method for fluid dynamics

to having zero velocity in between the two particles. More accurate implementations
for the boundary conditions have been developed [12, 13].

In Section 14.5 we show that the lattice Boltzmann model leads to the Navier–
Stokes equations for an incompressible fluid in the limit of small velocities. There,
it will be shown that the only parameter of the algorithm, which is the relaxation
time τ , is related to the viscosity ν by

ν = 2τ − 1

6

�x2

�t
, (14.36)

where �x,�t are the lattice constant and the time steps (which are usually taken
equal to 1).

programming exercise

Construct a lattice Boltzmann code for the flow through a two-dimensional
pipe which we imagine to be horizontal. This is a rectangle, where on the left
hand side we supply fluid, which is drained on the right hand side. Use the
d2q9 lattice. On the lateral boundaries, the bounce back rule is used to ensure
stick boundary conditions. The easiest way to realise the flow is by imposing
a pressure gradient over the system from left to right. This means that on each
segment of the fluid (corresponding to a point of the Boltzmann lattice), a
constant force is acting. This has the effect of increasing all velocities along
the direction of the flow at each time step by the same (small) amount.

The algorithm is set up as follows.

Move the density ni to the appropriate neighbour;
Reverse the new velocities on points beyond the system boundaries;
Calculate velocities at each point;
Add a small velocity along the direction of the pressure gradient;
Calculate equilibrium distribution at each point;
Relax the densities at the points inside the system according to

nnew
i = (1 − 1/τ)nold

i + neq
i /τ .

Check If your program works correctly, you should obtain a parabolic flow profile
throughout the pipe. Note that the simulation is only reliable for small velocities.
The parabola should have curvature ∇P/(ρν). The viscosity ν is related to the
relaxation time τ as ν = (2τ − 1)/6 (see the next section). See also Problem 14.1.

14.4 Additional remarks

The lattice Boltzmann method works on a hexagonal lattice and on a square
lattice provided the stresses can relax isotropically. This requirement forces us

14.4 Additional remarks 459

to include the next nearest neighbours into the possible moves on the square lattice.
In three dimensions, a so-called FCHC lattice lattice must be used [7, 8], which
contains moves to the neighbours along Cartesian directions, as well as moves to
neighbours at relative positions (1, 1, 0), (1, 0, −1) etc. We shall not go further into
this; an extensive literature exists on the three-dimensional version of the model
(see most references in this chapter).

An interesting aspect of the lattice Boltzmann method is that it can easily be exten-
ded to problems that are usually difficult to treat using other methods. These include
binary or multiphase systems and objects moving in the flow. Here we concentrate
on binary systems. Two methods are predominant in this field: the first was pro-
posed by Shan and Chen [14] and the second by Swift et al. [15]. We shall adopt
the first method here for its simplicity. Shan and Chen start by simulating two fluids
in parallel. These fluids can be conveniently be denoted by a ‘colour’: say, red and
blue particles. In principle, the fluids may have different viscosities (thus different
values for the relaxation times τ) – we shall take them to be equal in our description.
The two fluids interact through some potential which has the form

V(r, r′) = Gcc′(r − r′)ρc(r)ρc′(r′). (14.37)

The indices c and c′ denote the colours and ρc = ∑
i mcnc,i. The kernel Gcc′ is

zero for equal colours c = c′ (which assume the values r and b for red and blue
respectively). Furthermore, Grb(r, r′) is only nonzero when r and r′ are lattice
neighbours.

The average velocities of the fluids are calculated for the two fluids together:

u = mr
∑

i einr,i + mb
∑

i einb,i∑
i(mrnr,i + mbnb,i)

. (14.38)

The relaxation of the distributions at each site is with respect to the equilibrium
distribution based on this average velocity.

From this potential we can derive a force by taking the (discrete) gradient. This
directly leads to an extra force on a particle with colour c located at r of the form

dpc(r)
dt

= −ρc(r)
∑

i

Gcc′,iρc′(r + ei) (14.39)

where c �= c′. The interaction Gcc′,i assumes different values for nearest (nn) and
next nearest neighbours (nnn) respectively. They must be tuned to make the force
isotropic – in our case this means

Gnnn = √
2Gnn. (14.40)

460 The lattice Boltzmann method for fluid dynamics

The extra force is included in the lattice Boltzmann equation which now reads

nc,i(r + ei, t + 1) = nc,i(r, t)− 1

τ
[nc,i(r, t)− neq

i (r, t)] + dpc

dt
(r, t). (14.41)

In summary, the heart of the algorithm reads (the change in velocity related to
the force dpc/dt is called �v):

Calculate average velocities from (14.38);
FOR each site r1 DO

Calculate local densities ρ1(c)
for each colour c;

FOR each neighbour r2 of r1 DO
Calculate density ρ2(c′) of that neighbour;
Subtract �vρ2(c′) from the velocity of colour c at r1;

END FOR;
END FOR.

You must first put the two colours on each site with a fixed concentration ratio of,
for example, 2 to 1. It turns out that for high values of�v, the simulation becomes
unstable. This is due to the fact that when the different colours repel each other too
strongly, we get excessively high velocities, and this results in negative densities.
For τ = 1 the divergence sets in for�v > 0.11 on the d2q9 grid (for a concentration
ratio of 2:1). The instability is due to the speed exceeding the sound speed.

Now the simulation is fully defined and can be implemented (see Problem 14.3,
which also addresses the analysis of the data). The result shows the formation of
bubbles which grow by coalescence. The bubbles should satisfy Laplace’s law,
which states that the jump in pressure when going from inside the bubble to the
outside should be proportional to the inverse of the radius of the bubble [16].

Figure 14.2 shows the pressure drop for different bubbles as a function of inverse
radius. Clearly, our simulation satisfies Laplace’s law.

*14.5 Derivation of the Navier–Stokes equation from the lattice
Boltzmann model

In this section, we shall show how the Navier–Stokes equations can be recovered in
the incompressible limit from the lattice Boltzmann model. The derivation is based
on two major ingredients [15, 17, 18]:

• A systematic expansion of ni(r, t) in the time step �t is made;
• Terms of the form (u/cs)

j are neglected beyond a certain order j. The quantity
u/cs, where cs is the sound speed, is known as the Mach number, M.

14.5 Deriving Navier–Stokes equation from lattice Boltzmann model 461

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.05 0.1 0.15 0.2 0.25

∆P

 0

 0.1

1/
R

Figure 14.2. Pressure drop across droplet boundary. Data are taken from a long
run: different symbols correspond to different times. The points are seen to fall on
a straight line. In the simulation we have taken τ = 1, and�v = 0.085. The times
vary between 6000 and 14 000 steps.

We start with the systematic expansion of n in powers of �t. Taylor-expanding
Eq. (14.29), we have

−ni(r, t)− neq
i (r, t)

τ
=

∞∑
k=0

(�t)k

k! Dk
i ni(r, t) (14.42)

where we have introduced the total differential operator

Di = ∂

∂t
+ ceiα∂α . (14.43)

We call n(k)i (r, t) an approximation of ni(r, t) which is correct to order k in�t. We
then have:

n(0)i (r, t) = neq
i (r, t) (14.44a)

n(1)i (r, t) = neq
i (r, t)− τ�tDin

eq
i (r, t) (14.44b)

n(2)i (r, t) = neq
i (r, t)− τ�tDin

(1)
i (r, t)− τ

�t2

2
D2

i neq
i (r, t). (14.44c)

Substituting the second equation for n(1)i into the third, we obtain

n(2)i (r, t) = neq
i (r, t)− τ�t(∂t + ceiα∂α)n

eq
i (r, t)

− τ�t2(1
2 − τ

)
(∂t + ceiα∂α)

2neq
i (r, t). (14.45)

462 The lattice Boltzmann method for fluid dynamics

Now we consider the moments of these equations. The zeroth moment of the
nonequilibrium and equilibrium distribution gives us the density:∑

i

mni =
∑

i

mneq
i = ρ (14.46)

and the first moment the mass flux:∑
i

mceiαni =
∑

i

mceiαneq
i = jα (14.47)

We furthermore define the second and third moments:∑
i

mc2eiαeiβni ≡ �αβ (14.48)

and ∑
i

mc3eiαeiβeiγ ni ≡
αβγ (14.49)

We now take the zeroth moment of Eq. (14.45). Realising that this moment is
identical for neq

i and n(2)i , we obtain

∂tρ + ∂αjα = (
τ − 1

2

)
�t(∂2

t ρ + 2∂t∂αjα + ∂α∂β�
(0)
αβ)+ O(�t2). (14.50)

For the first moment, we obtain

∂t jα + ∂β�
(0)
αβ = (

τ − 1
2

)
�t(∂2

t jα + 2∂t∂β�
(0)
αβ + ∂β∂γ

(0)
αβγ)+ O(�t2).

(14.51)

Now we note that the O(�t) term on the right hand side of the Eq. (14.50) can
be written as

∂2
t ρ + 2∂t∂αjα + ∂α∂β�

(0)
αβ = ∂t(∂tρ + ∂αjα)+ ∂α(∂t jα + ∂β�

(0)
αβ). (14.52)

From Eqs. (14.50) and (14.51), the two terms on the right hand side of this equation
can easily be seen to be of order �t, so we see that

∂tρ + ∂αjα = 0 + O(�t2). (14.53)

We have now recovered the continuity equation to order �t2.
For the other moment equation, (14.51), we can argue along the same lines that

the first half of the O(�t) term is close to zero, and we are left with

∂t jα + ∂β�
(0)
αβ = (

τ − 1
2

)
�t(∂t∂β�

(0)
αβ + ∂β∂γ

(0)
αβγ)+ O(�t2). (14.54)

Exercises 463

To proceed, we must work out the tensors �(0) and
(0). In order to do this, we
note that, on the hexagonal grid, the following relations hold:∑

i

eiαeiβ = 3δαβ ; (14.55a)

∑
i

eiαeiβeiγ eiη = 3

4
(δαβδγ η + δαγ δβη + δαηδβγ), (14.55b)

whereas similar moments containing an odd number of eiα vanish. Together with
(14.32), this yields

�
(0)
αβ = ρuiαuiβ + Pδαβ , (14.56)

where P is found using the ideal gas law relation with the kinetic energy as in
Section 14.2. Furthermore

(0)
αβγ = ρ

c2

3
(uαδβγ + uβδαγ + uγ δαβ). (14.57)

Substituting these equations into (14.54), we obtain

∂t jα + ∂β�
(0)
αβ =

(
τ − 1

2

)
�t

[
∂t∂β(ρuαuβ + Pδαβ)+ ρ

c2

3
(∂β∂βuα + 2∂α∂βuβ)

]

+ O(�t2). (14.58)

In vector notation, this reads

∂tj + ∇ ·�(0) =
(
τ − 1

2

)
�t

[
∇
(
∂P

∂t

)
+ ρ∇ ·

(
∂uu
∂t

)
+ ρ

c2

3
∇2u

]
+ O(�t2).

(14.59)

To obtain the last form, we have neglected the term ∇(∇ · u), which is small in the
incompressible limit as can be seen from the continuity equation. Furthermore, in
this limit, the time derivatives on the right hand side are of the order of M2 – hence
we are left with

∂tj + ρ∇(uu) = ∇p + ρν∇2u, (14.60)

where we have neglected corrections beyond �t2 and �tM2 and where we have
used (14.36).

This is the Navier–Stokes equation in the incompressible limit for which ∇ ·u =
0. This derivation does not depend on the fact that we have used the hexagonal
lattice – it yields the same result for the d2q9 model.

Exercises

14.1 Derive from the Navier–Stokes equation that the flow in a two-dimensional pipe
forms a parabolic velocity profile. Check that the curvature (i.e. the second

464 The lattice Boltzmann method for fluid dynamics

derivative) of the parabola is given by ∇P/(νρ). Check also that the velocity �v
which is added at each step is related to the pressure by ρ�v = ∇P/c. In the
simulation, we usually take the lattice constant �x and the time step �t equal to 1.
Check that the velocity profile of your simulation matches the result for
ν = (2τ − 1)/6.

14.2 [C] Extend the simulation of the parabolic flow by putting an object in the flow. This
can be a fixed block. Check your results by inspecting the flow in the channels on
both sides of the block to see whether the total flow is the same through the
rectangular pipe.

14.3 [C] Write a program for droplet formation in a binary system along the lines
indicated in Section 14.4.

14.4 [C] In this problem we check Laplace’s law. In order to do this, you need to identify
the droplets and find the pressure drop across their boundaries. To this end you step
over all lattice sites and check whether there is a large predominance of one colour.
If this is the case, you use either the back-track or the Hoshen–Kopelman algorithm
which are both described in Section 15.5.1, in order to identify all sites.
Furthermore, you store the largest pressure value in the current droplet.

References

[1] R. J. LeVeque and Z. Li, ‘The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources,’ Siam J. Numer. Anal., 31 (1994), 1019–44.

[2] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford, Oxford
University Press, 2001.

[3] R. Benzi, S. Succi, and M. Vergassola, ‘The lattice Boltzmann equation: theory and application,’
Phys. Rep., 222 (1992), 145–97.

[4] D. H. Rothman and S. Zaleski, Lattice-Gas Cellular Automata: Simple Models of Complex
Hydrodynamics. Cambridge, Cambridge University Press, 2004.

[5] S. Chapman and T. G. Gowling, The Mathematical Theory of Non-Uniform Gases. Cambridge,
Cambridge University Press, 1970.

[6] K. Huang, Statistical Mechanics, 2nd edn. New York, John Wiley, 1987.
[7] U. Frisch, B. Hasslacher, and Y. Pomeau, ‘Lattice-gas automata for the Navier–Stokes equation,’

Phys. Rev. Lett., 56 (1986), 1505–8.
[8] U. Frisch, D. d’ Humières, B. Hasslacher, P. Lallemand, and Y. Pomeau, ‘Lattice gas

hydrodynamics in two and three dimensions,’ Complex Systems, 1 (1987), 649–707.
[9] S. Wolfram, ‘Cellular automaton fluids 1: basic theory,’ J. Stat. Phys., 45 (1986), 471–526.

[10] R. D. Kingdon, P. Schofield, and L. White, ‘A lattice Boltzmann model for the simulation of
fluid flow,’ J. Phys. A, 25 (1992), 3559–66.

[11] H. Chen, S. Chen, and H. Matthaeus, ‘Recovery of the Navier Stokes equation using a lattice
Boltzmann method,’ Phys. Rev. A, 45 (1992), 5339–442.

[12] D. P. Ziegler, ‘Boundary conditions for lattice Boltzmann simulations,’ J. Stat. Phys., 71 (1992),
1171–7.

[13] R. S. Maier, R. S. Bernard, and D. W. Grunau, ‘Boundary conditions for the lattice Boltzmann
method,’ Phys. Fluids, 8 (1996), 1788–801.

[14] X. Shan and H. Chen, ‘Lattice Boltzmann model for simulating flows with multiple phases and
components,’ Phys. Rev. B, 47 (1993), 1815–19.

References 465

[15] M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, ‘Lattice Boltzmann simulations
of liquid–gas and binary fluid systems,’ Phys. Rev. E, 54 (1996), 5041–52.

[16] C. Isenberg, The Science of Soap Films and Soap Bubbles. New York, Dover, 1992.
[17] X. He and L.-S. Luo, ‘Lattice Boltzmann model for the incompressible Navier–Stokes equation,’

J. Stat. Phys., 88 (1997), 927–44.
[18] Z. Guo and N. Wang, ‘Lattice BGK model for incompressible Navier–Stokes Equation,’ J. Comp.

Phys., 165 (2000), 288–306.

15

Computational methods for lattice field theories

15.1 Introduction

Classical field theory enables us to calculate the behaviour of fields within the
framework of classical mechanics. Examples of fields are elastic strings and sheets,
and the electromagnetic field. Quantum field theory is an extension of ordinary
quantum mechanics which not only describes extended media such as string and
sheets, but which is also supposed to describe elementary particles. Furthermore,
ordinary quantum many-particle systems in the grand canonical ensemble can be
formulated as quantum field theories. Finally, classical statistical mechanics can
be considered as a field theory, in particular when the classical statistical model is
formulated on a lattice, such as the Ising model on a square lattice, discussed in
Chapter 7.

In this chapter we shall describe various computational techniques that are used to
extract numerical data from field theories. Renormalisation is a procedure without
which field theories cannot be formulated consistently in continuous space-time.
In computational physics, we formulate field theories usually on a lattice, thereby
avoiding the problems inherent to a continuum formulation. Nevertheless, under-
standing the renormalisation concept is essential in lattice field theories in order to
make the link to the real world. In particular, we want to make predictions about
physical quantities (particle masses, interaction constants) which are independent
of the lattice structure, and this is precisely where we need the renormalisation
concept.

Quantum field theory is difficult. It does not belong to the standard repertoire
of every physicist. We try to explain the main concepts and ideas before entering
into computational details, but unfortunately we cannot give proofs and deriva-
tions, as a thorough introduction to the field would require a book on its own. For
details, the reader is referred to Refs. [1–5]. In the next section we shall briefly

466

15.2 Quantum field theory 467

describe what quantum field theory is and present several examples. In the follow-
ing section, the procedure of numerical quantum field theory will be described in
the context of renormalisation theory. Then we shall describe several algorithms
for simulating field theory, and in particular methods for reducing critical slow-
ing down, a major problem in numerical field theory computations. Finally, we
shall consider some applications in quantum electrodynamics (QED) and quantum
chromodynamics (QCD).

15.2 Quantum field theory

To understand quantum field theory, it is essential to be accustomed to the path-
integral formalism (Section 12.4), so let us recall this concept briefly.

Consider a single particle in one dimension. The particle can move along the
x-axis and its trajectory can be visualised in (1+1)-dimensional space-time. Fixing
initial and final positions and time to (ti, xi), (tf , xf) respectively, there is (in general)
one particular curve in the (t, x)-plane, the classical trajectory, for which the action
S is stationary. The action is given by

S(xi, xf ; ti, tf) =
∫ tf

ti
dt L(x, ẋ, t) (15.1)

where L(x, ẋ, t) is the Lagrangian. In quantum mechanics, nonstationary paths are
allowed too, and the probability of going from an initial position xi to a final position
xf is given by ∫

[Dx(t)] e−iS/� = 〈xf | e−i(ti−tf)H/�|xi〉, (15.2)

where H is the Hamiltonian of the system. The integral
∫ [Dx(t)] is over all possible

paths with fixed initial and final values xi and xf respectively. If we send Planck’s
constant � to zero, the significant contributions to the path integral will be more
and more concentrated near the stationary paths, and the stationary path with the
lowest action is the only one that survives when � = 0.

Now consider a field. The simplest example of a field is a one-dimensional
string, which we shall consider as a chain of particles with mass m, connected
by springs such that in equilibrium the chain is equidistant with spacing a. The
particles can move along the chain, and the displacement of particle n with respect
to the equilibrium position is called φn. Fixed, free or periodic boundary conditions
can be imposed. The chain is described by the action

S = 1

2

∫ tf

ti

{∑
n

1

2
mφ̇2

n(t)− A

[
φn+1(t)− φn(t)

a

]2
}

dt. (15.3)

468 Computational methods for lattice field theories

A is a constant, and some special conditions are needed for the boundaries. In a
quantum mechanical description we again use the path integral, which gives us the
probability density for the chain to go from an initial configuration �i = {φ(i)n }
at time ti to a final configuration �f = {φ(f)n } at time tf (note that �(i,f) denotes a
complete chain configuration): ∫

[D�(t)] e−iS/� (15.4)

where the path integral is over all possible configurations of the field� in the course
of time, with fixed initial and final configurations.

We now want to formulate this problem in continuum space. To this end we
replace the discrete index n by a continuous index x1, and we replace the interaction
term occurring in the summand by the continuous derivative:

S = 1

2

∫ tf

ti
dt
∫

dx1

{
mφ̇(t, x1)

2 − A

[
∂φ(t, x1)

∂x1

]2
}

. (15.5)

The field φ(t, x1) can be thought of as a sheet whose shape is given as a height
φ(t, x1) above the (1 + 1) dimensional space-time plane. In the path integral, we
must sum over all possible shapes of the sheet, weighted by the factor eiS/�. The
field can be rescaled at will, as it is integrated over in the path integral (this rescaling
results in an overall prefactor), and the time and space units can be defined such as
to give the time derivative a prefactor 1/c with respect to the spatial derivative (c is
the speed of light), and we obtain

S =
∫

d2x
1

2
∂µφ(x)∂

µφ(x), (15.6)

where we have used x to denote the combined space-time coordinate x ≡ (t, x1) ≡
(x0, x1). From now on, we put c ≡ � ≡ 1 and we use the Einstein summation
convention according to which repeated indices are summed over. The partial
space-time derivatives ∂µ, ∂µ are denoted by:

∂µ = ∂

∂xµ
, ∂µ = ∂

∂xµ
. (15.7)

Furthermore we use the Minkowski metric:

aµaµ = a2
0 − a2. (15.8)

The fact that we choose c ≡ � ≡ 1 leaves only one dimension for distances in
space-time, and masses and energies. The dimension of inverse distance is equal to
the energy dimension, which is in turn equal to the mass dimension.

Using partial integration, we can reformulate the action as

S = −
∫

d2x
1

2
φ(x)∂µ∂

µφ(x), (15.9)

15.2 Quantum field theory 469

where we have assumed periodic boundary conditions in space and time (or van-
ishing fields at the integral boundaries, which are located at infinity) to neglect
integrated terms.

If, apart from a coupling to its neighbours, each particle had also been coupled
to an external harmonic potential m2φ2/2, we would have obtained

S = −
∫

d2x
1

2
φ(x)(∂µ∂

µ + m2)φ(x). (15.10)

Note that the Euler–Lagrange equations for the field are

(∂µ∂µ + m2)φ(x) = 0; (15.11)

which is recognised as the Klein–Gordon equation, the straightforward covariant
generalisation of the Schrödinger equation.1

Quantum field theory is often used as a theory for describing particles. The
derivation above started from a chain of particles, but these particles are merely
used to formulate our quantum field theory, and they should not be confused with
the physical particles which are described by the theory. The difference between
the two can be understood as follows. Condensed matter physicists treat wave-like
excitations of the chain (i.e. a one-dimensional ‘crystal’) as particles – they are
called phonons. Note that the ‘real’ particles are the atoms of the crystal. In field
theory, the only ‘real’ particles are the excitations of the field.

In fact, we can imagine that a wave-like excitation pervades our sheet, for example

φ(t, x1) = eipx1−iωt (15.12)

(here x1 denotes the spatial coordinate). This excitation carries a momentum p and
an energy �ω, and it is considered as a particle. We might have various waves as a
superposition running over the sheet: these correspond to as many particles.

Let us try to find the Hamiltonian corresponding to the field theory presented
above (the following analysis is taken up in some detail in Problems 15.2 and 15.3).
We do this by returning to the discretised version of the field theory. Let us first
consider the ordinary quantum description of a single particle of mass 1, moving
in one dimension in a potential mx2/2. The Hamiltonian of this particle is given by

H = p2

2
+ m

2
x2 (15.13)

with [p, x] = −i. In the example of the chain we have a large number of such
particles, but each particle can still be considered as moving in a harmonic potential,
and after some calculation we find for the Hamiltonian:

H =
∑

n

[π̂2
n + (φ̂n − φ̂n−1)

2 + m2φ̂2
n], (15.14)

1 The Klein–Gordon equation leads to important problems in ordinary quantum mechanics, such as a
nonconserved probability density and an energy spectrum which is not bounded from below.

470 Computational methods for lattice field theories

with

[π̂n, φ̂l] = −iδnl. (15.15)

The hats are put above φ and π to emphasise that they are now operators. The
Hamiltonian can be diagonalised by first Fourier transforming and then applying
operator methods familiar from ordinary quantum mechanics to it. The result is [2,6]

H = 1

2

∫ π

−π
dk ωkâ†

k âk (15.16)

where â†
k is a creation operator: it creates a Fourier mode

φn = eikn (15.17)

and âk is the corresponding destruction or annihilation operator. In the ground state
(the ‘vacuum’) there are no modes present and the annihilation operator acting on
the ground state gives zero:

ak|0〉 = 0. (15.18)

The Fourier modes represent energy quanta of energy �ω; the number operator
nk = a†

kak acting on a state |ψ〉 counts the number of modes (quanta) with wave
vector k, present in that state. The Hamiltonian (15.16) operator then adds all the
energy quanta which are present in the state.

In fact, âk is given in terms of the Fourier transforms of the φ̂ and π̂ operators:

âk = 1√
4πωk

[ωkφ̂k + iπ̂k], (15.19)

analogous to the definition of creation and annihilation operators for the harmonic
oscillator. The frequency ω is related to k by

ωk = ω−k =
√

m2 + 2(1 − cos k). (15.20)

For small k we find the continuum limit:

ωk =
√

m2 + k2 (15.21)

which is the correct dispersion relation for a relativistic particle with mass m (in units
where c = � = 1).

We see that the Hamiltonian (15.16) of a particular configuration is simply given
as the sum of the energies of a set of one-particle Hamiltonians (remember these
particles are nothing but Fourier-mode excitations of the field): the particles do not
interact. Therefore, the field theory considered so far is called free field theory. The
eigenstates of the free field theory are

|k1, . . . , kM〉 = â†
k1
. . . â†

kM
|0〉 (15.22)

15.2 Quantum field theory 471

for arbitrary M, which denotes the number of particles present. It is possible to have
the same ki occurring more than once in this state (with an appropriate normalisation
factor): this means that there is more than one particle with the same momentum.
The state |0〉 is the vacuum state: it corresponds to having no particles. The lowest
energy above the vacuum energy is that corresponding to a single particle at rest
(k = 0): the energy is equal to the mass. In Section 11.2 we have seen that for
a statistical field theory the inverse of the lowest excitation energy is equal to the
correlation length:

m ≈ 1/(ξa). (15.23)

However, this holds for a statistical field theory where we do not have complex
weight factors; these can be made real by an analytical continuation of the physics
into imaginary time: t → it (see also Section 12.2.4). In that case the (continuous)
action in d space-time dimensions reads

S =
∫

ddx
1

2
[∂µφ∂µφ + m2φ2] (15.24)

where now

∂µφ∂
µφ = (∇φ)2 +

(
∂

∂t
φ

)2

(15.25)

i.e. the Minkowski metric has been replaced by the Euclidean metric. The matrix
elements of the time-evolution operator now read exp(−S) instead of exp(−S/i)
(for � ≡ 1). We have now a means to determine the particle mass: simply by
measuring the correlation length. In the free field theory, the inverse correlation
length is equal to the mass parameter m in the Lagrangian, but if we add extra terms
to the Lagrangian (see below) then the inverse correlation length (or the physical
mass) is no longer equal to m.

It might seem that we have been a bit light-hearted in switching to the Euclidean
field theory. Obviously, expectation values of physical quantities can be related for
the Minkowski and Euclidean versions by an analytic continuation. In the numerical
simulations we use the Euclidean metric to extract information concerning the
Hamiltonian. This operator is the same in both metrics – only the time evolution and
hence the Lagrangian change when going from one metric to the other. Euclidean
field theory can therefore be considered merely as a trick to study the spectrum of
a quantum Hamiltonian of a field theory which in reality lives in Minkowski space.

If we add another term to the Lagrangian:

S =
∫

ddx

{
1

2
φ(x)(−∂µ∂µ + m2)φ(x)+ V [φ(x)]

}
, (15.26)

where V is not quadratic (in that case it would simply contribute to the mass term),
then interactions between the particles are introduced. Usually one considers

V = gφ4(x)/2 (15.27)

472 Computational methods for lattice field theories

and the Lagrangian describes the simplest interesting field theory for interacting
particles, the scalar φ4 theory. The name ‘scalar’ denotes that φ(x) is not a vector.
Vector theories do exist, we shall encounter examples later on. When a potential is
present, the energy is no longer a sum of one-particle energies: the particles interact.

We have mentioned the probability of going from a particular initial state to
another (final) state as an example of the problems studied in field theory. Our
experimental knowledge on particles is based on scattering experiments. This is a
particular example of such a problem: given two particles with certain initial states,
what are the probabilities for different resulting reaction products? That is, which
particles do we have in the end and what are their momenta? In scalar field theory
we have only one type of particle present. As we have seen in the first chapter of this
book, experimental information on scattering processes is usually given in terms of
scattering cross sections. These scattering cross sections can be calculated – they
are related to an object called the S-matrix, which is defined as

Sfi = lim
ti→−∞
tf →∞

〈ψf |U(ti, tf)|ψi〉. (15.28)

Our initial state is one with a particular set of initial momenta as in (15.22), and sim-
ilarly for the final state; U(ti, tf) is the time-evolution operator,2 and the states ψi,f

usually contain a well-defined number of free particles with well-defined momenta
(or positions, depending on the representation).

Scattering cross sections are expressed directly in terms of the S-matrix, and the
latter is related to the Green’s functions of the theory by the so-called Lehmann–
Symanzik–Zimmermann relation, which can be found for example in Ref. [2].
These Green’s functions depend on a set of positions x1, . . . , xn and are given by

G(x1, . . . , xn) =
∫

[Dφ]φ(x1) · · ·φ(xn) e−S/�
/∫

[Dφ] e−S/�. (15.29)

Note that xi is a space-time vector, the subscripts do not denote space-time com-
ponents. The scattering cross sections are evaluated in the Euclidean metric; the
Minkowskian quantities are obtained by analytical continuation: t → it.

As the initial and final states in a scattering experiment are usually given by
the particle momenta, we need the Fourier transform of the Green’s function,
defined as

G(k1, . . . , kn)δ(k1 + · · · + kn)(2π)d

=
∫

ddx1 . . . d
dxn eik1·x1+···+ikn·xnG(x1, . . . , xn). (15.30)

2 More precisely, the time-evolution operator is that for a theory with an interaction switched on at a time
much later than ti and switched off again at a time long before tf .

15.3 Interacting fields and renormalisation 473

The d-dimensional delta-function reflects the energy–momentum conservation of
the scattering process, which is related to the space-time translation invariance of
the Green’s function.

For the free field theory it is found that

G(k, −k) = 1

k2 + m2
(15.31)

which leads to the real-space form:

G(x − x′) = e−|x−x′|m

|x − x′|η ; large |x − x′|, (15.32)

with η = (d − 1)/2. We see that the Green’s function has a finite correlation
length ξ = 1/m. Higher-order correlation functions for the free field theory can
be calculated using Wick’s theorem: correlation functions with an odd number of
φ-fields vanish, but if they contain an even number of fields, they can be written as
a symmetric sum over products of pair-correlation functions, for example

G(x1, x2, x3, x4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉
= 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉 + 〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉

+ 〈φ(x1)φ(x4)〉〈φ(x2)φ(x3)〉. (15.33)

In fact, it is well known that for stochastic variables with a Gaussian distribution,
all higher moments can be formulated similarly in terms of the second moment.
Wick’s theorem is a generalisation of this result.

15.3 Interacting fields and renormalisation

The free field theory can be solved analytically: all the Green’s functions can be
given in closed form. This is no longer the case when we are dealing with interacting
fields. If we add, for example, a term gφ4 to the free field Lagrangian, the only way
to proceed analytically is by performing a perturbative analysis in the coupling
constant g. It turns out that this gives rise to rather difficult problems. The terms
in the perturbation series involve integrals over some momentum coordinates, and
these integrals diverge! Obviously our predictions for physical quantities must be
finite numbers, so we seem to be in serious trouble. Since this occurs in most
quantum field theories as soon as we introduce interactions, it is a fundamental
problem which needs to be faced.

To get a handle on the divergences, one starts by controlling them in some suitable
fashion. One way to do this is by cutting off the momentum integrations at some
large but finite value
. This renders all the integrals occurring in the perturbation
series finite, but physical quantities depend on the (arbitrary) cut-off
which is still

474 Computational methods for lattice field theories

unacceptable. Another way to remove the divergences is by formulating the theory
on a discrete lattice. This is of course similar to cutting off momentum integrations,
and the lattice constant a used is related to the momentum cut-off by

a ∼ 1/
. (15.34)

Such cut-off procedures are called regularisations of the field theory.
We must remove the unphysical cut-off dependence from the theory. The way

to do this is to allow the coupling constant and mass constants of the theory to be
dependent on cut-off and then require that the cut-off dependency of the Green’s
functions disappears.3 There are infinitely many different Green’s functions and
it is not obvious that these can all be made independent of cut-off by adjusting
only the three quantities m, g and φ. Theories for which this is possible are called
renormalisable. The requirement that all terms in the perturbative series are merely
finite, without a prescription for the actual values, leaves some arbitrariness in the
values of field scaling, coupling constant and mass. We use experimental data to
fix these quantities.

To be more specific, suppose we carry out the perturbation theory to some order.
It turns out that the resulting two-point Green’s function G(k, −k) assumes the form
of the free-field correlation function (15.31) with a finite mass parameter plus some
cut-off dependent terms. Removing the latter by choosing the various constants of
the theory (m, g, scale of the field) in a suitable way, we are left with

G(k, −k) = 1/(k2 + m2
R) (15.35)

where mR is called the ‘renormalised mass’ – this is the physical mass which is
accessible to experiment. This is not the mass which enters in the Lagrangian and
which we have made cut-off dependent: the latter is called the ‘bare mass’, which
we shall now denote by mB. The value of the renormalised mass mR is not fixed
by the theory, as the cut-off removal is prescribed up to a constant. We use the
experimental mass to ‘calibrate’ our theory by fixing mR. In a similar fashion, we
use the experimental coupling constant, which is related to the four-point Green’s
function, to fix a renormalised coupling constant gR (see the next section).

The renormalisation procedure sounds rather weird, but it is certainly not some
arbitrary ad hoc scheme. The aim is to find bare coupling constants and masses,
such that the theory yields cut-off independent physical (renormalised) masses and
couplings. Different regularisation schemes all lead to the same physics. We need
as many experimental data as we have parameters of the theory to adjust, and
having fixed these parameters we can predict an enormous amount of new data (in
particular, all higher order Green’s functions). Moreover, the requirement that the

3 In addition to mass and coupling constant, the field is rescaled by some factor.

15.3 Interacting fields and renormalisation 475

theory is renormalisable is quite restrictive. For example, only the φ4 potential has
this property; changing the φ4 into a φ6 destroys the renormalisability of the theory.

In computational physics we usually formulate the theory on a lattice. We then
choose values for the bare mass and coupling constant and calculate various phys-
ical quantities in units of the lattice constant a (or its inverse). Comparison with
experiment then tells us what the actual value of the lattice constant is. Therefore
the procedure is somehow the reverse of that followed in ordinary renormalisation,
although both are intimately related. In ordinary renormalisation theory we find the
bare coupling constant and mass as a function of the cut-off from a comparison with
experiment. In computational field theory we find the lattice constant as a function
of the bare coupling constant from comparison with experimental data.

Let us consider an example. We take the Euclidean φ4 action in dimension d = 4:

S = 1

2

∫
d4x{[∂µφ(x)][∂µφ(x)] + m2φ2(x)+ gφ4(x)} (15.36)

and discretise this on the lattice, with a uniform lattice constant a. Lattice points are
denoted by the four-index n = (n0, n1, n2, n3). A lattice point n corresponds to the
physical point x = (an0, an1, an2, an3) = an. The discretised lattice action reads

SLattice = 1

2

∑
n

a4




3∑
µ=0

[
φ(n + eµ)− φ(n)

a

]2

+ m2φ2
n + gφ4(n)


 . (15.37)

We rescale the φ-field, the mass and the coupling constant according to

φ(n) → φ(n)/a; m → m/a and g → g, (15.38)

to make the lattice action independent of the lattice constant a:

SLattice = 1

2

∑
n




3∑
µ=0

[φ(n + eµ)− φ(n)]2 + m2φ2
n + gφ4(n)


 . (15.39)

Now we perform a Monte Carlo or another type of simulation for particular values
of m and g. We can then ‘measure’ the correlation length in the simulation. This
should be the inverse of the experimental mass, measured in units of the lattice
constant a. Suppose we know this mass from experiment, then we can infer what
the lattice constant is in real physical units.

Life is, however, not as simple as the procedure we have sketched suggests. The
problem is that in the generic case, the correlation length is quite small in units
of lattice constants. However, a lattice discretisation is only allowed if the lattice
constant is much smaller than the typical length scale of the physical problem.
Therefore, the correlation length should be an order of magnitude larger than the
lattice constant. Only close to a critical point does the correlation length assume

476 Computational methods for lattice field theories

values much larger than the lattice constant. This means that our parameters m and
g should be chosen close to a critical point. The φ4 theory in d = 4 dimensions has
one critical line [7], passing through the point m = g = 0, the massless free field
case. Therefore, m and g should be chosen very close to this critical line in order
for the lattice representation to be justifiable.

As the experimental mass of a particle is a fixed number, varying the lattice
constant a forces us to vary g and m in such a way that the correlation length
remains finite. Unfortunately this renders the use of finite size scaling techniques
impossible: the system size L must always be larger than the correlation length:
a � ξ < L.4

The fact that the lattice field theory is always close to a critical point implies that
we will suffer from critical slowing down. Consider a Monte Carlo (MC) simulation
of the field theory. We change the field at one lattice point at a time. At very high
temperature, the field values at neighbouring sites are more or less independent, so
after having performed as many MC attempts as there are lattice sites (one MCS), we
have obtained a configuration which is more or less statistically independent from
the previous one. If the temperature is close to the critical temperature, however,
fields at neighbouring sites are strongly correlated, and if we attempt to change
the field at a particular site, the coupling to its neighbours will hardly allow a
significant change with respect to its previous value at that site. However, in order
to arrive at a statistically independent configuration, we need to change the field
over a volume of linear size equal to the correlation length. If that length is large,
it will obviously take a very long time to change the whole region, so this problem
gets worse when approaching the critical point. Critical slowing down is described
by a dynamic critical exponent z which describes the divergence of the decay time
τ of the dynamic correlation function (see Chapter 7, Eq. (7.73)):

τ = ξ z, (15.40)

where ξ is the correlation length of the system.
In recent years, much research has aimed at finding simulation methods for

reducing the critical time relaxation exponent. In the following section we shall
describe a few straightforward methods developed for simulating quantum field
theories, using the φ4 scalar field theory in two dimensions as a testing model.
In Section 15.5 we shall focus on methods aiming at reducing critical slowing
down. We shall then also discuss methods devised for the Ising model and for a
two-dimensional model with continuous degrees of freedom.

4 In the case where physical particles are massless, so that the correlation length diverges, finite size scaling
can be applied. Finite size scaling applications in massive particle field theories have, however, been proposed;
see Ref. [8].

15.4 Algorithms for lattice field theories 477

In the final sections of this chapter, simulation methods for gauge field theories
(QED, QCD) will be discussed.

15.4 Algorithms for lattice field theories

We start by reviewing the scalar Euclidean φ4 field theory in d dimensions in more
detail. The continuum action is

SE = 1

2

∫
ddx[∂µφ(x)∂µφ(x)+ m2φ2(x)+ gφ4(x)] (15.41)

(the subscript E stands for Euclidean). For g = 0, we have the free field theory,
describing noninteracting spinless bosons. Performing a partial integration using
Green’s first identity, and assuming vanishing fields at infinity, we can rewrite the
action as

SE = 1

2

∫
ddx[−φ(x)∂µ∂µφ(x)+ m2φ2(x)+ gφ4(x)]. (15.42)

The scalar field theory can be formulated on a lattice by replacing derivatives
by finite differences. We can eliminate the dependence of the lattice action on the
lattice constant by rescaling the field, mass and coupling constant according to

φ̂n = ad/2−1φ(an); m̂ = am; ĝ = a4−dg. (15.43)

For the four-dimensional case, d = 4, we have already given these relations in
the previous section. Later we shall concentrate on the two-dimensional case, for
which the field φ is dimensionless. In terms of the rescaled quantities, the lattice
action reads:

SLattice
E = 1

2

∑
n

[
−
∑
µ

φ̂nφ̂n+µ + (2d + m̂2)φ̂2
n + ĝφ̂4

n

]
. (15.44)

The arguments n are vectors in d dimensions with integer coefficients and the sum
over µ is over all positive and negative Cartesian directions. The action (15.44)
is the form which we shall use throughout this section and it will henceforth be
denoted as S. From now on we shall omit the carets from the quantities occurring in
the action (15.44). As we shall simulate the field theory in the computer, we must
make the lattice finite – the linear size is L.

We now describe the analytical solution of this lattice field theory for the case
g = 0 (free field theory). The free field theory action is quadratic and can be written
in the form

SE = 1

2

∑
nl

φnKnlφl, (15.45)

478 Computational methods for lattice field theories

where

Knl = (2d + m2)δnl −
∑
µ

δn,l+µ. (15.46)

Defining Fourier-transformed fields as usual:

φk =
∑

n

φn eik·n; (15.47a)

φn = 1

Ld

∑
k

φk e−ik·n, (15.47b)

where n and l run from 0 to L − 1, periodic boundary conditions are assumed, and
the components of k assume the values 2mπ/L, m = 0, . . . , L − 1. Then we can
rewrite the free-field action as

SE = 1

2L2d

∑
k

φkKk,−kφ−k , (15.48)

as Kk,−k are the only nonzero elements of the Fourier transform Kk,k′ :

Kk,k′ = Ld

[
−
∑
µ

2 cos(kµ)+ (2d + m2)

]
δk,−k′

= Ld

[
4
∑
µ

sin2 kµ
2

+ m2

]
δk,−k′ (15.49)

where the sum is now only over the positive µ directions; kµ is the µ-component
of the Fourier wave vector k.

The partition function

Z =
∫

[Dφk] exp

(
− 1

2L2d

∑
k

φkKk,−kφ−k

)

=
∫

[Dφk] exp

(
− 1

2L2d

∑
k

|φk|2Kk,−k

)
(15.50)

(up to a normalisation factor) is now a product of simple Gaussian integrals, with
the result (N = Ld):

Z = (2πN2)N/2/
∏

k

√
Kk,−k = (2πN2)N/2/

√
det K = (2πN2)N/2

√
det(K−1).

(15.51)
The partition function appears as usual in the denominator of expressions for expect-
ation values. We can calculate for example the two-point correlation or Green’s

15.4 Algorithms for lattice field theories 479

function 〈φnφl〉. The Fourier transform of this correlation function can be found
quite easily:

〈φnφl〉 = 1

L2d

∑
k,k′

〈φkφk′ 〉eik·neik′·l; (15.52a)

〈φkφk′ 〉 = L2d

Kk,−k
δk,−k′ . (15.52b)

Taking the small-k limit in (15.49) and (15.52) leads to the form (15.31), as it should
be. Taking k = 0, we find

〈φ2
k=0〉 =

〈(∑
n

φn

)2〉
= Ldζ/m2

R, (15.53)

where the factor ζ on the right hand side represents the square of the scaling factor of
the field – from (15.43), ζ = ad−2. This equation enables us therefore to determine
ζ/mR in a simulation simply by calculating the average value of 〈�2〉,� =∑n φn.

We have seen that according to Wick’s theorem, the correlation functions to
arbitrary order for free fields can always be written as sums of products of two-point
correlation functions. If we switch on the φ4 interaction, we will note deviations
from this Gaussian behaviour to all higher orders. Renormalisation ideas suggest
that it should be possible to express all higher order correlation functions in terms
of second and fourth order correlation functions, if the arguments of the Green’s
function are not too close (that is, much farther apart than the cut-off a). The second
order Green’s functions are still described by the free field form (15.52), but with m
in the kernel Kk,k′ being replaced by a renormalised mass, mR. The deviations from
the Gaussian behaviour manifest themselves in fourth and higher order correlation
functions. Therefore a natural definition of the renormalised coupling constant gR is

gR = 〈�4〉 − 3〈�2〉2

〈�2〉2
(15.54)

where � =∑n φn.5 Equations (15.53) and (15.54) are used below to measure the
renormalised mass and coupling constant in a simulation.

15.4.1 Monte Carlo methods

The problem of calculating expectation values for the interacting scalar field theory
is exactly equivalent to the problem of finding expectation values of a statistical field
theory. Therefore we can apply the standard Monte Carlo algorithms of Chapter 10

5 This renormalisation scheme corresponds to defining the renormalised coupling constant as the four-point
one-particle irreducible (OPI) Green’s function in tree approximation at momentum zero [2, 4, 5].

480 Computational methods for lattice field theories

straightforwardly in order to sample field configurations with Boltzmann weight
exp(−S[φ]). Starting point is the action (15.44). An obvious method is the Metro-
polis MC algorithm, in which lattice sites are visited at random or in lexicographic
order, and at the selected site a change in the field is attempted by some random
amount. The change in the field is taken from a random number generator either
uniformly within some interval or according to a Gaussian distribution (with a suit-
able width). Then we calculate the change in the action due to this change in the
field. The trial value of the field is then accepted as the field value in the next step
according to the probability

PAccept = e−S[φnew]+S[φold] (15.55)

where the exponent on the right hand side is the difference between the action of
the new and old field at the selected site, keeping the field at the remaining sites
fixed. If PAccept > 1, then the new configuration is accepted.

In Chapter 10 we have already encountered another method which is more effi-
cient as it reduces correlations between subsequent configurations: the heat-bath
algorithm. In this algorithm, the trial value of the field is chosen independently of
the previous value. Let us call Wφ[φn] the Boltzmann factor e−S[φ] for a field which
is fixed everywhere except at the site n. We generate a new field value at site n
according to the probability distribution Wφ[φn]. This is equivalent to performing
infinitely many Metropolis steps at the same site n successively. The new value of
φn can be chosen in two ways: we can generate a trial value according to some distri-
bution ρ(φn) and accept this value with probability proportional to Wφ[φn]/ρ(φn),
or we can directly generate the new value with the required probability Wφ[φn].
The Gaussian free field model will serve to illustrate the last method.

Consider the action (15.44). If we vary φn, and keep all the remaining field values
fixed, we see that the minimum of the action occurs for φ̄n =∑µ φn+µ/(2d +m2),
where the sum is over all neighbouring points, i.e. for both positive and negative
directions. The Boltzmann factor Wφ[φn] as a function of φn for all remaining field
values fixed is then a Gaussian centred around φ̄n and with a width 1/

√
2d + m2.

Therefore, we generate a Gaussian random number r with a variance 1, and then
we set the new field value according to

φn = φ̄n + r/
√

2d + m2. (15.56)

An advantage of this method is that no trial steps have to be rejected, which
obviously improves the efficiency.

Unfortunately, this method is not feasible when a φ4 interaction is present as
we cannot generate random numbers with an exp(−x4) distribution. Therefore we
treat this term with an acceptance/rejection step as described above. This is done
as follows. First we generate a ‘provisional’ value of the field φn according with

15.4 Algorithms for lattice field theories 481

a Gaussian distribution ρ(φn), according to the procedure just described. Then we
accept this new field value with a probability exp(−gφ4

n/2). If g is not too large
(and this will be the case in most of the examples given below), then the acceptance
rate will still be reasonably close to 1 and not too many trial steps are rejected. If
g is large, then a different procedure for generating the trial field value should be
followed [9].

There is an intimate relation between the heat-bath method described here and
the Gauss–Seidel method for finding the solution of the Poisson equation (see
Appendix A7.2). In the Gauss–Seidel method, the sites are visited in lexicographic
order (the same can be done in the heat-bath method), and φn is set equal to φ̄n

without adding a Gaussian random number to it. In Appendix A7.2 the problem
of slow convergence of the numerical solution of the Poisson problem will be
addressed: it turns out that the relaxation time, measured in sweeps over the entire
lattice, scales as the square of the linear lattice size. The amount of computer time
involved in one lattice sweep also scales linearly with the lattice volume, so the
total time needed to obtain results within a certain level of accuracy scales with
the volume squared. Because of this power-law scaling behaviour of the standard
Poisson solvers, one might call this problem ‘critical’: the relaxation time scales
with the system size in a way similar to a system subject to critical fluctuations.
The relation between Poisson solvers and free field theory leads us to apply clever
methods for solving Poisson’s equation to the problem of generating configurations
with a probability density exp(−S[φ]). In Appendix A, successive over-relaxation
(SOR), the use of fast Fourier transforms (FFT), and the multigrid method are
mentioned, and we shall see that all of these methods have their counterpart in
Monte Carlo.

Successive over-relaxation is a method for increasing the efficiency of the Gauss–
Seidel method. The idea behind this method is that if we update the sites in
lexicographic order, half of the neighbours of the site being updated have already
been updated and the other half are still to be treated. In SOR, a compensation is
built in for the fact that half of the neighbouring sites have not yet been updated.
Site n is being updated according to

φnew
n = φold

n + ω(φ̄n − φold
n). (15.57)

It can be shown that the optimal value for ω is close to 2: in that case the relaxation
time, which scales as L2 (measured in lattice sweeps) in the Gauss–Seidel method is
reduced to L (see Appendix A7.2 and Ref. [10]). Adler has shown that the relaxation
time for a Monte Carlo algorithm where a Gaussian random number is added to
φnew [11]:

φnew
n → φnew

n +√ω(2 − ω)r/
√

2d + m2, (15.58)

482 Computational methods for lattice field theories

is equal to that of the corresponding Poisson solver algorithm, that is, the relaxation
time will now scale as L. We should obviously check that the SOR method still
satisfies detailed balance. This is left as an exercise (Problem 15.5).

The SOR method works well for models with quadratic interactions. Including
a φ4 term renders the method less suitable (see however Ref. [12]). Fortunately,
the physically more interesting gauge theories which will be discussed later in this
chapter are quadratic. A problem with this method is that the optimal value of the
over-relaxation parameter ω, which is 2 in the case of the scalar free field theory,
is not known in general and has to be determined empirically.

We have encountered the most straightforward methods for simulating the scalar
field theory. Most of these methods can easily be generalised to more complicated
field theories. Before discussing different methods, we shall analyse the behaviour
of the methods presented so far.

15.4.2 The MC algorithms: implementation and results

The implementation of the algorithms presented in the previous sections is straight-
forward. The reader is encouraged to try coding a few and to check the results given
below.

To obtain the renormalised mass and coupling constant, Eqs. (15.53) and (15.54)
can be used. However, it is nice to measure the full two-point correlation function.
This can be found by sampling this function for pairs of points which lie in the
same column or in the same row. To obtain better statistics, nonhorizontal and
nonvertical pairs can be taken into account as well. To this end we construct a
histogram, corresponding to equidistant intervals of the pair separation. We keep
two arrays in the program, one for the value of the correlation function, and the
other for the average distance r corresponding to each histogram column. At regular
time intervals we perform a loop over all pairs of lattice sites. For each pair we
calculate the closest distance within the periodic boundary conditions according to
the minimum image convention. Suppose this distance is rij. We calculate to which
column this value corresponds, and add the product of the field values at the two
sites φiφj to the correlation function array. Furthermore we add rij to the average
distance array. After completing the loop over the pairs, we divide the values in the
correlation function array and in the average distance array by the number of pairs
that contributed to these values. The final histogram must contain the time averages
of the correlation function values thus evaluated, and this should be written to a file.

We can now check whether the scalarφ4 theory is renormalisable. This means that
if we discretise the continuum field theory using finer and finer grids, the resulting
physics should remain unchanged. Equation (15.43) tells us how we should change
the various parameters of the theory when changing the grid constant. We now

15.4 Algorithms for lattice field theories 483

g(
r)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

8 × 8
12 × 12
16 × 16
24 × 24

r

Figure 15.1. The correlation function of the interacting scalar field theory for
various lattice sizes. The mass and coupling parameters for the different lattice
sizes have been scaled such as to keep the physical lattice size constant. The x-axis
has been scaled accordingly. The values have been determined using the histogram
method described in the text.

present results for a field theory which on an 8 × 8 lattice is fixed by the parameter
values m = 0.2 and g = 0.04. Note that both m and g should be close to the
critical line (which passes through m = 0, g = 0) to obtain long correlation lengths
justifying the discretisation. According to (15.43) we use m = 0.1 and g = 0.01
on a 16 × 16 lattice, etc. The results are obtained using a heat-bath algorithm using
30 000 steps (8 × 8) to 100 000 steps (24 × 24). Figure 15.1 shows the correlation
functions for various lattice sizes, obtained using the heat-bath algorithm. The
horizontal axis is scaled proportional to the lattice constant (which is obviously
twice as large for an 8×8 lattice as for a 16×16 lattice). The vertical axis is scaled
for each lattice size in order to obtain the best collapse of the various curves. It is
seen that for length scales beyond the lattice constant, scaling is satisfied very well.
Only on very small length scales do differences show up, as is to be expected.

The correlation functions obtained from the simulations can be compared with
the analytic form, which can be obtained by Fourier transforming

Gk,−k = Z

4
∑
µ sin(kµ/2)+ m2

R

(15.59)

(see Section 15.3 and Eq. (15.53)). The parameter mR that gives the best match to
the correlation function obtained in the simulation (with an optimal value of the

484 Computational methods for lattice field theories

Table 15.1. Values of the renormalised mass.

L m g mR
a mR

b

8 0.2 0.04 0.374(5) 0.363(4)
12 0.1333 0.01778 0.265(5) 0.265(7)
16 0.1 0.01 0.205(7) 0.204(8)
24 0.06667 0.004444 0.138(4) 0.138(4)

a Values obtained from matching the measured cor-
relation function to the analytic form (15.59), for
different grid sizes.
b Values obtained from matching to formula (15.53).

parameter Z) is then the renormalised mass. For each of the correlation functions
represented in Figure 15.1, parameters Z and mR can be found such that the analytic
form lies within the (rather small) error bars of the curves obtained from the simu-
lation. In Table 15.1, the values of the renormalised mass as determined using this
procedure are compared with those obtained using (15.53). Excellent agreement
is found. It is seen that for the larger lattices, the renormalised mass is more or
less inversely proportional to the linear lattice size. The physical mass, however,
should be independent of the lattice size. This is because masses are expressed in
units of the inverse lattice constant, and the lattice constant is obviously inversely
proportional to the linear lattice size L if the lattice represents the same physical
volume for different sizes.

The determination of the renormalised coupling constant is difficult. We use
Eq. (15.54), but this is subject to large statistical errors. The reason is that the result
is the difference of two nearly equal quantities, and this difference is subject to the
(absolute) error of these two quantities – hence the relative error of the difference
becomes very large. The renormalised coupling constant should not depend on
the lattice size for large sizes, as it is dimensionless. Table 15.2 shows the results.
The errors are large and it is difficult to check whether the renormalised coup-
ling constant remains the same, although the data are compatible with a coupling
constant settling at a size-independent value of g ≈ 0.11 for large lattices.

15.4.3 Molecular dynamics

How can we use molecular dynamics for a field theory formulated on a lattice, which
has no intrinsic dynamics?6 The point is that we assign a fictitious momentum degree

6 The dynamics are here defined in terms of the evolution of the field configuration and not in terms of the
time axis of the lattice.

15.4 Algorithms for lattice field theories 485

Table 15.2. Values of the renormalised
mass and coupling constant.

L m g mR mR

8 0.05 0.1 0.456(3) 0.20(4)
12 0.03333 0.04444 0.332(3) 0.18(7)
16 0.025 0.025 0.260(3) 0.13(5)
24 0.016667 0.01111 0.184(2) 0.12(6)
32 0.0125 0.00625 0.1466(7) 0.10(4)

Values obtained from (15.53) and (15.54), for dif-
ferent lattice sizes. Various methods (see later
sections) are used.

of freedom to the field at each site (the Car–Parrinello method is based on a similar
trick; see Chapter 9). As we have seen in Chapters 7 and 8, for a dynamical system
the probability distribution of the coordinate part can be obtained by integrating
out the momentum degrees of freedom, and this should be the desired distribution
e−S[φ]. Therefore, we simply add a kinetic energy to the action in order to obtain a
classical Hamiltonian (which should not be confused with the field theory’s quantum
Hamiltonian):

Hclass =
∑

n

p2
n

2
+ S[φ]. (15.60)

Integrating out the momentum degrees of freedom of the classical partition function,
we obtain the Boltzmann factor of the action back again (up to a constant):∫

[Dpn] e−Hclass[pn,φn] = Const · e−S[φ]. (15.61)

The Andersen method

The classical Hamiltonian gives rise to classical equations of motion which can be
solved numerically. These equations yield trajectories with constant energy (up to
numerical errors). But we want trajectories representing the canonical ensemble,
and in Chapter 8 we studied various methods for obtaining these. In the Andersen
refreshed molecular dynamics method, the momenta are refreshed every now and
then by replacing them with a new value drawn from a random generator with a
Maxwell distribution. In field theories, one often replaces all momenta at the same
time with regular intervals between these updates (the method is usually denoted
as the hybrid method). That is, first the equations of motion are solved for a number
of time steps, and then all momenta are replaced by new values from the Maxwell
random generator. Then the equations of motion are solved again for a number of

486 Computational methods for lattice field theories

steps and so on [13–16]. The exact dynamical trajectory plus the momentum update
can be considered as one step in a Markov chain whose invariant distribution is the
canonical one. We do not obtain the exact dynamical trajectory but a numerical
approximation to it, and the errors made can be corrected for in a procedure which
will be discussed in the next section. In Chapter 8 we mentioned that the Andersen
method does indeed lead to the canonical distribution of the coordinate part. We
shall prove this statement now.

First, it is useful to consider ‘symmetric’ Markov steps: these consist of an integ-
ration of the equations of motion over a time �t/2, then a momentum refreshing,
and then again an integration over a time �t/2. Such a step can schematically be
represented as follows:

�i, Pi
�t/2−→ �m, Pm Refresh : �m, Prm

�t/2−→ �f , Pf .

Energy conservation during the microcanonical trajectories implies

H(�i, Pi) = H(�m, Pm); (15.62a)

H(�m, Prm) = H(�f , Pf). (15.62b)

The steps occur with a probability

T(�i, Pi → �f , Pf) = δ(�f −�microcanonical) exp(−P2
rm/2), (15.63)

where the delta-function indicates that �f is uniquely determined by the microca-
nonical trajectory, which depends of course on the initial configuration �i, Pi, on
the refreshed momentum Prm, and on the integration time (which is fixed).

The trial steps are ergodic, and the master equation of the Markov chain∑
�′,P′

ρ(�, P)T(�, P → �′, P′) =
∑
�′,P′

ρ(�′, P′)T(�′, P′ → �, P) (15.64)

will have an invariant solution. However, the detailed balance condition for this
chain is slightly modified. The reason is that we need to use the time-reversibility
of the microcanonical trajectories, but this reversibility can only be used when we
reverse the momenta. Therefore we have

ρ(�′, P′)
ρ(�, P)

= T(�, P → �′, P′)
T(�′, −P′ → �, −P)

(15.65)

(note that ρ(�, P) = exp[−P2/2 − S(�)] is symmetric with respect to P ↔ −P).
The transition probability in the denominator of the right hand side corresponds
to the step in the numerator traversed backward in time (see the above diagram
of a symmetric trial step). The fraction on the right hand side is clearly equal to
exp[(P2

mr −P2
m)/2]. Using Eq. (15.62), it then follows that the invariant distribution

is given as ρ(�, P) = exp[−P2/2 − S(�)].

15.4 Algorithms for lattice field theories 487

The procedure can be implemented straightforwardly. The equations of motion
in the leap-frog form read

pn(t + h/2) = pn(t − h/2)+ hFn(t); (15.66a)

φn(t + h) = φn(t)+ hpn(t + h/2), (15.66b)

where the force Fn(t) is given by

Fn(t) =
∑
µ

[φn+µ(t)] − (2d + m2)φn(t)− 2gφ3
n(t), (15.67)

where
∑
µ denotes a sum over all neighbours. Refreshing the momenta should be

carried out with some care. We refresh the momenta at the time steps t for which
the field values φn are evaluated in the leap-frog algorithm. However, we need the
momenta in the leap-frog algorithm at times precisely halfway between these times.
Therefore, after the momentum update, we must propagate the momenta over half
a time step h:

pn(t + h/2) = pn(t)+ hFn(t)/2, (15.68)

and then the integration can proceed again.
This method contains a tunable parameter: the refresh rate. It turns out that the

efficiency has a broad optimum as a function of the refresh rate [16]. Having around
50 steps between the all-momenta updates with a time step h = 0.1 is quite efficient.
If we refresh after every time step, the system will essentially carry out a random
walk in phase space as the small steps made between two refreshings are nearly
linear, and the direction taken after each refreshment step is approximately random.
If we let the system follow its microcanonical trajectory for a longer time, it will
first go to a state which is relatively uncorrelated with respect to the previous one.
The momentum refreshings then ensure that the canonical distribution is satisfied;
however, the fact that the energy is not conserved, but may change by an amount (on
average) of O(h2) during the MD trajectory, causes deviations from the canonical
distribution of the same order of magnitude.

This method is obviously more efficient than refreshing after each step, as the
distance covered by a random walker increases only as the square root of the num-
ber of steps made. If we wait too long between two refreshings, the simulation
samples only a few different energy surfaces which is not representative for the
canonical ensemble. The optimum refresh rate is therefore approximately equal to
the correlation time of the microcanonical system.

The Metropolis-improved MD method

The leap-frog algorithm introduces systematic errors into the numerical simulation,
and the distribution will therefore not sample to the exact one. That is not necessarily
a bad thing: we can always write the distribution which is sampled by the MD

488 Computational methods for lattice field theories

trajectory as exp(−SD[φ]), where the action SD differs by some power of h from
the continuum action [17]:

SD[φ] = S[φ] + O(hk) (15.69)

for some positive k. The discrete action may renormalise to a continuum limit
with slightly different parameters, but as the behaviour of the model is calibrated
in the end by matching calculated physical quantities to the experimental values,
our model with discrete time step might still describe the correct continuum limit.
Indeed, Batrouni et al. [17] show that the discrete time action in the Langevin limit
(i.e. the case in which the momenta are refreshed at every time step, see below) is
a viable one at least to first order in h. A problem is that the difference between the
discrete and the continuum actions makes it difficult to compare the results of the
MD simulation with an MC simulation of the same system with the same values of
the parameters.

The discretisation error can be corrected for in exactly the same way as in the
variational and diffusion quantum Monte Carlo method (see, for example, the dis-
cussion near the end of Section 12.2.5). The idea is to consider the leap-frog MD
trajectories as a trial step in a Monte Carlo simulation. The energy before and
after this trial step is calculated, and the trial step is accepted with probability
exp(−Hnew

class + Hold
class) (note that Hclass is a classical ‘energy’ which includes kin-

etic and potential energy). If it is rejected, the momenta are refreshed once more and
the MD sequence starts again. This method combines the Andersen refreshment
steps with microcanonical trajectory acceptance/rejection steps. In the previous
subsection we saw that the refreshment step satisfies a modified detailed balance
condition which ensures the correct (canonical) distribution. Now we show that
the microcanonical trajectories plus the acceptance/rejection step, satisfy a similar
detailed balance with a canonical invariant distribution.

We write the transition probability in the form of a trial step probabilityω�,P;�′,P′
and a Metropolis acceptance/rejection probability A�,P;�′,P′ . The trial step probabil-
ity is determined by the numerical leap-frog trajectory and hence is nonzero only for
initial and final values compatible with the leap-frog trajectory. Time-reversibility
of the leap-frog algorithm implies that

ω�,P;�′,P′ = ω�′,−P′;�,−P. (15.70)

The acceptance probability is given as usual by

A�,P;�′,P′ = min{1, exp[Hclass(�, P)− Hclass(�
′, P′)]}. (15.71)

The acceptance step is invariant under P ↔ −P as the momenta occur only with
an even power in the Hamiltonian.

15.4 Algorithms for lattice field theories 489

From this, it follows immediately that the modified detailed balance condition
holds:

ρ(�′, P′)
ρ(�, P)

= ω�,P;�′,P′A�,P;�′,P′

ω�′,−P′;�,−PA�′,P′;�,P
= exp[Hclass(�, P)− Hclass(�

′, P′)].
(15.72)

We see that without momentum refreshings, the canonical distribution is a sta-
tionary distribution of the Markov process. However, for small time steps in the
leap-frog algorithm, the changes in the classical Hamiltonian are very small, and
convergence will be extremely slow. That is the reason why these steps are com-
bined with momentum refreshings, which are compatible with a canonical invariant
distribution too, but which cause more drastic changes in the energy. This method
is usually called the hybrid Monte Carlo method [18].

The important advantage of this Metropolis-improved MD method is that the time
step of the leap-frog algorithm can be stretched considerably before the acceptance
rate of the Metropolis step drops too low. This causes the correlation time for
the ‘microcanonical’ part, measured in time steps, to be reduced considerably. We
have put the quotes around ‘microcanonical’ because the energy is not conserved
very well with a large time step. If the time step is taken too large, the Verlet method
becomes unstable (see Appendix A7.1). In practice one often chooses the time step
such that the acceptance rate becomes about 80%, which is on the safe side, but
still not too far from this instability limit.

It should be noted that the acceptance rate depends on the difference in the total
energy of the system before and after the trial step. The total energy is an extensive
quantity: it scales linearly with the volume. This implies that discrete time step errors
will increase with volume. To see how strong this increase is [19], we note that the
error in coordinates and momenta after many steps in the leap-frog/Verlet algorithm
is of order h2 per degree of freedom (see Problem A3). This is then the deviation
in the energy over the microcanonical trajectory, and we shall denote this deviation
�HMD. The energy differences obtained including the acceptance/rejection step are
called �HMC; that is, if the trajectory is accepted, �HMC is equal to �HMD, but
if the step is rejected, �HMC = 0. If �HMD averaged over all possible initial
configurations was to vanish, the acceptance rate would always be larger than
0.5, as we would have as many positive as negative energy differences (assuming
that the positive differences are on average not much smaller or larger than the
negative ones), and all steps with negative and some of the steps with positive energy
difference would be accepted. However, the net effect of the acceptance/rejection
step is to lower the energy, and since the energies measured with this step included
remain on average stationary, 〈�HMD〉 must be positive. The fact that the energy
remains stationary implies that 〈�HMC〉 = 0 and this leads to an equation for

490 Computational methods for lattice field theories

〈�HMD〉:
〈�HMC〉 = 0 =

∑
{�,P} Pacc(�HMD)�HMD∑

{�,P}
. (15.73)

Using Pacc = min[1, exp(−�HMD)], and expanding the exponent, we find

0 = 〈�HMD〉 − 〈θ(�HMD)(�HMD)
2〉 (15.74)

where the theta-function restricts �HMD to be positive: θ(x) = 0 for x < 0 and 1
for x > 0. We see that 〈�HMD〉 is indeed positive and we furthermore conclude
that 〈�HMD〉 = O(h4V) for of the order of V degrees of freedom. For the average
acceptance value we then find

〈Pacc〉 = 〈min(1, e−�HMD)〉 ≈ e−〈�HMD〉 = e−αh4V (15.75)

where α is of order one. Therefore, in order to keep the acceptance rate constant
when increasing the volume, we must decrease h according to V−1/4, which implies
a very favourable scaling.

The Langevin method

Refreshing the momenta after every MD step leads to a Langevin-type algorithm.
Langevin algorithms have been discussed in Sections 8.8 and 12.2.4. In Section 8.8
we applied a Gaussian random force at each time step. In the present case we assign
Gaussian random values to the momenta at each time step as in Section 12.2.4. In
that case the two steps of the leap-frog algorithm can be merged into one, leading
to the algorithm:

φn(t + h) = φn(t)+ h2

2
Fn(t)+ hRn(t). (15.76)

The random numbers Rn are drawn from a Gaussian distribution with a width of
1 – it is a Gaussian momentum, not a force (hence the pre-factor h instead of h2).
Comparing the present approach with the Fokker–Planck equation discussed in
Section 12.2.4, we see that when we take ρ of the Fokker–Planck equation (12.42)
equal to exp(−S[φ]), Eq. (12.46) reduces to (15.76) if we put �t = h2. This
then shows immediately that the Langevin algorithm guarantees sampling of the
configurations weighted according to the Boltzmann distribution.

An advantage of this algorithm is the memory saving resulting from the momenta
not being required in this algorithm but, as explained in the previous section, the
method is not very efficient because the system performs a random walk through
phase space. The reason we treat this method as a separate one here is that there
exists an improved version of it which is quite efficient [17]. We shall discuss this
algorithm in Section 15.5.5.

15.5 Reducing critical slowing down 491

Implementation

All the MD algorithms described can be implemented without difficulty. The details
of the leap-frog and Langevin algorithm can be found in Chapter 8. Moreover,
calculation of the correlation function is described in Section 15.4.2. The programs
can all be tested using the results presented in that section.

15.5 Reducing critical slowing down

As we have already seen in Section 7.3.2, systems close to the critical point suffer
from critical slowing down: the correlation time τ diverges as a power of the cor-
relation length. This renders the calculation of the critical properties very difficult,
which is unfortunate as these properties are usually of great interest: we have seen
in this chapter that lattice field theories must be close to a critical point in order
to give a good description of the continuum theory. In statistical mechanics, crit-
ical properties are very often studied to identify the critical exponents for various
universality classes.

For most systems and methods, the critical exponent z, defined by

τ = ξ z, (15.77)

is close to 2. For Gaussian models, the value z = 2 of the critical exponent is related
to the convergence time of the simple Poisson solvers, which can indeed be shown
to be equal to 2 (see Appendix A7.2). The value of 2 is related to the fact that the
vast majority of algorithms used for simulating field theories are local, in the sense
that only a small number of degrees of freedom (mostly one) is changed at a step.
For systems characterised by domain walls (e.g. the Ising model), the exponent 2
can be guessed by a crude heuristic argument. The major changes in the system
configuration take place at the domain walls, as it takes less energy to move a wall
than to create new domains. In one sweep, the sites neighbouring a domain wall
have on average been selected once. The domain wall will therefore move over a
distance 1. But its motion has a random walk nature. To change the configuration
substantially, the domain wall must move over a distance ξ , and for a random walk
this will take of the order of ξ2 steps.

Over the past ten years or so, several methods have been developed for reducing
the correlation time exponent z. Some of these methods are tailored for specific
classes of models, such as the Ising and other discrete spin models. All methods are
variations of either the Metropolis method, or of one of the MD methods discussed
in the previous section. In this section we shall analyse the different methods in
some detail. Some methods are more relevant to statistical mechanics, such as
those which are suitable exclusively for Potts models, of which the Ising model

492 Computational methods for lattice field theories

is a special case, but we treat them in this chapter because the ideas behind the
methods developed for field theories and statistical mechanics are very similar.

As the local character of the standard algorithms seems to be responsible for
the critical slowing down present in the standard methods, the idea common to the
methods to be discussed is to update the stochastic variables globally, that is, all in
one step. How this is done can vary strongly from one method to the other, but the
underlying principle is the same for all of them.

15.5.1 The Swendsen–Wang method

We start with the cluster method of Swendsen and Wang (SW) [20], and explain
their method for the Ising model in d dimensions, discussed already in Section 7.2
and 10.3.1. The SW method is a Monte Carlo method in which the links, rather
than the sites, of the Ising lattice are scanned in lexicographic order. For each link
there are two possibilities:

1. The two spins connected by this link are opposite. In that case the interaction
between these spins is deleted.

2. The two spins connected by the link are equal. In that case we either delete the
bond or ‘freeze’ it, which means that the interaction is made infinitely strong.
Deletion occurs with probability pd = e−2βJ and freezing with probability
pf = 1 − pd.

This process continues until we have visited every link. In the end we are left with
a model in which all bonds are either deleted or ‘frozen’, that is, their interaction
strength is either 0 or ∞. This means that the lattice is split up in a set of disjoint
clusters and within each cluster the spins are all equal. This model is simulated
trivially by assigning at random a new spin value + or − to each cluster. Then the
original Ising bonds are restored and the process starts again, and so on.

Of course we must show that the method does indeed satisfy the detailed balance
condition. Before doing so, we note that the method does indeed lead to a reduction
of the dynamic critical exponent z of the two-dimensional Ising model to the value
0.35 presented by Swendsen and Wang,7 which is obviously an important improve-
ment with respect to the value z = 2.125 for the standard MC algorithm. The reason
the method works is that flipping blocks involves flipping many spins in one step.
In fact, the Ising (or more generally, the Potts model) can be mapped on a cluster
model, where the distribution of clusters is the same as for the SW clusters [22].
The average linear cluster size is proportional to the correlation length, and this will
diverge at the phase transition. Therefore, the closer we are to the critical point, the
larger the clusters are and the efficiency will increase accordingly.

7 From a careful analysis, Wolff has found exponents z = 0.2 and z = 0.27 for the 2D Ising model,
depending on the physical quantity considered [21].

15.5 Reducing critical slowing down 493

In the SW method, any configuration can be reached from any other configuration,
because there is a finite probability that the lattice is partitioned into Ld single-
spin clusters which are then given values + and − at random. Furthermore it is
clear that the method does not generate periodicities in time and it remains to be
shown that the SW method satisfies detailed balance. We do this by induction. We
show that the freezing/deleting process for some arbitrary bond does not destroy
detailed balance, so carrying out this process for every bond in succession does not
do so either.

Every time we delete or freeze a particular bond ij we change the Hamiltonian
of the system:

H → H0 + Vij. (15.78)

H is the Hamiltonian in which the bond is purely Ising-like. H0 is the Hamiltonian
without the interaction of the bond ij, and Vij represents an interaction between the
spins at i and j which is either ∞ (in the case of freezing) or 0 (if the bond has
been deleted); the remaining bonds do not change. We write the detailed balance
condition for two arbitrary configurations S and S′ for the system with Hamiltonian
H as follows:

T(S → S′)
T(S′ → S)

= e−β[H(S′)−H(S)] = T0(S → S′)
T0(S′ → S)

e−βJ(s′
is

′
j−sisj), (15.79)

where T0 is the transition probability for the Hamiltonian H0 and we have explicitly
split off the contribution from the bond ij. In the last equality we have used the
detailed balance condition for the system with Hamiltonian H0.

In the SW algorithm, we must decide for a bond ij whether we delete or freeze
this bond. The transition probability of the system after this step can be written as

T(S → S′) = Tf (S → S′)Pf(S)+ Td(S → S′)Pd(S). (15.80)

Here, Pd,f(S) is the probability that we delete (d) or freeze (f) the bond ij in spin
configuration S. Td(S → S′) is the transition probability with a deleted bond, and
therefore Td = T0, and Tf is the transition probability when the bond is frozen. The
latter is equal to T0 in the case that the spins si, sj are equal in both S and S′ and it
is zero in the case that they are unequal in S′ (they must be equal in S, otherwise
they could not have been frozen).

Let us consider the detailed balance condition for the transition probability in
(15.80):

T(S → S′)
T(S′ → S)

= Tf(S → S′)Pf(S)+ Td(S → S′)Pd(S)

Tf (S′ → S)Pf (S′)+ Td(S′ → S)Pd(S′)
= e−β[H(S′)−H(S)].

(15.81)
We show that this condition is indeed satisfied, using (15.79). Let us assume that
si and sj are equal in both S and S′. In that case Pf (S) = 1 − exp(−2βJ) and

494 Computational methods for lattice field theories

Pd(S) = exp(−2βJ) respectively and we have

T(S → S′)
T(S′ → S)

= Tf (S → S′)[1 − exp(−2βJ)] + T0(S → S′) exp(−2βJ)

Tf (S′ → S)[1 − exp(−2βJ)] + T0(S′ → S) exp(−2βJ)
.

(15.82)

Since the pair sisj is equal in both S and S′, the transition probability Tf = T0 and
we see that (15.79) does hold for the transition probability after the SW step.

If before and after the step the spins si and sj are unequal, Tf vanishes in both
numerator and denominator, and it is clear that (15.79) holds in this case too.
Suppose si = sj in S and that the corresponding pair s′

i, s′
j in S′ is unequal. In that

case we have

T(S → S′)
T(S′ → S)

= Tf (S → S′)[1 − exp(−2βJ)] + T0(S → S′) exp(−2βJ)

T0(S′ → S)
.

(15.83)

The denominator in the right hand side contains only the term with a deleted bond
because starting from the configuration S′ in which s′

i and s′
j are unequal, we can only

delete the bond. The transition probability Tf(S → S′) occurring in the numerator
obviously vanishes, and we see that for this case detailed balance, Eq. (15.79), is
again satisfied.

It is instructive to code the SW method. First a sweep through the lattice is per-
formed in which all the bonds are either frozen or deleted. This poses no difficulties.
Then the clusters must be identified. This can be done using ‘back-tracking’ and is
most conveniently coded recursively. It works as follows. A routine BackTrack(x, y)
is written, which scans the cluster containing the site given by the Cartesian (integer)
components (x, y). Start at site (x, y) and check whether this site has already been
visited. If this is not the case, leave a flag there as a mark that the cluster site has
now been visted, and scan the neighbouring sites in a similar way by recursive calls.
The resulting routine looks more or less as follows (for d = 2):

ROUTINE BackTrack(x, y)
IF NOT Visited (x,y) THEN

Mark (x, y) as being visited;
IF (Frozen(x, y, x + 1, y)) THEN

BackTrack(x + 1, y);
IF (Frozen(x, y, x, y + 1)) THEN

BackTrack(x, y + 1);
IF (Frozen(x, y, x − 1, y)) THEN

BackTrack(x − 1, y);

15.5 Reducing critical slowing down 495

IF (Frozen(x, y, x, y − 1)) THEN
BackTrack(x, y − 1);

END IF
END BackTrack.

Frozen(x1, y1, x2, y2) is a Boolean function which returns TRUE if the nearest
neighbour bond between (x1, y1) and (x2, y2) is frozen and FALSE otherwise.
Periodic boundaries should be implemented using a modulo operator or function,
and it is convenient to decide before scanning the cluster whether it is going to be
flipped and, if yes, to do so during the recursive scanning (alongside putting the
Visited flag). On exit, the cluster is scanned and all its sites marked as visited. In a
sweep through all values i and j, all clusters will be found in this way; note that the
computer time needed to scan a cluster in the back-track algorithm scales linearly
with the cluster volume (area).

Another algorithm for detecting all the clusters in the system is that of Hoshen
and Kopelman. This algorithm does not use recursion. It scales linearly with the
lattice size and it is more efficient than back-tracking (30–50%) but it is somewhat
more difficult to code. Details can be found in the literature [23].

The time scaling exponent z can be determined from the simulations. Note that
the time correlation of the magnetisation is useless for this purpose as the clusters
are set to arbitrary spin values after each sweep, so that the magnetisation correlation
time is always of order 1. Therefore, we consider the time correlation function of
the (unsubtracted) susceptibility per site. This is defined as

χ = 1

L2d

〈(∑
i

si

)2〉
. (15.84)

Its time correlation function is

Cχ(k) =
∑N

n=1 χn+kχn∑N
n=1 χ

2
n

(15.85)

where the indices n and k are ‘time’ indices, measured in MC steps per spin.
The susceptibility can be determined directly from the lattice configuration after

each step using (15.84), but it is possible to obtain a better estimate by realising
that when the system is divided up into clusters c of area Nc, the average value of
χ is given by

χ = 1

L2d

〈(∑
c

Ncsc

)2〉
(15.86)

496 Computational methods for lattice field theories

where sc is the spin value of cluster c. We can write this as

χ = 1

L2d

〈∑
c

Ncsc

∑
c′

Nc′sc′

〉
, (15.87)

and by summing over sc = ±1 for all the clusters we obtain the average of this value
for all possible cluster-spin configurations. Then only the terms c = c′ survive and
we are left with

χ = 1

L2d

〈∑
c

N2
c

〉
. (15.88)

This is the so-called ‘improved estimator’ for the unsubtracted susceptibility
[24, 25]. This estimator gives better results because the average over all possible
cluster-spin configurations is built into it.

The correlation time can be determined from the values of χ at the subsequent
MC steps in the usual way (see Section 7.4). For a detailed analysis of the dynamic
exponent for various cases, see Ref. [21].

programming exercise

Code the SW algorithm for the two-dimensional Ising model. Determine the
time relaxation exponent and compare this with the value found for the single-
spin flip algorithm.

Wolff has carried out the cluster algorithm in the microcanonical ensemble [24],
using a microcanical MC method proposed by Creutz [26]. He fixed the num-
ber of unequal bonds to half the number of total bonds and found considerable
improvement in the efficiency.

15.5.2 Wolff’s single cluster algorithm

Wolff has proposed a different cluster method for eliminating critical slowing down
for Potts spin systems, and an extension of this method and the SW method to a
special class of continuous spin models [27]. We start with Wolff’s modification of
the SW method for the Ising model. In Wolff’s method, at each step a single cluster
is generated, as opposed to the SW model in which the entire lattice is partitioned
into clusters. The single cluster is constructed according to the same rules as the
SW clusters. We start with a randomly chosen spin and consider its neighbours.
Only equal neighbours can be linked to the cluster by freezing the bonds between
them – this happens with probability 1 − e−2βJ . The cluster is extended in this way
until no more spins are added to it. Then all the spins in the cluster are flipped.

15.5 Reducing critical slowing down 497

It will be clear that the cluster generated in this way is a SW cluster and therefore
the method satisfies detailed balance. The difference between the two methods is
that the selection of the cluster to be grown can be viewed as throwing a dart at
the lattice [21] with equal probability of hitting any of the sites – the probability of
hitting a SW cluster (SWC) of size NSWC is NSWC/Ld (for d dimensions), thereby
favouring the growth of large clusters. Because of this preference for large clusters
it is expected that the single cluster version changes the configuration on average
more drastically in the same amount of time and that statistically independent
configurations are generated in fewer steps. This turns out to be the case in the 3D
Ising model, where the single cluster algorithm yields time correlation exponents
0.28 or 0.14 (depending on the correlation function studied) as opposed to 0.5 for
the SW algorithm. For the 2D Ising model only a small increase in efficiency has
been measured [21].

It is convenient to generate the clusters in a recursive way. Each MC step consists
of selecting a random site (Location) on the lattice. ClusterSpin is minus the spin
at this location (the spins are flipped when added to the cluster). The algorithm is
then as follows:

ROUTINE GrowCluster(Location, ClusterSpin):
Flip Spin at Location;
Mark Spin as being added to Cluster;
IF right-hand neighbour not yet added THEN

TryAdd(RightNeighbour, ClusterSpin);
...Similar for other neighbours...

END GrowCluster.

ROUTINE TryAdd (Location, ClusterSpin):
Determine Spin at Location;
IF Spin opposite to ClusterSpin THEN

IF Random number < 1 − e−2J THEN
GrowCluster(Location, ClusterSpin);

END IF;
END IF;

END TryAdd.

Measuring correlation times requires some care, as a step in the Wolff algorithm
consists of flipping one cluster instead of (on average) half of the total number of
spins in the lattice as in the SW algorithm. The correlation time τ̄W expressed in
numbers of single cluster flips must therefore be translated into the single cluster

498 Computational methods for lattice field theories

correlation time τW expressed in SW time steps:

τW = τ̄W
〈N1C〉

Ld
. (15.89)

The average single cluster size 〈N1C〉occurring on the right hand side is the improved
estimator for the (unsubtracted) susceptibility per site:

〈N1C〉 =
〈

NSWC

Ld
NSWC

〉
= χ . (15.90)

This formula can be understood by realising that the probability of generating a
SW cluster of size NSWC in the single cluster algorithm is equal to NSWC/Ld . To
evaluate the average cluster size we must multiply this probability with NSWC and
take the expectation value of the result.

programming exercise

Implement Wolff’s single cluster algorithm and compare the results with the
SW algorithm – see also Ref. [21].

In many statistical spin systems and lattice field theories, the spins are not dis-
crete but they assume continuous values. Wolff’s algorithm was formulated for a
particular class of such models, the O(N) models. These models consist of spins,
which are N-dimensional unit vectors, on a lattice. Neighbouring spins si, sj inter-
act – the interaction is proportional to the scalar product si ·sj. An example which is
relevant to many experimental systems (superfluid and superconducting materials,
arrays of coupled Josephson junctions …) is the O(2) or XY model, in which the
spins are unit vectors si lying in a plane, so that they can be characterised by their
angle θi with the x-axis, 0 ≤ θi < 2π .

For simulations, it is important that relevant excitations in O(N) models are
smooth variations of the spin orientation over the lattice (except near isolated
points – see below). This implies that changing the value of a single angle θi

somewhere in the lattice by an amount of order 1 is likely to lead to an improbable
configuration; hence the acceptance rate for such a trial change is on average very
small. The only way of achieving reasonable acceptance rates for changing a single
spin is by considerably restricting the variation in the orientation of the spin allowed
in a trial step. This, however, will reduce the efficiency because many MC steps
are then needed to arrive at statistically independent configurations. A straightfor-
ward generalisation of the SW or single cluster algorithm in which all spins in
some cluster are reversed is bound to fail for the same reason, as this destroys the
smoothness of the variation of the spins at the cluster boundary.

Wolff has proposed a method in which the spins in a cluster are modified to
an extent depending on their orientation [27]. It turns out that his method can be

15.5 Reducing critical slowing down 499

uu

s

s'

s

s'

Figure 15.2. Spin flips in the Wolff algorithm for the O(3) model.

formulated as an embedding of an Ising model into an O(N) model [28]. First a
random unit vector u is chosen. Every spin si is then split into two components: the
component along u and that perpendicular to u:

s‖
i = (si · u)u (15.91a)

s⊥
i = si − s‖

i . (15.91b)

We keep s⊥
i and |s‖

i | fixed. The only freedom left for the O(N) spins is to flip their
parallel component:

si = s⊥
i + εi|s‖

i |u, εi = ±1. (15.92)

A flip in the sign εi corresponds to a reflection with respect to the hyperplane
perpendicular to u (see Figure 15.2). The interaction of the model with the restriction
on the fluctuations that only flips of the parallel components are allowed, can now
be described entirely in terms of the εi:

H[εi] =
∑
〈ij〉

Jijεiεj (15.93a)

Jij = J|s‖
i | |s‖

j |. (15.93b)

This Ising Hamiltonian is now simulated using the single cluster or the SW
algorithm. After choosing the unit vector u, we calculate the εi for the actual ori-
entations of the spins and then we allow for reflections of the si (that is, for spin
flips in the εi system).

This method is more efficient than the standard single spin-update method
because large clusters of spins are flipped at the same time. But why is the accept-
ance rate for such a cluster update not exceedingly small? The point is that the
amount by which a spin changes, depends on its orientation (see Figure 15.2): for
a spin more or less perpendicular to u, the change in orientation is small. This
translates itself into the coupling Jij being small for spins si, sj nearly perpendicular
to u. For spins parallel to u, the coupling constant Jij is large and these spins will
almost certainly be frozen to the same cluster. The cluster boundaries will be the

500 Computational methods for lattice field theories

curves (in two dimensions, and (hyper)surfaces in higher dimensions) on which
the spins si are more or less perpendicular to u. In other words, if we provide a
direction u, the algorithm will find an appropriate cluster boundary such that the
spin reflection does not require a vast amount of energy. Therefore, the acceptance
rate is still appreciable.

The procedure is ergodic as every unit vector u can in principle be chosen and
there is a finite probability that the cluster to be swapped consists of a single spin. The
isolated spin-update method is therefore included in the new algorithm. Detailed
balance is satisfied because the new Ising Hamiltonian (15.93) is exactly equivalent
to the original O(N)Hamiltonian under the restriction that only the reflection steps
described are allowed in the latter.

The implementation of the method for the two-dimensional XY model proceeds
along the same lines as described above for the Ising model. Apart from selecting
a random location from which the cluster will be grown, a unit vector u must be
chosen, simply by specifying its angle with the X-axis. Each spin is flipped when
added to the cluster. If we try to add a new spin si to the cluster (in routine ‘TryAdd’),
we need the spin value of its neighbour sj in the cluster. The freezing probability
Pf is then calculated as

Pf = 1 − exp[−2J(si · u)(sj · u)] (15.94)

(note that the cluster spin si has already been flipped, in contrast to sj). The spin
sj is then added to the cluster with this freezing probability. Instead of considering
continuous angles between 0 and 2π , it is possible to consider an n-state clock
model, which is an XY model with the restriction that the angles allowed for the
spins assume the values 2jπ/n, j = 0, . . . , n − 1 [29]; see also Section 12.6. At
normal accuracies, the discretisation of the angles will not be noticed for n greater
than about 20. The cosines and sines needed in the program will then assume n
different values only and these can be calculated in the beginning of the program
and stored in an array.

programming exercise

Write a Monte Carlo simulation program for the XY model, using Wolff’s
cluster algorithm. If the program works correctly, it should be possible to
detect the occurrence of the so-called Kosterlitz-Thouless phase transition
(note that this occurs only in two dimensions). This is a transition which has
been observed experimentally in helium-4 films [30] and Josephson junction
arrays [31]. We shall briefly describe the behaviour of the XY model.

Apart from excitations which are smooth throughout the lattice – spin-waves –
the XY model exhibits so-called vortex excitations. A pair of vortices is shown in

15.5 Reducing critical slowing down 501

Figure 15.3. A pair of vortices, one with positive and one with negative vorticity.

Figure 15.3. The vortices can be assigned a vorticity which is roughly the ‘winding’
number of the spins along a closed path around the vortex – the vorticity assumes
values 2π , −2π (for higher temperatures 4π etc. can also occur). An isolated vortex
requires an amount of energy which scales logarithmically with the lattice size and
is thus impossible in a large lattice at finite temperature. However, vortex pairs of
opposite vorticity are possible; their energy depends on the distance between the
vortices and is equal to the Coulomb interaction (which is proportional to ln R for
two dimensions) for separations R larger than the lattice constant. The system can
only contain equal numbers of positive and negative vortices. At low temperatures
the vortices occur in bound pairs of opposite vorticity (to be compared with electrical
dipoles), and the spin-waves dominate the behaviour of the model in this phase. It
turns out that the correlations are long-ranged:

〈θi − θj〉 ∝ 1

|ri − rj|xT
, (15.95)

for large separation |ri − rj|, with a critical exponent xT which varies with tem-
perature. At the KT transition, the dipole pairs unbind and beyond the transition
temperature TKT we have a fluid of freely moving vortices (to be compared with a
plasma).

Imagine you have an XY lattice with fixed boundary conditions: the spins have
orientation θ = 0 on the left hand side of the lattice and you have a handle which
enables you to set the fixed value δ of the spin orientation of the rightmost column
of XY -spins. Turning the handle from δ = 0 at low temperatures, you will feel a
resistance as if it is attached to a spring. This is due to a nonvanishing amount of

502 Computational methods for lattice field theories

free energy which is needed to change the orientation of the spins on the right hand
column. This excess free energy scales as

�F ∝ �δ2 (15.96)

for small angles δ. At the KT temperature the force needed to pull the handle
drops to zero, as the vortex system has melted, which is noticeable through the
proportionality constant � dropping to zero.

The quantity � is called the spin-wave stiffness [32] or helicity modulus. It can
be calculated in a system with periodic boundary conditions using the following
formula [32]:

� = J

2L2



〈∑

〈ij〉
cos(θi − θj)

〉
− J

kBT

〈[∑
i

sin(θi − θi+êx)

]2〉

− J

kBT

〈[∑
i

sin(θi − θi+êy)

]2〉
 . (15.97)

From the Kosterlitz-Thouless theory [29,33,34] it follows that the helicity mod-
ulus has a universal value � = 2kBTKT/π at the KT transition. The drop to zero is
smooth for finite lattices but it becomes steeper and steeper with increasing lattice
size. Figure 15.4 shows �/J as a function of kBT/J . The line �/J = 2(kBT/J)/π
is also shown and it is seen that the intersection of the helicity modulus curve with
this line gives the value from which the helicity modulus drops to zero. You can
check your program by reproducing this graph.

Edwards and Sokal have found that for the XY model the dynamic critical
exponent in the low-temperature phase is zero or almost zero [28].

15.5.3 Geometric cluster algorithms

The cluster algorithms described so far flips or rotates spins on a lattice. In fact,
Wolff’s version of the algorithm for the XY model boils down to flipping an Ising
spin. Cluster algorithms strongly rely on a reflection symmetry of the Hamiltonian:
flipping all spins does not affect the Hamiltonian. This is the reason that a simple
distinction can be made for pairs which may be frozen and those which certainly
will not. The same holds for the q-state Potts model: there we have a symmetry
under permutation of all spin values. Another way of looking at this is that flipping
a large cluster in an Ising model with a magnetic field, yields an energy loss or gain
proportional to the volume (surface in two dimensions), which leads to very low
acceptance rates in phases with a majority spin. Hence cluster algorithms will be
less efficient for such systems.

15.5 Reducing critical slowing down 503

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

kBT /J

Γ/
J

L = 8

L = 12

L = 20

L = 30

L = 40

Figure 15.4. The helicity modulus in units of the coupling constant J of the XY
model vs. the inverse coupling constant in units of kBT . The intersection of the
helicity modulus curves with the straight line gives the value from which the
helicity modulus starts dropping to zero.

If we switch on a magnetic field, the spin-flip symmetry is broken and the cluster
algorithm can no longer be used. Another problem is that it is not immediately
clear whether and how cluster ideas may be generalised to systems that are not
formulated on a lattice. A step towards a solution was made by Dress and Krauth
[35], who used geometric symmetries to formulate a cluster algorithm for particles
moving in a continuum. Usually, a reflection of the particles with respect to a point
chosen randomly in the system is used. The interaction between these particles
is considered to be a hard-core interaction, but long(er)-ranged interaction may
also be present. The problem with the algorithm is that the decision to displace
a particle is made based on the hard-core part. Other interactions are included
in the acceptance criterion, and this leads to many rejections. This problem was
solved by Liu and Luijten who take all interactions into account [36]. They start by
identifying a random reflection point and then choose an initial particle at random.
This and other particles having nonnegligible interaction with the first particles are
then candidates to be reflected. This is done one by one, taking all interactions into
account, and each time a reflection of a particle would result in a decrease� of the
energy, the particle is reflected with probability exp(−|�|). If the energy increases,
the particle is not reflected. This algorithm promises to be valuable for the analysis
of dense liquids.

504 Computational methods for lattice field theories

The geometric cluster idea has also been used for spin systems formulated on
a lattice [37]. Again, a reflection site is identified at random. Next, for a ran-
domly chosen site i, the spin is exchanged with that of its reflection partner i′.
Then each neighbour k of i is investigated. If exchanging the spins at k and k′
results in an energy gain � (that is, the total energy decreases), the move is
accepted with probability exp(−�); if this is not the case, k is left unaltered.
Then the algorithm proceeds with the neighbours of k just as in Wolff’s cluster
algorithm. We see that spins are only exchanged in this algorithm, so that the
total spin remains constant: the energy change no longer scales with the cluster
volume.

15.5.4 The multigrid Monte Carlo method

The multigrid Monte Carlo (MGMC) method [9,38,39] is yet another way of redu-
cing critical slowing down near the critical point. This method is closely related
to the multigrid method for solving partial differential equations described in
Appendix A7.2, and readers not familiar with this method should go through that
section first; see also Problem A7.

Multigrid ideas can be used to devise a new Monte Carlo algorithm which reduces
critical slowing down by moving to coarser and coarser grids and updating these in
an MC procedure with a restricted form of the Hamiltonian.

To be specific, let us start from a grid at level l; a field configuration on this grid
is called ψ . The Hamiltonian on this grid is called Hl[ψ]. The coarse grid is the
grid at level l − 1, and configurations on this coarse grid are denoted by φ. Now
consider the prolongation operation Pl,l−1 described in Appendix A7.2, which maps
a configuration φ on the coarse grid to a configurationψ on the fine grid by copying
the value of φ on the coarse grid to its four nearest neighbours on the fine grid:

Pl,l−1 : φ → ψ ; (15.98a)

ψ(2i + µ, 2j + ν) = φ(i, j), (15.98b)

where µ and ν are ±1. We now consider a restricted Hamiltonian Hl−1[δφ],
which is a function of the coarse grid configuration δφ, depending on the fine
grid configuration ψ which is kept fixed:

Hl−1[δφ] = Hl[ψ + Pl,l−1(δφ)]. (15.99)

We perform a few MC iterations on this restricted Hamiltonian and then we go to
the coarser grid at level l − 2. This process is continued until the lattice consists of
a single site, and then we go back by copying the fields on the coarser grid sites to

15.5 Reducing critical slowing down 505

the neighbouring sites of the finer grids, after which we again perform a few MC
steps, and so on.

The algorithm reads, in recursive form:

ROUTINE MultiGridMC(l, ψ Hl)
Perform a few MC sweeps: ψ → ψ ′;
IF (l >0) THEN

Calculate the form of the Hamiltonian
on the coarse grid: Hl−1[δφ] = Hl[ψ ′ + Pl,l−1(δφ)];

Set δφ equal zero;
MultiGridMC(l − 1, δφ, Hl−1);

ENDIF;
ψ ′′ = ψ ′ + Pl,l−1δφ;
Perform a few MC sweeps: ψ ′′ → ψ ′′′;

END MultiGridMC.

The close relation to the multigrid algorithm for solving Poisson’s equation, given
in Appendix A7.2, is obvious.

The MC sweeps consist of a few Metropolis or heat-bath iterations on the fine grid
fieldψ . This step is ergodic as the heat bath and Metropolis update is ergodic. Note
that the coarse grid update in itself is not ergodic because of the restriction imposed
on fine grid changes (equal changes for groups of four spins) – the Metropolis or
heat-bath updates are essential for this property.

We should also check that the algorithm satisfies detailed balance. Again, the
Metropolis or heat-bath sweeps respect detailed balance. The detailed balance
requirement for the coarse grid update is checked recursively. A full MCMG
step satisfies detailed balance if the coarse grid update satisfies detailed balance.
But the coarse grid update satisfies detailed balance if the coarser grid update
satisfies detailed balance. This argument is repeated until we reach the coarsest
level (l = 1). But at this level we perform only a few MC sweeps, which
certainly satisfy detailed balance. Therefore, the full algorithm satisfies detailed
balance.

There is one step which needs to be worked out for each particular field theory:
constructing the coarse Hamiltonian Hl−1 from the fine one, Hl. We do not know
a priori whether new interactions, not present in the fine Hamiltonian, will be
generated when constructing the coarse one. This often turns out to be the case. As
an example, consider the scalar interacting φ4 field theory. The terms φ2 and φ4

generate linear and third powers in φ when going to the coarser grid. Moreover,
the Gaussian coupling (φn − φn+µ)2 generates a term φn − φn+µ. Therefore, the

506 Computational methods for lattice field theories

N 'N

n

n 'n

'n

Figure 15.5. Two neighbouring blocks on a fine lattice with coarse lattice sites N
and N ′.

Hamiltonians which we must consider have the form:

H[ψ] = 1

2



∑
〈nn′〉

[
Jn,n′(ψn − ψn′)2 +

∑
µ

Kn,n′(ψn − ψn′)

]

+
∑

n

[
Lnψn + Mnψ

2 + Tnψ
3
n + Gnψ

4
n

]}
. (15.100)

Restricting this Hamiltonian to a coarser grid leads to new values for the coupling
constants.

We denote the sites of the new grid by N , N ′. Furthermore,
∑

nn′|NN ′ denotes a
sum over sets n, n′ of neighbouring points, which belong to different neighbouring
blocks of four sites belonging to N and N ′ respectively as in Figure 15.5. Finally,∑

n|N denotes a sum over the fine grid sites n belonging to the block N . With this
notation, the new coupling constants on the coarse grid can be written in terms of
those on the fine grid:

JNN ′ =
∑

nn′|NN ′
Jnn′ ; KNN ′ =

∑
nn′|NN ′

[Knn′ + 2Jnn′(ψn − ψn′)];

LN =
∑
n|N
(Ln + 2Mnψn + 3Tnψ

2
n + 4Gnψ

3
n); (15.101)

MN =
∑
n|N
(Mn + 3Tnψn + 6Gnψ

2
n);

TN =
∑
n|N
(Tn + 4Gnψn); GN =

∑
n|N

Gn.

With this transformation, the MCMG method can be implemented straight-
forwardly. It can be shown that critical slowing down is completely eliminated
for Gaussian type actions, so it will work very well for the φ4 theory close to the
Gaussian fixed point. However, the φ4 theory has more than one critical point in two
dimensions. One of these points has Ising character: for this point, the coefficient

15.5 Reducing critical slowing down 507

of the quadratic term is negative, whereas the coefficient g of φ4 is positive. This
means that the field has two opposite minima. For this model, the MCMG method
does not perform very well. This can be explained using a heuristic argument. Sup-
pose the field assumes values very close to +1 or −1. Consider a block of four spins
on the fine lattice which belong to the same coarse lattice site. Adding a nonzero
amount, φN , to these four spins will only be accepted if they are either all equal
to −1, so that an amount of 2 can be added, or if they are all equal to +1 so that we
can subtract 2 from each of them. The probability that all spins in a block have equal
values becomes smaller and smaller when coarsening the lattice more and more, so
the efficiency of the MCMG method is degraded severely for this case. However, it
still turns out to be more efficient by a factor of about 10 than the standard heat-bath
method.

15.5.5 The Fourier-accelerated Langevin method

We have encountered the Langevin method for field theories in Section 15.4.3. This
method suffered from slow convergence as a result of small, essentially random,
steps being taken, causing the system to perform a random walk in phase space.
In 1985, Batrouni et al. proposed a more efficient version of the Langevin method
in which the fields are updated globally [17]. This is done by Fourier-transforming
the field, and then applying the Langevin method to the Fourier modes, rather than
to the local fields. That this is a valid approach can be seen as follows. We have
seen that MD methods can be applied to fields after assigning fictitious momenta
to the field variables. In the MD method we have assigned a momentum pn to each
field variable φn. It is, however, perfectly possible to assign the momenta not to
each individual field variable, but to linear combinations of the field variables. After
integrating out the momenta we shall again find a Boltzmann distribution of the
field variables.

In addition we have the freedom to assign a different time step to each linear
combination of field variables. As we have seen in Section 9.3.2, this is equivalent
to changing the mass associated with that variable, but we shall take the masses all
equal to 1, and vary the time step.

In the Fourier-accelerated Langevin method, we assign momenta pk to each
Fourier component φk of the field. Furthermore, we choose a time step hk for each
k individually. To be specific, we write the action S in terms of Fourier transformed
fields, and construct the following classical Hamiltonian expressed in terms of
Fourier modes:

HClass =
∑

k

{
p2

k

2
+ S[φk]

}
. (15.102)

508 Computational methods for lattice field theories

By integrating out the momenta it is clear that an MD simulation at constant temper-
ature for this Hamiltonian leads to the correct Boltzmann distribution of the field.
In the Langevin leap-frog form, the equation of motion reads

φk(t + hk) = φk(t)− h2
k

2

∂S[φk(t)]
∂φk

+ hkRk, (15.103)

where Rk is the Fourier transform of a Gaussian random number with a variance of
1 (see below). Fourier transforms are obviously carried out using the fast Fourier
transform (see Appendix A9).

For a free field model, the dynamical system described by the Hamiltonian
(15.102) can be solved trivially, as the Hamiltonian does not contain couplings
between the different ks. In that case the action can be written as

S[φk] = 1

2L2d
φkKk,−kφ−k . (15.104)

Kk,k′ is the free field propagator given in (15.49). The Hamiltonian describes a set
of uncoupled harmonic oscillators with periods Tk = 2π/

√
Kk,−k. The algorithm

will be unstable when one of the time steps hk becomes too large with respect to
Tk (see Appendix A7.1). The most efficient choice for the time steps is therefore

hk = αTk = α
2π√

4
∑
µ sin2(kµ/2)+ m2

, (15.105)

whereα is some given, small fraction, e.g.α = 0.2. If we take all the hk smaller than
the smallest period, then the slower modes would evolve at a much smaller rate than
the fast modes. By adopting convention (15.105), the slow modes evolve at exactly
the same rate as the fast ones. Therefore, critical slowing down will be completely
eliminated for the free field model. For the interacting field with a φ4 term present,
the time steps are taken according to (15.105), but with the renormalised mass
occuring in the denominator [17].

A remark is in place here. As the method uses finite time steps, it is not the
continuum action which is simulated, but the discrete version which deviates to
some order of the time steps from the continuum one. Therefore, comparisons with
MC or hybrid algorithms are not straightforward. The time steps chosen here are
such that the time step error is divided homogeneously over the different modes.

The algorithm for a step in the Fourier-accelerated Langevin method is as follows:

ROUTINE LangStep(ψ)
Calculate forces Fn in real space;
FFT: Fn → Fk;
FFT: φn → φk;
Generate random forces Rk;

15.6 Comparison of algorithms for scalar field theory 509

Update φk using (15.103) with time steps (15.105);
FFT: φk → φn;

END LangStep.

We have used ‘FFT’ for the forward transform (from real space to reciprocal space)
and ‘FFT’ for the backward transform. The random forces Rk can be generated
in two ways. The simplest way is to generate a set of random forces Rn on the
real space grid, and then Fourier-transform this set to the reciprocal grid. A more
efficient way is to generate the forces directly on the Fourier grid. The forces Rk

satisfy the following requirements: Rk = R∗
−k , as a result of the Rn being real; and

the variance satisfies 〈|Rk|2〉 = 〈R2
n〉 = 1. Thus, for k �= −k (modulo 2π/L), the

real and imaginary part of the random force Rk both have width 1/
√

2. If k = −k
(modulo 2π/L) then the random force has a real part only, which should be drawn
from a distribution with width 1.

15.6 Comparison of algorithms for scalar field theory

In the previous sections we have described seven different methods for simulating
the scalar field theory on a lattice. We now present a comparison of the performance
of the different methods (Table 15.3). We have taken m = 0.1 and g = 0.01
as the bare parameters on a 16 × 16 lattice. The simulations were carried out
on a standard workstation. The results should not be taken too seriously because
different platforms and different, more efficient codings could give different results.
Moreover, some methods can be parallelised more efficiently than others, which
is important when doing large-scale calculations (see Chapter 16). Finally, no real
effort has been put into optimising the programs (except for standard optimisation at
compile time), so the results should be interpreted as trends rather than as rigorous
comparisons.

We give the CPU time needed for one simulation step and the correlation time,
measured in simulation steps. The error in the run time is typically a few per cent,
and that in the correlation time is typically between 5 and 10 per cent. For each
method we include results for an 8×8 and a 16×16 lattice to show how the CPU time
per step and the correlation time scale with the lattice size. All programs give the
correct results for the renormalised mass and coupling constant, which have been
presented before. The number of MC or MD steps in these simulations varied from
30 000 to 100 000, depending on the method used. In the Andersen method, we used
100 steps between momentum refreshing for h = 0.05 and 50 steps for h = 0.1.
The time steps used in the hybrid algorithm were chosen such as to stabilise the
acceptance rate at 70%. In this algorithm, 10 steps were used between the updates.
The time step h = 0.2 given for the Fourier-accelerated Langevin method is in fact

510 Computational methods for lattice field theories

Table 15.3. Comparison between different methods for simulating the scalar
quantum field theory on a lattice.

Method Described
in section

Lattice
size

Time
constant h

Correlation
time

CPU
time

Overall
efficiency

Metropolis 15.4.1 8 28 110 0.32
Metropolis 15.4.1 16 97 416 0.10
Heat-bath 15.4.1 8 6.5 103 1.49
Heat-bath 15.4.1 16 24 392 0.43
Andersen 15.4.3 8 0.05 170 32 0.063
Andersen 15.4.3 8 0.1 85 31 0.38
Andersen 15.4.3 16 0.1 110 124 0.29
Hybrid 15.4.3 8 0.365 15 45 1.48
Hybrid 15.4.3 16 0.22 60 175 0.38
Langevin 15.4.3 8 0.1 560 82 0.022
Langevin 15.4.3 16 0.1 2200 322 0.0056
Multigrid 15.5.4 8 1.5 1440 0.46
Multigrid 15.5.4 16 1.5 5750 0.46
Four/Lang 15.5.5 8 0.2 10 118 0.85
Four/Lang 15.5.5 16 10 523 0.76

The time units are only relative: no absolute run times should be deduced from them. The
correlation time is measured in simulation steps (MD steps or MCS). For the methods
with momentum refreshment, the correlation time is measured in MD steps. The overall
efficiency in the last column is the inverse of (CPU time × correlation time). For 16 × 16
lattices this number has been multiplied by four.

the proportionality constant between hk and the inverse propagator:

hk = 0.2√
Kk,−k

. (15.106)

From the table it is seen that for small lattices the heat-bath and the hybrid meth-
ods are most efficient. For larger lattices, the multigrid and Fourier-accelerated
Langevin methods take over, where the latter seems to be more efficient. However,
its efficiency decreases logarithmically with size (that of the multigrid remains con-
stant) and comparisons of the values obtained with this method and MC simulations
are always a bit hazardous, although these results may be very useful in themselves.

15.7 Gauge field theories

15.7.1 The electromagnetic Lagrangian

The scalar field theory is useful for some applications in particle physics and statist-
ical mechanics. However, the fundamental theories describing elementary particles

15.7 Gauge field theories 511

have a more complicated structure. They include several kinds of particles, some of
which are fermions. Intermediate particles act as ‘messengers’ through which other
particles interact. It turns out that the action has a special kind of local symmetry,
the so-called ‘gauge symmetry’.

Global symmetries are very common in physics: rotational and translational sym-
metries play an important role in the solution of classical and quantum mechanical
problems. Such symmetries are associated with a transformation (rotation, trans-
lation) of the full space, which leaves the action invariant. Local symmetries are
operations which vary in space-time, and which leave the action invariant. You have
probably met such a local symmetry: electrodynamics is the standard example of a
system exhibiting a local gauge symmetry. The behaviour of electromagnetic fields
in vacuum is described by an action defined in terms of the four-vector potential
Aµ(x) (x is the space-time coordinate) [38]:

SEM = 1

4

∫
d4xFµνFµν ≡

∫
d4x LEM(∂µAν) (15.107a)

with
Fµν = ∂µAν − ∂νAµ. (15.107b)

LEM = 1
4FµνFµν is the electromagnetic Lagrangian. The gauge symmetry of

electrodynamics is a symmetry with respect to a particular class of space-time-
dependent shifts of the four-vector potential Aµ(x):

Aµ(x) → Aµ(x)+ ∂µχ(x), (15.108)

where χ(x) is some scalar function. It is easy to check that the action (15.107a) is
indeed invariant under the gauge transformation (15.108). If sources jµ are present
[j = (ρ, j)where ρ is the charge density, and j the current density], the action reads

SEM = 1

4

∫
d4x(FµνFµν + jµAµ). (15.109)

The Maxwell equations are found as the Euler–Lagrange equations for this action.
The action is gauge-invariant if the current is conserved, according to

∂µjµ(x) = 0. (15.110)

A quantum theory for the electromagnetic field (in the absence of sources) is
constructed proceeding in the standard way, by using the action (15.107a) in the
path integral. If we fix the gauge, for example by setting ∂µAµ = 0 (Lorentz gauge),
the transition probability for going from an initial field configuration Ai at ti to Af at
tf for imaginary times (we use Euclidean metric throughout this section) is given by

〈Af ; tf |Ai; ti〉 =
∫

[DAµ] exp

[
−1

�

∫ tf

ti
dt LEM(∂µAν)

]
(15.111)

512 Computational methods for lattice field theories

where the path integral is over all vector potential fields that are compatible with
the Lorentz gauge and with the initial and final vector potential fields at times ti
and tf respectively. If we do not fix the gauge, this integral diverges badly, whereas
for a particular choice of gauge, the integral converges.

Just as in the case of scalar fields, the excitations of the vector potential field
are considered as particles. These particles are massless: they are the well-known
photons. The electromagnetic field theory is exactly solvable: the photons do
not interact, so we have a situation similar to the free field theory. The theory
becomes more interesting when electrons and positrons are coupled to the field.
These particles are described by vector fields ψ(x) with D = 2[d/2] components
for d-dimensional space-time ([x] denotes the integer part of x), so D = 4 in
four-dimensional space-time (d = 4). The first two components of the four-vector
correspond to the spin-up and spin-down states of the fermion (e.g. the electron) and
the third and fourth components to the spin-up and -down components of the anti-
fermion (positron). The Euler–Lagrange equation for a fermion system interacting
with an electromagnetic field is the famous Dirac equation:

[γ µ(∂µ − ieAµ)+ m]ψ(x) = 0. (15.112)

The objects γµ are Hermitian D × D matrices obeying the anti-commutation
relations:

[γµ, γν]+ = γµγν + γνγµ = 2δµν (15.113)

(in Minkowski metric, δµν is to be replaced by gµν). The Dirac equation is invariant
under the gauge transformation (15.108) if it is accompanied by the following
transformation of the ψ :

ψ(x) → eieχ(x)ψ(x). (15.114)

The action from which the Dirac equation can be derived as the Euler–Lagrange
equation is the famous quantum electrodynamics (QED) action:

SQED =
∫

d4x

[
−ψ̄(x)(γ µ∂µ + m)ψ(x)

+ ieAµ(x)ψ̄(x)γ
µψ(x)− 1

4
Fµν(x)F

µν(x)

]
. (15.115)

Here,ψ(x) and ψ̄(x) are independent fields. The Dirac equation corresponds to the
Euler–Lagrange equation of this action with

ψ̄(x) = ψ†(x)γ 0. (15.116)

The QED action itself does not show the fermionic character of the ψ-field, which
should, however, not disappear in the Lagrangian formulation. The point is that
the ψ field is not an ordinary c-number field, but a so-called Grassmann field.

15.7 Gauge field theories 513

Grassmann variables are anticommuting numbers – Grassmann numbers a and b
have the properties:

ab + ba = 0. (15.117)

In particular, taking a = b, we see that a2 = 0. We do not go into details concerning
Grassmann algebra [4, 5, 39] but mention only the result of a Gaussian integration
over Grassman variables. For a Gaussian integral over a vector ψψψ we have the
following result for the components ofψψψ being ordinary commuting, or Grassmann
anticommuting numbers:

∫
dψ1 . . . dψN exp(−ψψψTAψψψ) =



√
(2π)N

det(A)
commuting;

√
det(A) anticommuting.

(15.118)

The matrix A is symmetric. In quantum field theories such as QED, we need a
Gaussian integral over complex commuting and noncommuting variables, with the
result:∫

dψ1 dψ∗
1 . . . dψN dψ∗

N exp(−ψψψ†Aψψψ) =
{
(2π)N/det(A) commuting;

det(A) anticommuting
(15.119)

for a Hermitian matrix A. Fortunately the Lagrangian depends only quadratically
on the fermionic fields, so only Gaussian integrals over Grassmann variables occur
in the path integral.

15.7.2 Electromagnetism on a lattice: quenched compact QED

Physical quantities involving interactions between photons and electrons, such as
scattering amplitudes, masses and effective interactions, can be derived from the
QED Lagrangian in a perturbative analysis. This leads to divergences similar to
those mentioned in connection with scalar fields, and these divergences should be
renormalised properly by choosing values for the bare coupling constant e and
mass m occurring in the Lagrangian such that physical mass and coupling constant
become finite; more precisely, they become equal to the experimental electron mass
and the charge which occurs in the large-distance Coulomb law in three spatial
dimensions:

V(r) = e2

4πε0r
(15.120)

(for short distances, this formula is no longer valid as a result of quantum
corrections).

Instead of following the perturbative route, we consider the discretisation of
electrodynamics on a lattice (the Euclidean metric is most convenient for lattice

514 Computational methods for lattice field theories

n n + �

n +� + �n +�

Figure 15.6. A lattice plaquette at site n with sides µ and ν used in (15.122).

calculations, so it is assumed throughout this section). This is less straightforward
than in the scalar field case as a result of the greater complexity of the QED theory.
We work in a space-time dimension d = 4. We first consider the discretisation of
the photon gauge field and describe the inclusion of fermions below. An important
requirement is that the gauge invariance should remain intact. Historically, Wegner’s
Ising lattice gauge theory [40] showed the way to the discretisation of continuum
gauge theories. We now describe the lattice formulation for QED which was first
given by Wilson [41], and then show that the continuum limit for strong coupling
is the conventional electromagnetic gauge theory.

We introduce the following objects, living on the links µ of a square lattice with
sites denoted by n:

Uµ(n) = exp[ieaAµ(n)] = exp[iθµ(n)] (15.121)

where we have defined the dimensionless scalar variables θµ = eaAµ. The action
on the lattice is then written as a sum over all plaquettes, where each plaquette
carries an action (see Figure 15.6):

Splaquette(n;µν) = Re[1 − Uµ(n)Uν(n + µ)

× U∗
µ(n + µ+ ν)U∗

ν (n + ν)]. (15.122)

Note that the effect of complex conjugation is a sign-reversal of the variable θµ. The
Us are orientation-dependent: Uµ(n) = U†

−µ(n). The constant 1 has been included
in (15.122) to ensure that the total weight of a configuration with all θ-values being
equal to zero vanishes. Note that the integration over θ is over a range 2π , so it
does not diverge, in contrast to the original formulation, where the gauge must be
fixed in order to prevent the path integral on a finite lattice from becoming infinite
(see also the remark after Eq. (15.111)). The plaquette action can also be written as

Splaquette(n;µν) = ◦∑
µν

[1 − cos(θµν(n))] (15.123)

where the argument of the cosine is the sum over the θ-variables around the plaquette
as in Figure 15.6:

θµν(n) = θµ(n)+ θν(n + µ)− θµ(n + µ+ ν)− θµ(n + ν). (15.124)

15.7 Gauge field theories 515

The total action

SLQED =
∑
n;µν

Splaquette(n;µν) (15.125)

occurs in the exponent of the time-evolution operator or of the Boltzmann factor
(for field theory in imaginary time). The partition function of the Euclidean field
theory is

ZLQED(β) =
∫ 2π

0

∏
n,µ

dθµ(n) exp(−βSLQED), (15.126)

where the product
∏

n,µ is over all the links of the lattice. For low temperature
(large β), only values of θ close to 0 (mod 2π) will contribute significantly to
the integral. Expanding the cosine for small angles, we can extend the integrals to
the entire real axis and obtain

SLQED(β large) =
∑
n,µ,ν

1

2

(
◦∑
µν

θ(n)

)2

. (15.127)

Using θµ = eaAµ and the fact that the lattice constant a is small, we see that the
action can be rewritten as

βSLQED ≈ β

4

∫
d4x

a4
[a4 e2Fµν(x)F

µν(x)], (15.128)

where now the summation is over all µν, whereas in the sums above (over the
plaquettes), µ and ν were restricted to positive directions. The Fµν are defined in
Eq. (15.107b). Taking β = 1/e2 we recover the Maxwell Lagrangian:

βSLQED ≈ 1

4

∫
d4xFµνFµν (15.129)

in the continuum limit.
What are interesting objects to study? Physical quantities are gauge-invariant,

so we search for gauge-invariant correlation functions. Gauge invariance can be
formulated in the lattice model as an invariance under a transformation defined by
a lattice function χ(n) which induces a shift in the θµ(n):

θµ(n) → θµ(n)+ χ(n + µ)− χ(n)

a
. (15.130)

This suggests that gauge-invariant correlation functions are defined in terms of a
sum over θµ over a closed path: in that case a gauge transformation does not induce
a change in the correlation function since the sum over the finite differences of the
gauge function χ(n) over the path will always vanish. Furthermore, as correlation
functions usually contain products of variables at different sites, we consider the

516 Computational methods for lattice field theories

C

t

x

t

x

(a) (b)

Figure 15.7. The Wilson loop on a two-dimensional square lattice. (a) A general
Wilson loop. (b) A two-fermion loop in a gauge field theory with infinite-mass
fermions.

so-called Wilson loop correlation function:

W(C) =
〈 ∏

n,µεC

eiθµ(n)

〉
, (15.131)

where the product is over all links n,µ between site n and its neighbour n+µ lying
on the closed loop C (see Figure 15.7) [41].

The Wilson loop correlation function has a physical interpretation. Suppose we
create at some time ti a fermion–antifermion pair, which remains in existence at
fixed positions up to some time tf , at which the pair is annihilated again. Without
derivation we identify the partition function of the gauge field in the presence of the
fermion–antifermion pair with the Wilson loop correlation function in Figure 15.7b
times the vacuum partition function – for a detailed derivation see Refs. [6,42,43].
Now let us stretch the loop in the time direction, T = tf − ti → ∞. The effective
interaction between two electrons at a distance R is given by the difference between
the ground state energy in the presence of the fermion-antifermion pair (which we
denote by 2f) and the ground state energy of the vacuum:

V(R) =
〈
ψ
(2f)
G |H|ψ(2f)

G

〉
2f

−
〈
ψ
(vac)
G |H|ψ(vac)

G

〉
vac

. (15.132)

This expression can, however, be evaluated straightforwardly in the Lagrangian
picture. We have

e−TV(R) = Z(C)

Z
= W(C) (15.133)

where C is the rectangular contour of size T (time direction) and R (space direction);
Z(C) is the partition function evaluated in the presence of the Wilson loop; and

15.7 Gauge field theories 517

Z is the vacuum partition function. Note that the fact that T is taken large guarantees
that the ground state of the Hamiltonian is projected out in the simulation.

By varying the coupling β, different results for the value of the Wilson loop
correlation function are found. For large loops we have either the ‘area law’:

W(C) = exp(Const. × Area within loop), (15.134)

or the ‘perimeter law’ :

W(C) = exp(Const. × Perimeter of loop), (15.135)

with additional short-range corrections. Let us consider the area law. In that case we
find V(R) ∝ R, which means that the two particles cannot be separated: pulling them
infinitely far apart requires an infinite amount of energy. We say that the particles
are confined. On the other hand, the perimeter law says that V(R) is a constant (it
is dominated by the vertical parts of length T), up to corrections decaying to zero
for large R (for the confined case, these corrections can be neglected). For d = 4
one finds after working out the dominant correction term V(R) ∝ −(e2/R), i.e.
Coulomb’s law [42]. We see that the lattice gauge theory incorporates two different
kinds of gauge interactions: confined particles and electrodynamics. The analysis
in which the fermions are kept at fixed positions corresponds to the fermions having
an infinite mass. It is also possible to allow for motion of the fermions by allowing
the loops of arbitrary shape, introducing gamma-matrices in the resulting action.
The procedure in which the fermions are kept fixed is called ‘quenched QED’ – in
quenched QED, vacuum polarisation effects (caused by the fact that photons can
create electron–positron pairs) are not included.

We know that electrodynamics does not confine electrons: the lattice gauge theory
in four dimensions has two phases, a low-temperature phase in which the interac-
tions are those of electrodynamics, and a high-temperature phase in which the
particles are confined [44] (‘temperature’ is inversely proportional to the coupling
constant β). The continuum limit of electrodynamics is described by the low-
temperature phase of the theory. Why have people been interested in putting QED
on a grid? After all, perturbation theory works very well for QED, and the lattice
theory gives us an extra phase which does not correspond to reality (for QED). The
motivation for studying lattice gauge theories was precisely this latter phase: we
know that quarks, the particles that are believed to be the constituents of mesons
and hadrons, are confined: an isolated quark has never been observed. Lattice gauge
theory provides a mechanism for confinement! Does this mean that quarks are part
of the same gauge theory as QED, but corresponding to the high-temperature phase?
No: there are reasons to assume that a quark theory has a more complex structure
than QED, and moreover, experiment has shown that the interaction between quarks
vanishes when they come close together, in sharp contrast with the confining phase

518 Computational methods for lattice field theories

of electrodynamics in which the interaction energy increases linearly with distance.
The high-temperature phase of the gauge theory considered so far is always confin-
ing, so this does not include this short-distance decay of the interaction, commonly
called ‘asymptotic freedom’ (G. ’t Hooft, unpublished remarks at the Marseille
conference on gauge theories, 1972; see also Refs. [6,42,43,45]). We shall study
the more complex gauge theory which is believed to describe quarks later; this
theory is called ‘quantum chromodynamics’ (QCD).

The lattice version of quantum electrodynamics using variables θµ ranging from
0 to 2π is often called U(1) lattice gauge theory because the angle θµ parametrises
the unit circle, which in group theory is called U(1). Another name for this field
theory is ‘compact QED’ because the values assumed by the variable θµ form a
compact set, as opposed to the noncompact Aµ field of continuum QED. Compact
QED can be formulated in any dimension, and in the next section we discuss an
example in 1 space + 1 time dimension.

15.7.3 A lattice QED simulation

We describe a QED lattice simulation for determining the inter-fermion potential.
We do this by determining the Wilson loop correlation function described in the
previous section. Only the gauge field is included in the theory – the fermions
have a fixed position, and the photons exchanged between the two cannot generate
fermion–antifermion pairs (vacuum polarisation). This is equivalent to assigning
an infinite mass to the fermions. We use a square lattice with periodic boundary
conditions.

We consider the (1 + 1)-dimensional case. This is not a very interesting theory
by itself – it describes confined fermions, as the Coulomb potential in one spatial
dimension is confining:

V(x) ∝ |x|, (15.136)

but we treat it here because it is simple and useful for illustrating the method. The
theory can be solved exactly (see Problem 15.6) [42]: the result is that the Wilson
loop correlation function satisfies the area law

W = exp(−αA) (15.137)

(A is the area enclosed within the loop) with the proportionality constant α given
in terms of the modified Bessel functions In:

α = − ln

[
I1(β)

I0(β)

]
; (15.138)

β is the coupling constant (inverse temperature). In fact the area law holds only for
loops much smaller than the system size; deviations from this law occur when the
linear size of the loop approaches half the system size.

15.7 Gauge field theories 519

The system can be simulated straightforwardly using the Metropolis algorithm,
but we shall use the heat-bath algorithm because of its greater efficiency. We want
the coefficient α to be not too large, as large values of α cause W(C) to decay very
rapidly with size, so that it cannot be distinguished from the simulation noise for
loops of a few lattice constants. From (15.138) we see that β must be large in that
case – we shall use β = 10. This causes the probability distribution P(θµ) for some
θµ, embedded in a particular, fixed configuration of θµ on neighbouring links, to be
sharply peaked. Therefore it is not recommended to take θµ random between 0 and
2π and then accept with probability P(θµ) and retry otherwise, as in this approach
most trial values would end up being rejected. We shall therefore first generate a
trial value for θµ according to a Gaussian probability distribution.

The distribution P(θ) has the form

P(θ) = exp{−β[cos(θ − θ1)+ cos(θ − θ2)]} (15.139)

where θ1 and θ2 are fixed; they depend on the θ-values on the remaining links of
the plaquettes containing θ . The sum of the two cosines can be rewritten as

cos(θ − θ1)+ cos(θ − θ2) = 2 cos

(
θ1 − θ2

2

)
cos

(
θ − θ1 + θ2

2

)
. (15.140)

We define

β̃ = 2β cos

(
θ1 − θ2

2

)
(15.141a)

and

φ = θ − θ1 + θ2

2
(15.141b)

so that our task is now to generate an angle φ with a distribution exp(−β̃ cosφ).
We distinguish between two cases: (i) β̃ > 0. In that case the maximum of the
distribution occurs at φ = π . A Gaussian distribution centred at π and with width

σ = π/(2
√
β̃) and amplitude exp(β̃) is always close to the desired distribution.

The Gaussian random numbers must be restricted to the interval [−π ,π]. Therefore
the algorithm becomes:

REPEAT
REPEAT

Generate a Gaussian random variable −r with width 1;
φ = σ r;

UNTIL −π ≤ φ ≤ π ;
φ → φ + π ;

520 Computational methods for lattice field theories

0.01

0.1

1

0 5 10 15 20 25 30 35 40 45 50

W
(C

)

Area

16 ×16
32 × 32

Figure 15.8. The Wilson loop correlation function as a function of the enclosed
area for (1+1)-dimensional lattice QED. Note that the vertical scale is logarithmic,
so that the straight line is compatible with the area law. The values were determined
in a heat-bath simulation using 40 000 updates (first 2000 rejected).

Accept this trial value with probability

exp{−β̃[cosφ + 1 − (φ − π)2/(2σ 2)]};
UNTIL Accepted;

θ = φ + θ1 + θ2

2
.

(ii) If β̃ < 0 then the distribution is centred around φ = 0. In that case, we do not
shift the Gaussian random variable over π . The reader is invited to work out the
analogue of the algorithm for case (i).

In the simulation we calculate the averages of square Wilson loops, given in
Eq. (15.131) (it should be emphasised that for the area law it is not required to
have T � R). This is done by performing a loop over all lattice sites and cal-
culating the sum of the θµ over the square loop with lower left corner at the
current site. The expectation values for different square sizes can be calculated
in a single simulation. Figure 15.8 shows the average value of the Wilson loop
correlation functions as a function of the area enclosed by the loop for a 16 × 16
and a 32 × 32 lattice. The straight line is the theoretical curve with slope α as in
(15.138). From this figure it is seen that the area law is satisfied well for loops which
are small with respect to half the lattice size. By implementing free boundary con-
ditions, the theoretical curve can be matched exactly, but this requires a little more
bookkeeping.

15.7 Gauge field theories 521

15.7.4 Including dynamical fermions

In real problems studied by particle physicists, fermions are to be included into
the lattice action, and not in a quenched fashion as done in the previous section.
In this section we focus on dynamical fermions, which cause two problems. First, a
straightforward discretisation of the fermion action leads to 2d species of uncoupled
fermions to be included into the problem (in d space-time dimensions) instead of the
desired number of fermion species (‘flavours’). Second, we have not yet discussed
the problem of including the fermion character in a path integral simulation. We
first consider the ‘fermion doubling problem’ and then sketch how simulations can
actually be carried out for theories including fermions.

Fermions on a lattice

When calculating the path integral for free fermions for which the Lagrangian is
quadratic in the fermion fields, the following Gaussian Grassmann integral must be
evaluated: ∫

[DψDψ̄]e−ψ̄Mψ , (15.142)

where the kernel M is given as

M = m + γ µ∂µ. (15.143)

The expression in the exponent is shorthand for an integral over the space-time
coordinates. Discretising the theory on the lattice and Fourier-transforming the
fields and M we find that the latter becomes diagonal:

Mk,k′ =
(

m + i

a

∑
µ

γµ sin(kµa)

)
δ(k + k′). (15.144)

The lattice version of M is therefore the Fourier transform of this function.
There is a problem with this propagator. The continuum limit singles out only

the minima of the sine as a result of the factor 1/a in front of it. These are found
not only near k = 0 but also near ka = (±π , 0, 0, 0) (in four dimensions) etc.,
because of the sine function having zeroes at 0 and π . This causes the occurrence
of two different species of fermions per dimension, adding up to 16 species for
four-dimensional space-time. It turns out that this degeneracy can be lifted only at
the expense of breaking the so-called ‘chiral symmetry’ for massless fermions [46].
Chiral symmetry is a particular symmetry which is present in the Dirac equation
(and action) for massless particles. Suppose chiral symmetry is present in the lattice
version of the action. This symmetry forbids a mass term to be present, and the
renormalised theory should therefore have m = 0. A lattice action which violates
chiral symmetry might generate massive fermions under renormalisation.

522 Computational methods for lattice field theories

One could ignore the doubling problem and live with the fact that the theory now
contains 2d different species of fermions. However, it is also possible to lift up the
unwanted parts of the propagator by adding a term proportional to 1 − cos(akµ) to
it, which for k near 0 does not affect the original propagator to lowest order, but
which lifts the parts for kµa = ±π such that they are no longer picked up in the
continuum. The method is referred to as the Wilson fermion method. The resulting
propagator is

Mk = m + i

a

∑
µ

γµ sin(akµ)+ r

a

∑
µ

[1 − cos(akµ)]. (15.145)

This form is very convenient because it requires only a minor adaptation of a pro-
gram with the original version of the propagator. In real space, and taking the lattice
constant a equal to 1, the Wilson propagator reads in d space-time dimensions:

Mnl = (m + 4r)δnl − 1

2

∑
µ

[(r + γµ)δl,n+µ + (r − γµ)δl,n−µ]. (15.146)

The disadvantage of this solution is that the extra terms destroy any chiral symmetry,
which is perhaps a bit too drastic.

In a more complicated method half of the unwanted states are removed by doub-
ling the period, so that the Brillouin zone of the lattice is cut-off at π/(2a) instead
of π/a. This is done by putting different species of fermions on alternating sites
of the lattice. Although this removes the unwanted fermions, it introduces new fer-
mions which live on alternate sites of the lattice. The resulting method is called
the staggered fermion method. The staggered fermion method respects the chiral
symmetry discussed above and is therefore a better option than the Wilson fermion
method. It is, however, more complicated than the Wilson fermion method and we
refrain from a discussion here, but refer to the original literature [47, 48] and later
reviews [6,43, 49].

Algorithms for dynamical fermions

If we want to include dynamical rather than quenched fermions into our lattice
field theory, we must generate configurations of anticommuting fermion fields. As
it is not clear how to do this directly and as this may cause negative probabilities,
various alternatives using results for Gaussian integrals over Grassmann variables
(see Section 15.7.1) have been developed. We shall explain a few algorithms for
an action consisting of a bosonic part, SBoson, defined in terms of the boson field,
A(x), coupled to the fermion field, ψ , ψ̄ , via the fermion kernel, M(A):

S = SBoson(A)+
∫

ddx ψ̄(x)M(A)ψ(x). (15.147)

The QED Lagrangian in (15.115) has this form.

15.7 Gauge field theories 523

Integrating out the fermion part of the path integral using (15.119) leads to a path
integral defined entirely in terms of bosons:∫

[DA][Dψ̄][Dψ] e−[SBoson(A)+ψ̄M(A)ψ] =
∫

[DA] det[M(A)]e−LBoson(A)

=
∫

[DA] e−LBoson(A)+ln[det(M(A))]

(15.148)

(the inverse temperature β is included in the action). Although the determinant
of M(A) is real and usually positive, M(A) is not necessarily a positive definite
Hermitian matrix (a positive definite matrix has real and positive eigenvalues). It is
therefore sometimes useful to consider the matrix

W(A) = M†(A)M(A), (15.149)

in terms of which the path integral can be written as∫
[DA]e−LBoson(A)+ 1

2 ln[det(W(A))]. (15.150)

Now suppose that we want to perform a Metropolis update of the A-field. The
acceptance probability for a trial change A → A′ is

PAccept(A → A′) = e−SBoson(A′)+SBoson(A) det[M(A′)]
det[M(A)]

= e−SBoson(A′)+SBoson(A)

√
det[W(A′)]
det[W(A)] . (15.151)

This is very expensive to evaluate since we must calculate the determinant of the
very large matrix M(A) [or W(A)] at every step. A clever alternative follows from
the observation that if the field A changes on one site only (as is usually the case),
very few elements of the matrix M(A) change, which allows us to perform the
calculation more efficiently [50]. Another interesting suggestion is that of Bhanot
et al. who propose to evaluate the fraction of the determinants as follows [51]:

det[W(A′)]
det[W(A)] =

∫ [Dφ][Dφ∗] e−φ†W(A)φ∫ [Dφ][Dφ∗] e−φ†W(A′)φ , (15.152)

where φ is a boson field for which we can use the algorithms given earlier in this
chapter. Defining �W = W(A′) − W(A), we can express the ratio in terms of an
expectation value:

det[W(A′)]
det[W(A)] = 〈exp(φ†�Wφ)〉A′ = 1/〈exp(−φ†�Wφ)〉A. (15.153)

524 Computational methods for lattice field theories

It is now possible to calculate this average by updating the field φ in a heat-bath
algorithm. As the matrix M(A) is local (it couples only nearest neighbours), W(A)
is local as well (it couples up to next nearest neighbours). Therefore the heat-bath
algorithm can be carried out efficiently (it should be possible to apply the SOR
method to this method). Each time we change the field A, the matrix W(A) changes
and a few heat-bath sweeps for the field φ have to be carried out. The value of the
fraction of the determinants is determined as the geometrical average of the two
estimators given in Eq. (15.153).

The most efficient algorithms for dynamical fermions combine a molecular
dynamics method for the boson fields with a Monte Carlo approach for the fer-
mionic part of the action. We describe two of these here. The first one is a Langevin
approach, proposed by Batrouni et al. [17], and suitable for Fourier acceleration.
It is based on two observations: first, det(M) can be written as exp[Tr ln(M)], and
second, if ξn is a complex Gaussian random field on the lattice, so that

〈ξ†
l ξn〉 = δnl (15.154)

(the brackets 〈〉 denote an average over the realisations of the Gaussian random
generator), then the trace of any matrix K can be written as

Tr(K) =
∑

nl

〈ξ†
n Knlξl〉. (15.155)

In the Langevin approach, the force is given by the derivative of the action
with respect to the boson field. In the presence of fermions, the action reads (see
Eq. (15.148)):

S = SBoson − Tr ln[M(A)]. (15.156)

Therefore the derivative has the form

∂S(A)

∂An
= ∂SBoson(A)

∂An
− Tr

[
M−1(A)

∂M(A)

∂An

]
. (15.157)

To evaluate the trace, we make use of the auxiliary field ξ :

Tr

[
M−1(A)

∂M(A)

∂An

]
=
〈
ξ†M−1(A)

∂M(A)

∂An
ξ

〉
(15.158)

=
∑

ijl

〈
ξ∗

i M−1
ij (A)

[
∂M(A)

∂An

]
jl
ξl

〉
. (15.159)

In the Langevin equation we do not calculate the average over the ξ by generating
many random fields for each step, but instead we generate a single random Gaussian
vector ξ at every MD step, and evaluate the terms in angular brackets in (15.158)
only for this configuration. Below we justify this simplification. The MD step reads

15.7 Gauge field theories 525

therefore (see Eq. (15.103)):

An(t + h) = An(t)+ h2

2

[
−∂SBoson(A)

∂An
+ ξ†M−1(A)

∂M(A)

∂An
ξ

]
+ hηn.

(15.160)

The A-fields occurring between the square brackets are evaluated at time t. To
evaluate the second term in the square brackets we must find the vectorψ satisfying

M(A)ψ = ξ , (15.161)

so that the algorithm reads

An(t + h) = A(t)+ h2

2

[
−∂SBoson(A)

∂An
+ ψ† ∂M(A)

∂An
ξ

]
+ hηn. (15.162)

Finding the vectorψ is time-consuming. Use is made of the sparseness of the matrix
M(A) in order to speed up the calculation.8 Note that this calculation is done only
once per time step in which the full boson field is updated.

In the Langevin equation we generate a set of configurations which occur with a
probability distribution given by the action (or rather an approximation to it because
of time discretisation). If we evaluate the average distribution with respect to the
random noise fields η and ξ , the average over the ξ -field gives us back the trace
via equation (15.155), therefore we were justified in replacing the average over
the noise field by the value for the actual noise field. It must be noted that Fourier
acceleration is implemented straightforwardly in this fermion method: after the
force is evaluated with the noise field ξ , it is Fourier-transformed, and the leap-frog
integration proceeds as described in Section 15.5.5.

Finally we describe a combination of MD and MC methods [52] which can be
formulated within the hybrid method of Duane et al. [18]; see also Section 15.4.3.

A first idea is to replace the determinant by a path integral over an auxiliary
boson field:

det[M(A)] =
∫

[Dφ][Dφ∗] e−φ†M−1(A)φ . (15.163)

We want to generate samples of the auxiliary field φ with the appropriate weight.
Equation (15.163) is, however, a somewhat problematic expression as it involves
the inverse of a matrix which moreover is not Hermitian. If we have an even number
of fermion flavours, we can group the fermion fields into pairs, and each pair yields

8 The conjugate gradient method (Appendix A8.1) is applied to this matrix problem.

526 Computational methods for lattice field theories

a factor det[M(A)]2 which can be written as

det[M(A)]2 =
∫

[Dφ][Dφ∗] e−φ†[M(A)†M(A)]−1φ =
∫

[Dφ][Dφ∗] e−φ†[W(A)]−1φ

(15.164)
with W(A) defined in (15.149). Note that we need an even number of fermion
flavours here, because we cannot simply replace the matrix W(A) by its square root
in the following algorithm (see also the beginning of this subsection). This partition
function is much more convenient than (15.163) for generating MC configurations
of the field φ. This is done by an exact heat-bath algorithm, in which a Gaussian
random field ξn is generated, and the field φ is then found as

M(A)ξ = φ. (15.165)

For staggered fermions (see previous subsection) it turns out that W(A) =
M(A)†M(A) couples only even sites with even sites, or odd sites with odd sites
[53, 54]. Therefore the matrix W(A) factorises into an even–even (ee) and an
odd–odd one (oo), so that we can write

det[W(A)] = det[W(A)ee] det[W(A)oo]. (15.166)

The matrices W(A)ee and W(A)oo are identical – therefore we have:

det[M(A)] =
∫

[Dφ][Dφ∗] e−φ†[Wee(A)]−1φ . (15.167)

The matrix Wee is Hermitian and positive; it can be written as Wee = M†
eo(A)Moe(A),

where the two partial matrices Meo and Moe are again identical, so we can use the
heat-bath algorithm as described, with M(A) replaced by Meo(A).

The full path integral contains only integrations over boson fields:

Z =
∫

[DA][Dφ][Dφ∗] e−SBoson(A)−φ†W−1(A)φ (15.168)

where subscripts ee for W should be read in the case of staggered fermions. We want
to formulate a molecular dynamics algorithm for the boson field A, but generate the
auxiliary field configurations φ with an MC technique. This procedure is justified
because the MD trajectory between an acceptance/rejection decision is reversible,
and the acceptance/rejection step ensures detailed balance.

We assign momenta to the boson field A only:

Z =
∫

[DA][Dφ][Dφ∗][DP] e−1/2
∑

n P2
n(x)−SBoson(A)−φ†W−1(A)φ . (15.169)

15.7 Gauge field theories 527

The equations of motion for the field A and its conjugate momentum P are then
given by

Ȧn = Pn; (15.170a)

Ṗn = −∂SBoson

∂An
−
∑
lm

φ
†
l

∂[W−1
lm (A)]
∂An

φm. (15.170b)

The difficult part is the second equation which involves the derivative of the inverse
of W(A). The key observation is now that

∂W−1(A)

∂An
= W−1(A)

∂W(A)

∂An
W−1(A), (15.171)

so that we need the vector η with

W(A)η = φ. (15.172)

This can be found using a suitable sparse matrix algorithm. Using this η-field, the
equation of motion for P simply reads:

Ṗn = −∂SBoson

∂An
− η† ∂(M

†M)

∂An
η. (15.173)

Summarising, a molecular dynamics update consists of the following steps:

ROUTINE MDStep
Generate a Gaussian random configuration ξ ;
Calculate φ = M(A)ξ ;
Calculate η from (M†M)η = φ;
Update the boson field A and its conjugate momentum field P using

P(t + h/2) = P(t − h/2)− h

[
∂SBoson

∂An
+ η

∂(MTM)

∂An
η

]
and

A(t + h) = A(t)+ hP(t + h/2).
END MDStep

We see that in both the Langevin and the hybrid method, the most time-consuming
step is the calculation of a (sparse) matrix equation at each field update step (in the
above algorithm this is the step in the third line).

15.7.5 Non-abelian gauge fields; quantum chromodynamics

QED is the theory for charged fermions interacting through photons, which are
described by a real-valued vector gauge field Aµ. Weak and strong interactions
are described by similar but more complicated theories. A difference between

528 Computational methods for lattice field theories

these theories and QED is that the commuting complex phase factors Uµ(n) of
QED are replaced by noncommuting matrices, members of the group SU(2) (for
the weak interaction) or SU(3) (strong interaction). Furthermore, in quantum chro-
modynamics (QCD), the SU(3) gauge theory for strong interactions, more than
one fermion flavour must be included. In this section we focus on QCD, where the
fermions are the quarks, the building blocks of mesons and hadrons, held together
by the gauge particles, called gluons. The latter are the QCD analogue of photons
in QED.

Quarks occur in different species, or ‘flavours’ (‘up’, ‘down’ ‘strange’…); for
each species we need a fermion field. In addition to the flavour quantum number,
each quark carries an additional colour degree of freedom: red, green or blue.
Quarks form triplets of the three colours (hadrons, such as protons and neutrons),
or doublets consisting of colour–anticolour (mesons): they are always observed in
colourless combinations. Quarks can change colour through the so-called strong
interactions. The gluons are the intermediary particles of these interactions. They
are described by a gauge field of the SU(3) group (see below). The gluons are
massless, just as the photons in QED.

The U(1) variables of QED were parametrised by a single compact variable θ
(U = exp(iθ)). In QCD these variables are replaced by SU(3) matrices. These
matrices are parametrised by eight numbers corresponding to eight gluon fields
Aa
µ, a = 1, . . . , 8 (gluons are insensitive to flavour). The gluons are massless, just

like the photons, because inclusion of a mass term m2AµAµ, analogous to that of
the scalar field, destroys the required gauge invariance.

Experimentally, quarks are found to have almost no interaction at short separa-
tion, but when the quarks are pulled apart their interaction energy becomes linear
with the separation, so that it is impossible to isolate one quark. The colour interac-
tion carried by the gluon fields is held responsible for this behaviour. There exists
furthermore an intermediate regime, where the interaction is Coulomb-like.

The fact that the interaction vanishes at short distances is called ‘asymptotic
freedom’. It is possible to analyse the behaviour of quarks and gluons in the short-
distance/small coupling limit by perturbation theory, which does indeed predict
asymptotic freedom (G. ’t Hooft, unpublished remarks, 1972; and Refs. [55,56]).
The renormalised coupling constant increases with increasing distance, and it is this
coupling constant which is used as the perturbative parameter. At length scales of
about 1 fm the coupling constant becomes too large, and the perturbative expansion
breaks down. This is the scale of hadron physics. The breakdown of perturbation
theory is the reason that people want to study SU(3) gauge field theory on a com-
puter, as this allows for a nonperturbative treatment of the quantum field theory.
The lattice formulation has an additional advantage. If we want to study the time
evolution of a hadron, we should specify the hadron state as the initial state. But

15.7 Gauge field theories 529

the hadron state is very complicated! If we take the lattice size in the time direction
large enough, the system will find the hadron state ‘by itself’ because that is the
ground state, so that this problem does not occur.

The QCD action has the following form (i = 1, 2, 3 denotes the colour degree of
freedom of the quarks, f the flavour):

SQCD =
∫

d4x


1

4
Fa
µνF

aµν +
∑

f

∑
ij

ψ̄ i
f γ
µ

(
δij∂µ + ig

Aa
µ

2
λa

ij

)
ψ

j
f

+
∑

f

∑
i

mf ψ̄
i
fψ

i
f


 . (15.174)

The matrices λa are the eight generators of the group SU(3) (they are the Gell–Mann
matrices, the analogue for SU(3) of the Pauli matrices for SU(2)), satisfying

Tr(λaλb) = δa,b. (15.175)

The mf are the quark masses, and Fa
µν is more complicated than its QED counterpart:

Fa
µν = ∂µAa

ν − ∂νAa
µ − gf abcAb

µAc
ν ; (15.176)

the constants f abc are the structure constants of SU(3), defined by

[λa, λb] = 2i
∑

c

f abcλc. (15.177)

The parameter g is the coupling constant of the theory; it plays the role of the charge
in QED. A new feature of this action is that the f abc-term in (15.176) introduces
interactions between the gluons, in striking contrast with QED where the photons
do not interact. This opens the possibility of having massive gluon bound states,
the so-called ‘glueballs’.

When we regularised QED on the lattice, we replaced the gauge field Aµ by
variables Uµ(n) = eieAµ(n) living on a link from site n along the direction given by
µ. For QCD we follow a similar procedure: we put SU(3) matrices Uµ(n) on the
links. They are defined as

Uµ(n) = exp

(
ig
∑

a

Aa
µλ

a/2

)
. (15.178)

The lattice action is now constructed in terms of these objects. The gauge part of
the action becomes

SGauge = 1

4
Fa
µνFaµν → − 1

g2
Tr[Uµ(n)Uν(n + µ)U†

µ(n + ν)U†
ν (n)

+ Hermitian conjugate]. (15.179)

530 Computational methods for lattice field theories

The quark part of the action, which includes the coupling with the gluons, reads in
the case of Wilson fermions (see above):

SFermions =
∑

n

(m + 4r)ψ̄(n)ψ(n)−
∑
n,µ

[ψ̄(n)(r − γ µ)Uµ(n)ψ(n + µ)

+ ψ̄(n + µ)(r + γ µ)U†
µ(n)ψ(n)]. (15.180)

An extensive discussion of this regularisation, including a demonstration that
its continuum limit reduces to the continuum action (15.174), can be found, for
example, in Rothe’s book [43]. The lattice QCD action

SLQCD = SGauge + SFermions (15.181)

can now be simulated straightforwardly on the computer, although it is certainly
complicated. We shall not describe the procedure in detail. In the previous sections
of this chapter we have described all the necessary elements, except for updating
the gauge field, which is now a bit different because we are dealing with matrices
as stochastic variables as opposed to numbers. Below we shall return to this point.

Simulating QCD on a four-dimensional lattice requires a lot of computer time
and memory. A problem is that the lattice must be rather large. To see this, let us
return to the simpler problem of quenched QCD, where the quarks have infinite
mass so that they do not move; furthermore there is no vacuum polarisation in that
case. The Wilson loop correlation function is now defined as

W(C) = Tr
∏

(n,µ)εC

Uµ(n), (15.182)

where the product is to be evaluated in a path-ordered fashion, i.e. the matrices
must be multiplied in the order in which they are encountered when running along
the loop. This is different from QED and reflects the fact that the Us are noncom-
muting matrices rather than complex numbers. This correlation function gives us
the quenched inter-quark potential in the same way as in QED. In this approxima-
tion, perturbative renormalisation theory can be used to find an expansion for the
potential at short distances in the coupling constant, g, with the result:

V(R, g, a) = C

4πR

[
g2 + 22

16π2
g4 ln

R

a
+ O(g6)

]
. (15.183)

Here C is a constant. We see that the coefficient of the second term increases for
large R, rendering the perturbative expansion suspect, as mentioned before. The
general form of this expression is

V(R, g, a) = α(R)/R, (15.184)

in other words, a ‘screened Coulomb’ interaction. Equation (15.183) can be
combined with the requirement that the potential should be independent of the

15.7 Gauge field theories 531

renormalisation cut-off a

a
dV(r, g, a)

da
= 0 (15.185)

to find a relation between the coupling constant g and the lattice constant a. To see
how this is done, see Refs. [6,43,45]. This relation reads

a =
−1
0 (g2γ0)

γ1/(2γ 2
0) exp[−1/(2γ0g2)][1 + O(g2)]. (15.186)

This implies that g decreases with decreasing a, in other words, for small distances
the coupling constant becomes small. From (15.183) we then see that the potential
is screened to zero at small distances. This is just the opposite of ordinary screening,
where the potential decays rapidly for large distances. Therefore, the name ‘anti-
screening’ has been used for this phenomenon, which is in fact the asymptotic
freedom property of quarks. The constants γ0 and γ1 are given by γ0 = (11 −
2nf /3)/(16π2) and γ1 = (102 − 22nf /3)/(16π2)2 repectively (nf is the number
of flavours), and
0 is an integration constant in this derivation, which must be
fixed by experiment. Any mass is given in units of a−1, which in turn is related to g
through the mass constant
0. The important result is that if we do not include quark
masses in the theory, only a single number must be determined from experiment,
and this number sets the scale for all the masses, such as the masses of glueballs,
or those of massive states composed of zero-mass quarks. Therefore, after having
determined
0 from comparison with a single mass, all other masses and coupling
constants can be determined from the theory, that is, from the simulation.

Nice as this result may be, it tells us that if we simulate QCD on a lattice, and
if we want the lattice constant a to be small enough to describe the continuum
limit properly, we need a large lattice. The reason is that the phase diagram for
the SU(3) lattice theory is simpler than that of compact QED in four dimensions.
In the latter case, we have seen that there exist a Coulomb phase and a confined
phase, separated by a phase transition. In lattice QCD there is only one phase, but
a secret length scale is set by the lattice parameter for which (15.186) begins to
hold. The lattice theory will approach the continuum theory if this equation holds,
that is, if the lattice constant is sufficiently small. If we want to include a hadron in
the lattice, we need a certain physical dimension to be represented by the lattice (at
least a ‘hadron diameter’). The small values allowed for the lattice constant and the
fixed size required by the physical problem we want to describe cause the lattice
to contain a very large number of sites. Whether it is allowable to take the lattice
constant larger than the range where (15.186) applies is an open question, but this
cannot be relied upon.

In addition to the requirement that the lattice size exceeds the hadronic scale, it
must be large enough to accomodate small quark masses. The reason is that there
exist excitations (‘Goldstone bosons’) on the scale of the quark mass. The quark

532 Computational methods for lattice field theories

masses that can currently be included are still too high too predict the instability of
the ρ-meson, for example.

At the time of writing, many interesting results on lattice QCD have been obtained
and much is still to be expected. A very important breakthrough is the formulation of
improved staggered fermion (ISF) actions, which approximate the continuum action
to higher order in the latice constant than the straightforward lattice formulations
discussed so far [57–59]. This makes it possible to obtain results for heavy quark,
and even for lighter ones, important properties have been or are calculated [59],
such as decay constants for excited hadron states.

An interesting state of matter is the quark–gluon plasma, which is the QCD
analog of the Kosterlitz-Thouless phase transition: the hadrons can be viewed as
bound pairs or triplets of quarks, but for high densities and high temperatures, the
‘dielectric’ system may ‘melt’ into a ‘conducting’, dense system of quarks and
gluons. This seems to have been observed very recently after some ambiguous
indications. It turns out that this state of matter resembles a liquid. Lattice gauge
theorists try to match these results in their large-scale QCD calculations. For a
recent review, see Ref. [60].

To conclude, we describe how to update gauge fields in a simulation. In a Met-
ropolis approach we want to change the matrices Uµ(n) and then accept or reject
these changes. A way to do this is to fill a list with ‘random SU(3)’ matrices, which
are concentrated near the unit matrix. We multiply our link matrix Uµ(n) by a
matrix taken randomly from the list. For this step to be reversible, the list must
contain the inverse of each of its elements. The list must be biased towards the unit
matrix because otherwise the changes in the matrices become too important and
the acceptance rate becomes too small. Creutz has developed a clever heat bath
algorithm for SU(2) [6, 61]. Cabibbo and Marinari have devised an SU(3) variant
of this method in which the heat bath is successively applied to SU(2) subgroups
of SU(3) [62].

Exercises

15.1 Consider the Gaussian integral

I1 =
∫ ∞

−∞
dx1 . . . dxN e−xAx

where x = (x1, . . . , xN) is a real vector and A is a Hermitian and positive N × N
matrix (positive means that all the eigenvalues λi of A are positive).

(a) By diagonalising A, show that the integral is equal to

I1 =
√
(2π)N∏N

i=1 λi
=
√
(2π)N

det(A)
.

Exercises 533

(b) Now consider the integral

I2 =
∫

dx1 dx∗
1 . . . dxN dx∗

N e−x†Ax

where x is now a complex vector. Show that

I2 = (2π)N

det(A)
.

15.2 In this problem and the next we take a closer look at the free field theory. Consider
the one-dimensional, periodic chain of particles with harmonic coupling between
nearest neighbours, and moving in a harmonic potential with coupling constant m2.
The Lagrangian is given by

L = 1

2

∞∑
n=−∞

[φ̇2
n − (φn − φn+1)

2 − m2φ2
n].

We want to find the Hamiltonian H such that∫
[Dφn] e−S = 〈�i|e−(tf −ti)H|�f〉

where

S =
∫ tf

ti
L[φn(t)] dt

and the path integral
∫ [Dφn] is over all field configurations {φn} compatible with �i

at ti and �f at tf .
We use the Fourier transforms

φk =
∑

n

φn eikn; φn =
∫ 2π

0

dk

2π
φk e−ikn.

(a) Show that from the fact that φn is real, it follows that φk = φ∗
−k , and that the

Lagrangian can be written as

L = 1

2

∫ 2π

0

dk

2π
{|φ̇k|2 − φ−k[m2 + 2(1 − cos k)]φk}.

This can be viewed as a set of uncoupled harmonic oscillators with coupling
constant ω2

k = m2 + 2(1 − cos k).
(b) In Section 12.4 we have evaluated the Hamiltonian for a harmonic oscillator. Use

the result obtained there to find

H = 1

2

∫ 2π

0

dk

2π
{π̂(k)π̂(−k)+ φ̂(−k)[m2 + 2(1 − cos k)]φ̂(k)},

where the hats denote operators; π̂(k) is the momentum operator conjugate to
φ̂(k) – they satisfy the commutation relation

[π̂(k), φ̂(−k′)] = i
∑

n

eik(k−k′)n = 2πδ(k − k′),

where the argument of the delta-function should be taken modulo 2π .

534 Computational methods for lattice field theories

(c) To diagonalise the Hamiltonian we introduce the operators

âk = 1√
4πωk

[ωkφ̂(k)+ iπ̂(k)];

â†
k = 1√

4πωk
[ωkφ̂

†(k)− iπ̂†(k)].
Show that

[ak , ak′] = [ak , a†
−k′] = δ(k − k′).

(d) Show that H can be written in the form

H = 1

2

∫ 2π

0
dk ωk(a

†
kak + aka†

k) =
∫ 2π

0
dk ωk

(
a†

kak + 1

2

)
.

15.3 Consider the path integral for the harmonic chain of the previous problem. We have
seen that the Lagrangian could be written as a k-integral over uncoupled
harmonic-oscillator Lagrangians:

L =
∫ 2π

0
dkL(k) = 1

2

∫ 2π

0
dk
[|φ̇(k)|2 − ω2

k |φ(k)|2
]
.

We discretise the time with time step 1 so that

φ̇(k, t) → φ(k, t + 1)− φ(k, t).

(a) Show that the Lagrangian can now be written as a two-dimensional Fourier
integral of the form:

L = −1

2

∫
d2q

(2π)2
ω̃2

q|φ(q)|2

with
ω̃2

q = m2 + 2(1 − cos q0)+ 2(1 − cos q1);

q0 corresponds to the time component and q1 to the space component.
(b) Show that in the continuum limit (small q), the two-point Green’s function in

q-space reads

〈φqφq′ 〉 = 1

m2 + q2 δq,−q′ .

15.4 [C] The multigrid Monte Carlo program for the φ4 field theory can be extended
straightforwardly to the XY model. It is necessary to work out the coarsening of the
Hamiltonian. The Hamiltonian of the XY model reads

H = −
∑
〈n,n′〉

J cos(φn − φn′).

In the coarsening procedure, the new coupling constant will vary from bond to bond,
and apart from the cosines, sine interactions will be generated. The general form
which must be considered is therefore

H = −
∑
〈nn′〉

[Jnn′ cos(φn − φn′)+ Knn′ sin(φn − φn′)].

Exercises 535

The relation between the coarse coupling constants JNN ′ , KNN ′ and the fine ones is

JNN ′ =
∑

nn′|NN ′
[Jnn′ cos(φn − φn′)+ Knn′ sin(φn − φn′)];

KNN ′ =
∑

nn′|NN ′
[Knn′ cos(φn − φn′)− Jnn′ sin(φn − φn′)];

see Figure 15.5.

(a) Verify this.
(b) [C] Write a multigrid Monte Carlo program for the XY model. Calculate the

helicity modulus using (15.97) and and check the results by comparison with
Figure 15.4.

15.5 In this problem we verify that the SOR method for the free field theory satisfies
detailed balance.

(a) Consider a site n, chosen at random in the SOR method. The probability
distribution according to which we select a new value for the field φn in the heat
bath method is

ρ(φn) = exp[−a(φn − φ̄n)
2/2],

where φ̄n is the average value of the field at the neighbouring sites. In the SOR
method we choose for the new value φ′

n at site n:

φ′
n = φ̃n + r

√
ω(2 − ω)/a,

where

φ̃n = ωφ̄n + (1 − ω)φn

and where r is a Gaussian random number with standard deviation 1. Show that
this algorithm corresponds to a transition probability

T(φn → φ′
n) ∝ exp

[
− a

ω(2 − ω)
(φ′

n − φ̃n)
2
]

.

(b) Show that this transition probability satisfies the detailed balance condition:

T(φn → φ′
n)

T(φ′
n → φn)

= exp[−a(φ′
n − φ̄n)

2/2]
exp[−a(φn − φ̄n)2/2] .

15.6 The Wilson loop correlation function for compact QED in (1 + 1) dimensions can be
solved exactly. Links in the time direction have index µ = 0, and the spatial links
have µ = 1. We must fix the gauge in order to keep the integrals finite. The so-called
temporal gauge turns out convenient: in this gauge, the angles θ0 living on the
time-like bonds are zero, so that the partition sum is a sum over angles θ1 on spatial
links only. Therefore there is only a contribution from the two space-like sides of the

536 Computational methods for lattice field theories

rectangular Wilson loop. The Wilson loop correlation function is defined as

W(C) =
∫ 2π

0

∏
n,µ dθµ(n) e

β cos
[∑

n;µν θµν(n)
]

ei
∑
(n,µ)εC θµ(n)

∫ 2π
0

∏
n,µ dθµ(n) e

β cos
[∑

n;µν θµν(n)
] .

A plaquette sum over the θ angles for a plaquette with lower-left corner at n reduces
in the temporal gauge to:

◦∑
n;µν

θµν(n) = θ1(n0, n1)− θ1(n0 + 1, n1).

(a) Show that in the temporal gauge the Wilson loop sum can be written as∑
(n,µ)εC

θµ(n) =
∑

(n;µν)εA

◦∑
n;µν

θµν(n)

where A is the area covered by the plaquettes enclosed by the Wilson loop.
(b) Use this to show that the Wilson loop correlation function factorises into a

product of plaquette-terms. Defining

θP(n) = ◦∑
n;µν

θµν(n),

where P denotes the plaquettes, we can write:

W(C) =
∫ ∏

P dθP exp[β cos θP + iθP]∫ ∏
P dθP exp[β cos θP] .

(c) Show that this leads to the final result:

W(C) =
[

I1(β)

I0(β)

]A

where In(x) is the modified Bessel function and A is the area enclosed by the
Wilson loop.

References

[1] R. Balian and J. Zinn-Justin, eds., Méthodes en théorie des champs / Methods in Field Theory,
Les Houches Summer School Proceedings, vol. XXVIII. Amsterdam, North-Holland, 1975.

[2] C. Itzykson and J.-B. Zuber, Quantum Field Theory. New York, McGraw-Hill, 1980.
[3] S. Weinberg, The Quantum Theory of Fields, vols. 1 and 2. Cambridge, Cambridge University

Press, 1995.
[4] D. Bailin and A. Love, Introduction to Gauge Field Theory. Bristol, Adam Hilger, 1986.
[5] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd edn. New York, Oxford

University Press, 1996.
[6] M. Creutz, Quarks, Gluons and Lattices. Cambridge, Cambridge University Press, 1983.
[7] M. Lüscher and P. Weisz, ‘Scaling laws and triviality bounds in the lattice-φ4 theory. 1. One-

component model in the symmetric phase,’ Nucl. Phys. B, 290 (1987), 25–60.
[8] M. Lüscher, ‘Volume dependence of the energy spectrum in massive quantum field theories (I).

Stable particle states,’ Commun. Math. Phys., 104 (1986), 177–206.

References 537

[9] J. Goodman and A. D. Sokal, ‘Multigrid Monte Carlo method for lattice field theories,’ Phys.
Rev. Lett., 56 (1986), 1015–18.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd edn.
Cambridge, Cambridge University Press, 1992.

[11] S. L. Adler, ‘Over-relaxation method for the Monte Carlo evaluation of the partition function
for multiquadratic actions,’ Phys. Rev. Lett., 23 (1981), 2901–4.

[12] C. Whitmer, ‘Over-relaxation methods for Monte Carlo simulations of quadratic and multiquad-
ratic actions,’ Phys. Rev. D, 29 (1984), 306–11.

[13] S. Duane and J. B. Kogut, ‘Hybrid stochastic differential-equations applied to quantum
chromodynamics,’ Phys. Rev. Lett., 55 (1985), 2774–7.

[14] S. Duane, ‘Stochastic quantization versus the microcanonical ensemble – getting the best of
both worlds,’ Nucl. Phys. B, 275 (1985), 398–420.

[15] E. Dagotto and J. B. Kogut, ‘Numerical analysis of accelerated stochastic algorithms near a
critical temperature,’ Phys. Rev. Lett., 58 (1987), 299–302.

[16] E. Dagotto and J. B. Kogut, ‘Testing accelerated stochastic algorithms in 2 dimensions – the
SU(3) × SU(3) spin model,’ Nucl. Phys. B, 290 (1987), 415–68.

[17] G. G. Batrouni, G. R. Katz, A. S. Kronfeld, et al., ‘Langevin simulation of lattice field theories,’
Phys. Rev. D, 32 (1985), 2736–47.

[18] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, ‘Hybrid Monte Carlo,’ Phys. Lett. B,
195 (1987), 216–22.

[19] M. Creutz, ‘Global Monte Carlo algorithms for many-fermion systems,’ Phys. Rev. D, 38 (1988),
1228–38.

[20] R. H. Swendsen and J.-S. Wang, ‘Nonuniversal critical dynamics in Monte Carlo simulations,’
Phys. Rev. Lett., 58 (1987), 86–8.

[21] U. Wolff, ‘Comparison between cluster Monte Carlo algorithms in the Ising models,’ Phys. Lett.
B, 228 (1989), 379–82.

[22] C. M. Fortuin and P. W. Kasteleyn, ‘On the random cluster model. I. Introduction and relation
to other models,’ Physica, 57 (1972), 536–64.

[23] J. Hoshen and R. Kopelman, ‘Percolation and cluster distribution. I. Cluster multiple labeling
technique and critical concentration algorithm,’ Phys. Rev. B, 14 (1976), 3438–45.

[24] U. Wolff, ‘Monte Carlo simulation of a lattice field theory as correlated percolation,’ Nucl. Phys.
B, FS300 (1988), 501–16.

[25] M. Sweeny, ‘Monte Carlo study of weighted percolation clusters relevant to the Potts models,’
Phys. Rev. B, 27 (1983), 4445–55.

[26] M. Creutz, ‘Microcanonical Monte Carlo simulation,’ Phys. Rev. Lett., 50 (1983), 1411–14.
[27] U. Wolff, ‘Collective Monte Carlo updating for spin systems,’ Phys. Rev. Lett., 69 (1989), 361–4.
[28] R. G. Edwards and A. D. Sokal, ‘Dynamic critical behaviour of Wolff’s collective-mode Monte

Carlo algorithm for the two-dimensional O(n) nonlinear σ model,’ Phys. Rev. D, 40 (1989),
1374–7.

[29] B. Nienhuis, ‘Coulomb gas formulation of two-dimensional phase transitions,’ Phase Transitions
and Critical Phenomena, vol. 11 (C. Domb and J. L. Lebowitz, eds.). London, Academic Press,
1987.

[30] D. J. Bishop and J. D. Reppy, ‘Study of the superfluid transition in two-dimensional 4He films,’
Phys. Rev. Lett., 40 (1978), 1727–30.

[31] C. J. Lobb, ‘Phase transitions in arrays of Josephson junctions,’ Physica B, 126 (1984), 319–25.
[32] T. Ohta and D. Jasnow, ‘XY model and the superfluid density in two dimensions,’ Phys. Rev. B,

20 (1979), 139–46.
[33] M. Kosterlitz and D. J. Thouless, ‘Ordering, metastability and phase transitions in two-

dimensional systems,’ J. Phys. C, 6 (1973), 1181–203.
[34] M. Plischke and H. Bergersen, Equilibrium Statistical Physics. Englewood Cliffs, NJ, Prentice-

Hall, 1989.

538 Computational methods for lattice field theories

[35] C. Dress and W. Krauth, ‘Cluster algorithm for hard spheres and related systems,’ J. Phys. A,
28 (1995), L597–601.

[36] J. Liu and E. Luijten, ‘Rejection-free geometric cluster algorithm for complex fluids,’ Phys. Rev.
Lett., 92 (2004), 035504.

[37] J. R. Heringa and H. W. J. Blöte, ‘Geometric cluster Monte Carlo simulation,’ Phys. Rev. E, 57
(1998), 4976–8.

[38] J. D. Jackson, Classical Electrodynamics, 2nd edn. New York, John Wiley, 1974.
[39] J. W. Negele and H. Orland, Quantum Many-particle Systems. Frontiers in Physics, Redwood

City, Addison-Wesley, 1988.
[40] F. Wegner, ‘Duality in generalized Ising models and phase transitions without local order

parameters,’ J. Math. Phys., 12 (1971), 2259–72.
[41] K. G. Wilson, ‘Confinement of quarks,’ Phys. Rev. D, 10 (1974), 2445–59.
[42] J. B. Kogut, ‘An introduction to lattice gauge theory and spin systems,’ Rev. Mod. Phys., 51

(1979), 659–713.
[43] H. J. Rothe, Lattice Gauge Theories: An Introduction. Singapore, World Scientific, 1992.
[44] A. H. Guth, ‘Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge

theory,’ Phys. Rev. D, 21 (1980), 2291–307.
[45] J. B. Kogut, ‘The lattice gauge theory approach to quantum chromodynamics,’ Rev. Mod. Phys.,

55 (1983), 775–836.
[46] H. B. Nielsen and M. Ninomiya, ‘Absence of neutrinos on a lattice. 1. Proof by homotopy theory,’

Nucl. Phys. B, 185 (1981), 20–40.
[47] J. B. Kogut and L. Susskind, ‘Hamiltonian form of Wilson’s lattice gauge theories,’ Phys. Rev.

D, 11 (1975), 395–408.
[48] T. J. Banks, R. Myerson, and J. B. Kogut, ‘Phase transitions in Abelian lattice gauge theories,’

Nucl. Phys. B, 129 (1977), 493–510.
[49] J. Kuti, ‘Lattice field theories and dynamical fermions,’ in Computational Physics. Proceedings

of the 32nd Scottish University Summer School in Physics (R. D. Kenway and G. S. Pawley,
eds.). Nato ASI, 1987, pp. 311–78.

[50] F. Fucito and G. Marinari, ‘A stochastic approach to simulations of fermionic systems,’ Nucl.
Phys. B, 190 (1981), 266–78.

[51] G. Bahnot, U. M. Heller, and I. O. Stamatescu, ‘A new method for fermion Monte Carlo,’ Phys.
Lett. B, 129 (1983), 440–4.

[52] J. Polonyi and H. W. Wyld, ‘Microcanonical simulation of fermion systems,’ Phys. Rev. Lett.,
51 (1983), 2257–60.

[53] O. Martin and S. Otto, ‘Reducing the number of flavors in the microcanonical method,’ Phys.
Rev. D, 31 (1985), 435–7.

[54] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar, ‘Hybrid molecular dynamics
algorithm for the numerical simulation of quantum chromodynamics,’ Phys. Rev. D, 35 (1988),
2531–42.

[55] D. J. Gross and F. Wilczek, ‘Ultra-violet behavior of non-abelian gauge theories,’ Phys. Rev.
Lett., 30 (1973), 1343–6.

[56] H. D. Politzer, ‘Reliable perturbation results for strong interactions,’ Phys. Rev. Lett., 30 (1973),
1346–9.

[57] S. Naik, ‘On-shell improved action for QCD with Susskind fermions and the asymptotic freedom
scale,’ Nucl. Phys. B, 316 (1989), 238–68.

[58] G. P. Lepage, ‘Flavor-symmetry restoration and Szymanzik improvement for staggered quarks,’
Phys. Rev. D, 59 (1999), 074502.

[59] C. T. H. Davies and G. P. Lepage, ‘Lattice QCD meets experiment in hadron physics.’
hep-lat/0311041, 2003.

References 539

[60] O. Philipsen, ‘The QCD phase diagram at zero and small baryon density.’ hep-lat/0510077,
2005.

[61] M. Creutz, ‘Monte Carlo study of quantized SU(2) gauge theory,’ Phys. Rev. D, 21 (1980),
2308–15.

[62] N. Cabibbo and E. Marinari, ‘A new method for updating SU(N) matrices in computer-
simulations of gauge-theories,’ Phys. Lett. B, 119 (1982), 387–90.

16

High performance computing and parallelism

16.1 Introduction

It is not necessary to recall the dramatic increase in computer speed and the drop
in cost of hardware over the last two decades. Today, anyone can buy a computer
with which all of the programs in this book can be executed within a reasonable
time – typically a few seconds to a few hours.

On the other hand, if there is one conclusion to be drawn from the enormous
amount of research in computational physics, it should be that for most physical
problems, a realistic treatment, one without severe approximations, is still not within
reach. Quantum many-particle problems, for example, can only be treated if the cor-
relations are treated in an approximate way (this does not hold for quantum Monte
Carlo techniques, but there we suffer from minus-sign problems when treating
fermions; see Chapter 12). It is easy to extend this list of examples.

Therefore the physical community always follows the developments in hardware
and software with great interest. Developments in this area are so fast that if a
particular type of machine were presented here as being today’s state of the art,
this statement would be outdated by the time the book is on the shelf. We therefore
restrict ourselves here to a short account of some general principles of computer
architecture and implications for software technology. The two main principles are
pipelining and parallelism. Both concepts were developed a few decades ago, but
pipelining became widespread in supercomputers from around 1980 and has found
its way into most workstations, whereas parallelism has remained more restricted
to the research community and to more expensive machines. The reason for this is
that it is easier to modify algorithms to make them suitable for pipelining than it
is for parallelism. Recently, the dual-core processor has started to find its way into
consumer PCs.

540

16.2 Pipelining 541

Conventional computers are built according to the Von Neumann architecture,
shown in the figure below:

Memory CPU I/O

There is one processor, the CPU (central processing unit), which communicates
with the internal memory and with the I/O devices such as keyboards, screens,
printers, tape streamers and disks. Therefore every piece of data to be manipulated
must pass through the processor which can perform elementary operations at a fixed
rate of one operation per clock cycle. The clock cycle time determines the maximal
speed at which the computer can operate. This limit on the performance speed with
this type of architecture is called the Von Neumann bottleneck.

In the next two sections the two methods for overcoming the Von Neumann
bottleneck, pipelining and parallelism, are discussed, and in the last section we
present a parallel molecular dynamics algorithm in some detail.

16.2 Pipelining

16.2.1 Architectural aspects

Pipelining or vector processing is closely related to a pipeline arrangement in a
production line in a factory. Consider the addition of two floating point numbers,
0.92 × 104, and 0.93 × 103, in a computer. We shall assume that the numbers in
our computer are represented according to the decimal (base 10) system – in reality
mostly a base 2 (binary) or 16 (hexadecimal) system is used. The exponents (powers
of 10) are always chosen such that the mantissas (0.92 and 0.93) lie between 0.1
and 1.0.

The computer will first change the representation of one of the two numbers so
that it has the same exponent as the other, in our case 0.93 × 103 → 0.093 × 104,
then the two mantissas (0.92 and 0.093) are added to give the result 1.013 × 104

and then the representation of this number will be changed into one in which the
mantissa has a value between 0.1 and 1.0: 1.013 × 104 → 0.1013 × 105. All in
all, a number of steps must be carried out in the processor in order to perform this
floating point operation:

Load the two numbers to be added from memory;
Compare exponents;
Line exponents up;
Add mantissas;

542 High performance computing and parallelism

b(i – 1)

Adjust formata(i), b(i)

a(i + 1), b(i + 1)

a(i + 2), b(i + 2)

a(i + 3), b(i + 3)

b(i + 4)a(i + 4)

a(i – 1)

Line up exponents

Compare exponents

Add mantissas

Figure 16.1. A pipeline for adding vectors.

Shift exponent such that the mantissa lies between 0.1 and 1.0;
Write result to memory.

Disregarding the load from and write to memory, we still have four steps to carry
out for the addition. Each of these steps requires at least one clock cycle, and a
conventional processor has to wait until the last step has been completed before it
can accept a new command.

A pipeline processor, however, can perform the different operations needed to
add two floating point numbers at the same time (in parallel). This is of no use
when only two numbers are added, as this calculation must be completed before
starting execution of the next statement. However, if we have a sequence of similar
operations to be carried out, like in the addition of two vectors:

FOR i = 1 TO N DO
c[i] = a[i] + b[i];

END FOR

then it is possible to have the processor comparing the exponents of a[i + 3] and
b[i + 3], lining up the exponents of a[i + 2] and b[i + 2], adding the mantissas of
a[i + 1] and b[i + 1] and putting a[i] and b[i] into the right format simultaneously.
Of course this process acts at full speed only after a[4] and b[4] have been loaded
into the processor and only until a[N] and b[N] have entered it. Starting up and
emptying the pipeline therefore represent a small overhead. Figure 16.1 shows how
the process works and also renders the analogy with the pipeline obvious.

In the course of this pipeline process, one addition is carried out at each clock
cycle. We call an addition or multiplication of real numbers a floating point
operation (FLOP). We see that the pipeline arrangement makes it possible to per-
form one FLOP (FLOP) per clock cycle. Multiplication and division require many
more than four clock cycles in a conventional processor, and if each of the steps
involved in the multiplication or division can be executed concurrently in a pipeline

16.2 Pipelining 543

processor, the speed-up can be much higher than for addition. Often, pipeline pro-
cessors are able to run a pipeline for addition and multiplication simultaneously, and
the maximum obtainable speed, measured in floating point operations per second,
is then increased by a factor of two. A pipeline processor with a clock time of 5 ns
can therefore achieve a peak performance of 2/(5 × 10−9) = 400 MFLOPs per
second (1 MFLOP = 106 FLOPS).

In practice, a pipeline processor will not reach its peak performance for various
reasons. First, the overheads at the beginning and the end of the pipeline slightly
decrease the speed, as we have seen. More importantly, a typical program does
not exclusively contain simultaneous additions and multiplications of pairs of large
vectors. Finally, for various operations, pipeline machines suffer from slow memory
access. This is a result of the fact that memory chips work at a substantially slower
rate than the processor, simply because faster memory is too expensive to include
in the computer. The typical difference in speed of the two is a factor of four (or
more). This means that the pipeline cannot feed itself with data at the same rate
at which it operates, nor can it get rid of its data as fast as they are produced. In
so-called vector processors, the data are read into a fast processor memory, the so-
called vector registers, from which they can be fed into the pipelines at a processor
clock-cycle rate. This still leaves the problem of feeding the vector registers at a fast
enough rate, but if the same vectors are used more than once, a significant increase
increase in performance is realised.

Because of this problem, which may cause the performance for many operations
to be reduced by a factor of four, various solutions have been developed. First of
all, the memory is often organised into four or more memory banks. Suppose that
we have four banks, and that each bank can be accessed only once in four processor
clock cycles (i.e. the memory access time is four times as slow as the processor clock
cycle), but after accessing bank number one, bank number two (or three or four) can
be accessed immediately at the next clock cycle. Therefore, the banks are cycled
through in succession (see Figure 16.2). For this to be possible, vectors are distrib-
uted over the memory banks such that for four banks, the first bank contains the
elements 1, 5, 9, 13 etc., the second one the elements 2, 6, 10, 14 . . . and so on. Cyc-
ling through the memory banks enables the processor to fetch a vector from memory
at a rate of one element per clock cycle. In the case of the vector-addition code above,
this is not enough as two numbers are required per clock cycle. Also, if we want to
carry out operations on the vector elements 1, 5, 9 . . . of a vector, the memory access
time increases by a factor of four. Such problems are called memory bank conflicts.

Another device for solving the slow memory problem is based on the observa-
tion that a program will often manipulate a restricted amount of data more than
once. Therefore a relatively small but fast memory, the so-called cache memory, is
included. This memory acts as a buffer between the main memory and the processor,
and it contains the data which have been accessed most recently by the processor.

544 High performance computing and parallelism

a[1]

a[5]

a[9]

a[13]

a[2]

a[6]

a[10]

a[14]

a[3]

a[7]

a[11]

a[15]

a[4]

a[8]

a[12]

a[16]

...

Figure 16.2. Distribution of one-dimensional array over four memory banks.

Therefore, if a first pipeline using vectors a, b and c is executed, it will cause a
rather large overhead because these arrays have to be loaded from main memory
into the cache. However, a subsequent pipeline using (a subset of) a, b and c will
run much faster because these vectors are still stored in the cache. Obviously the
cache paradigm is based on statistical considerations, and for some programs it
may not improve the performance at all because most data are directly fetched
from main memory (cache trashing). Sometimes, the cache divided into several
levels of increasing speed and cost, but decreasing size. Level-1 cache is built into
the processor; level-2 cache is either part of the processor, or external.

16.2.2 Implications for programming

For a pipeline process to be possible, it should be allowed to run without interruption.
If the processor receives commands to check whether elements of the vector being
processed are zero, or to check whether the loop must be interrupted, it cannot
continue the pipeline and performance drops dramatically. Pipelines usually work
in vector processing mode, in which the processor receives a command such as
‘calculate the scalar product’ or ‘add two vectors’ with as operands the memory
locations (addresses) of the first elements of the vectors, the length of the pipeline
and the address of the output value (scalar or vector). How can we tell the processor
to start a pipeline rather than operate in conventional mode? This is usually done
by the compiler which recognises the parts of our program which can be pipelined.
In the language Fortran 90 the statement

c = a + b,

for one-dimensional arraysa,b andc is equivalent to the vector addition considered
above. This can easily be recognised by a compiler as a statement which can be
executed in pipeline mode.

16.3 Parallelism 545

If we want our program to be pipelined efficiently, there are a few dos and don’ts
which should be kept in mind.

• Avoid conditional statements (‘if-statements’) within loops. Also avoid
subroutine or function calls within loops.

• In the case of nested loops whose order can be interchanged, the longest loop
should always be the interior loop.

• Use standard, preferably machine-optimised software to perform standard tasks.
• If possible, use indexed loops (‘do-loops’) rather than conditional loops

(‘while-loops’).

A few remarks are in order. In the third item, use of standard software for standard
tasks is recommended. There exists a standard definition, called LAPACK, of lin-
ear algebra routines. Often, vendors provide machine-optimised versions of these
libraries; these should always be used if possible.

If a function call or IF-statement cannot be avoided, consider splitting the loop
into two loops: one in which the function calls or if-statements occur, and another in
which the vectorisable work is done. Some computers contain a mask-register which
contains some of the bits which are relevant to a certain condition (e.g. the sign
bit for the condition a[i] > 0). This mask register can be used by the processor to
include the condition in the pipeline process. Finally, compiling with the appropiate
optimisation options will, for some or perhaps most of the above recommendations,
automatically implement the necessary improvements in the executable code.

16.3 Parallelism

16.3.1 Parallel architectures

Parallel computers achieve increase in performance by using multiple processors,
which are connected together in some kind of network. There is a large variety of
possible arrangements of processors and of memory segments over the computer
system. Several architecture classifications exist. The most famous classification is
that of Flynn who distinguishes the following four types of architectures [1,2]:

• SISD: Single Instruction Single Data stream computers;
• MISD: Multiple Instruction Single Data stream computers;
• SIMD: Single Instruction Multiple Data stream computers;
• MIMD: Multiple Instruction Multiple Data stream computers.

The single/multiple instruction refers to the number of instructions that can be per-
formed concurrently on the machine, and the single/multiple data refers to whether
the machine can process one or more data streams at the same time.

546 High performance computing and parallelism

We have already described the SISD type: this is the Von Neumann architecture,
in which there is one processor which can process a single data stream: the sequence
of data which is fetched from or written to memory by the processor. The second
type, MISD is not used in practice but it features in the list for the sake of com-
pleteness. The two last types are important for parallel machines. SIMD machines
consist of arrays of processor elements which have functional units controlled by a
single control unit: this unit sends a message to all processors which then all carry
out the same operation on the data stream accessed by them. MIMD machines con-
sist of an array of processors which can run entire programs independently, and
these programs may be different for each processor. In very large-scale scientific
problems, most of the work often consists of repeating the same operation over and
over. SIMD architectures are suitable for such problems, as the processor elements
can be made faster than the full processors in a MIMD machine at the same cost.
The latter obviously offer greater flexibility and can be used as multi-user machines,
which is impossible for SIMD computers.

Another classification of parallel machines is based on the structure of the
memory. We have distributed memory and shared memory architectures. In the
latter, all processors can all access the same memory area using some communica-
tion network (sometimes they can also communicate the contents of vector registers
or cache to the other processors). In distributed systems on the other hand, each
processor has its own local memory, and processors can interact with each other
(for example to exchange data from their local memories) via the communication
network. Some machines can operate in both modes. Shared memory architectures
are easier to program than distributed memory computers as there is only a single
address space. Modifying a conventional program for a shared memory machine
is rather easy. However, memory access is often a bottleneck with these machines.
This will be clear when you realise that memory bank conflicts are much more likely
to occur when 10 processors are trying to access the memory instead of a single
one. Distributed memory systems are more difficult to program, but they offer more
potential if they are programmed adequately. The shared memory model is adopted
in several supercomputers and parallel workstations containing of the order of 10
powerful vector processors. However, the most powerful machines at present and
for the future seem to be of the distributed memory type, or a mixture of both.

In parallel machines, the nodes, consisting of a processor, perhaps with local
(distributed) memory, must be connected such that data communication can proceed
fast, but keeping an eye on the overall machine cost. We shall mention some of these
configurations very briefly. The most versatile option would be to connect each
processor to each of the others, but this is far too expensive for realistic designs.
Therefore, alternatives have been developed which are either tailored to particular
problems, or offer flexibility through the possibility of making different connections

16.3 Parallelism 547

1 2 3 4

3

2

1

4

Figure 16.3. A crossbar switch connecting four processors. Each processor has
two I/O ports and these are connected together via the crossbar switch. Denoting
by (i, j) a connection from i to j, the switch configuration shown is (1,4), (2,1),
(3,3), (4,2).

using switches. An example of an architecture with switches is a crossbar switch,
shown in Figure 16.3. On each row and on each column, only a single switch may
be connected – in this way binary connections are possible for any pair-partitioning
of the set of processors.

Another way to interconnect processors is to link them together in a grid or chain,
where each processor can communicate with its nearest neighbours on the grid or
chain. Usually, the grids and chains are periodic, so that they have the topology of
a ring or a torus. Rings and two- and three-dimensional tori have the advantage that
they are scalable: this means that with increasing budget, more processors can be
purchased and the machine performance increased accordingly. Furthermore, some
problems in physics and engineering map naturally onto these topologies, such as
a two- or three-dimensional lattice field theory with periodic boundary conditions
which maps naturally onto a torus of the same dimension.

The problem of sending data from one processor to the other in the most efficient
way is called routing. In older machines, this data-traffic, called message passing,
was often a bottleneck for overall performance, but today this is less severe (although
still a major concern).

Another type of network is the binary hypercube. This consists of 2d nodes, which
are labelled sequentially. If the labels of two nodes differ by only one bit, they are
connected. The hypercube is shown for d = 1 to 4 in Figure 16.4. This network has
many more links than the ones which have essentially a two-dimensional layout,
and the substructures of the hypercube include multi-dimensional grids and trees.

In connection with parallel processors, Amdahl’s law is often mentioned. This
law imposes an upper limit on the increase in performance of a program by running

548 High performance computing and parallelism

Figure 16.4. Hypercubes of order 0 (single dot) to order 4 (two cubes, one inside
the other).

it on a parallel machine. Each job can partly be done in parallel, but there will
always be some parts that have to be carried out sequentially. Suppose that on a
sequential computer, a fraction pseq of the total effort consists of jobs which are
intrinsically sequential and that a fraction ppar = 1−pseq can in principle be carried
out in parallel. If we ran the program on a parallel machine and distributed the
parallel parts of the code over P processors, the total run time would decrease by a
factor

tseq

tpar
= pseq + ppar

pseq + ppar/P
= 1

pseq − (1 − pseq)/P
(16.1)

(tseq and tpar are the total run times on the sequential and parallel machine
respectively). The processor efficiency is defined by

P.E. = 1

Ppseq + (1 − pseq)
. (16.2)

The processor efficiency is equal to 1 if all the work can be evenly distributed over
the P processors.

Even if we could make P arbitrarily large, the maximum decrease in runtime
can never exceed 1/pseq – this is Amdahl’s law – and the processor efficiency will
decrease as 1/P. We see that for larger P, increase of performance decays to zero.
Amdahl’s law should not discourage us too much, however, since if we have a larger
machine, we usually tackle larger problems, and as a rule, the parallelisable parts
scale with a higher power of the problem size than the sequential parts. Therefore,
for really challenging problems, a processor efficiency of more than 90% can often
be achieved.

16.3.2 Programming implications

Writing programs which exploit the potential of parallel computers is different
from vectorising, as there are many more operations and procedures that can be
parallelised than can be vectorised. Moreover, we might want to tailor our program
to the particular network topology of the machine we are working on. Ideally,

16.3 Parallelism 549

compilers would take over this job from us, but unfortunately we are still far from
this utopia. There exist various programming paradigms which are in use for parallel
architectures. First of all, we have data-parallel programming versus message-
passing programming. The first is the natural option for shared memory systems,
although in principle it is not restricted to this type of architecture.

In data-parallel programming, all the data are declared in a single program, and
at run-time these data must be allocated either in the shared memory or suitably
distributed over the local memories, in which case the compiler should organise
this process. For example, if we want to manipulate a vector a[N], we declare the
full vector in our program, and this is either allocated as a vector in the shared
memory or it is chopped into segments which are allocated to the local memory
of the processors involved. The message-passing model, however, is suitable only
for distributed memory machines. Each processor runs a program (they are either
all the same or all different, according to whether we are dealing with a SIMD or
MIMD machine) and the data are allocated locally by that program. This means
that if the program starts with a declaration of a real variable a, this variable is
allocated at each node – together these variables may form a vector.

As an example we consider the problem in which we declare the vector a[N] and
initialise this to a[i] = i, i = 1, . . . , N . Then we calculate:

FOR i = 1 TO N DO
a[i] = a[i] + a[((i − 1) MOD N)+ 1];

END DO

In Fortran 90, in the data-parallel model, this would read:

1 INTEGER, PARAMETER :: N=100 ! Declaration of
! array size

2 INTEGER, DIMENSION(N) :: A, ARight ! Declare arrays

3 DO I=1, N ! Initialise A

4 A(I)=I

5 END DO
6 ARight=CSHIFT(A, SHIFT=-1, DIM = 1)! Circular shift

! of A
7 A = A + ARight ! Add A and

! ARight
! result stored
! in B

550 High performance computing and parallelism

In this program, the full vectors A and ARight are declared – if we are dealing
with a distributed memory machine, it is up to the compiler to distribute these over
the nodes. The command CSHIFT returns the vector A, left-shifted in a cyclical
fashion over one position. In the last statement, the result is calculated in vector
notation (Fortran 90 allows for such vector commands). This program would run
equally well on a conventional SISD machine – the compiler must find out how it
distributes the data over the memory and how the CSHIFT is carried out.

In a message-passing model, the program looks quite different:

1 INTEGER, PARAMETER :: N =100 ! Declaration of
! array size

2 INTEGER :: VecElem, RVecElem ! Elements of
! the vector

3 INTEGER :: MyNode, RightNode, & ! Variables to
LeftNode ! contain node

! addresses
4 MyNode = whoami() ! Determine node

! address
5 VecElem = MyNode ! Initialise

! vector element
6 RightNode = MOD(MyNode+1, N)+1 ! Address of

! right neighbour
7 LeftNode = MOD(Mynode-1+N, N)+1 ! Address of left

! neighbour
8 CALL send&get(VecElem, LeftNode, & ! Circular

RVecElem, RightNode) ! left-shift
9 VecElem = VecElem + RVecElem ! Calculate sum

This program is more difficult to understand. In the program it is assumed that there
are at least 100 free processors. They are numbered 1 through 100. The function
whoami() returns the number of the processor – at each processor, MyNode will
have a different value. The variable VecElem is an INTEGER which is allocated
locally on each processor: the same name, VecElem is used to denote a collection
of different numbers. Referring to this variable on processor 11 gives in general a
different result than on processor 37. The right and left neighbours are calculated in
statements 6 and 7. Statement 8 contains the actual message passing:VecElem, the
element stored at the present processor, is sent to its left neighbour and the element
of the right hand neighbour, RVecElem, is received at the present processor. In
statement 9 this is then added to VecElem. A popular system for parallel commu-
nication in the message-passing paradigm is the message-passing system MPI-2,
which is highly portable and offers extensive functionality.

Another classification of programming paradigms is connected with the organisa-
tion of the program. A simple but efficient way of parallelisation is the master–slave

16.3 Parallelism 551

Figure 16.5. The Ising model partitioned over the nodes of a two-dimensional
torus. The nodes are indicated as the heavy squares and on each node part of the
lattice is shown. The dashed lines represent the couplings between spins residing
on neighbouring nodes.

or farmer–worker model. In this model, one processor is the farmer (master) who
tells the workers (slaves) to do a particular job. The jobs are carried out by the work-
ers independently, and they report the results to the farmer, not to each other. An
example is the solution of the Schrödinger equation for a periodic solid. As we have
seen in Chapter 6, Bloch’s theorem can be used, which tells us that the Schrödinger
equation for each particular Bloch vector k in the Brillouin zone can be carried
out independently. So, if the effective one-electron potential is known, the farmer
will tell the workers to diagonalise the Hamiltonian for a set of k-vectors allocated
previously to the worker nodes. If the workers have finished the diagonalisation,
they send the result back to the farmer who will calculate the charge density for
example. Parts of the latter calculation could also be distributed over the workers.

Another model is the peer-to-peer model, in which the nodes are equivalent; they
exchange data without one processor telling the others what to do. An example is
an MC program for the Ising lattice which is partitioned over a two-dimensional
torus. Each node performs the Metropolis or heat-bath algorithm for the part of the
lattice which has been allocated to it, but it needs the neighbouring spins residing
on other nodes. The idea is represented in Figure 16.5.

Finally, in the macro-pipelining model, each node performs a subtask of a large
job. It yields processed data which are then fed into the next node for further
processing. The nodes thus act in a pipelined mode, hence the name macro-
pipelining, as opposed to micro-pipelining which takes place within a (pipeline-)
processor. An example is the processing of a huge amount of time-series consisting

552 High performance computing and parallelism

of a set of N real values. The aim is to filter the data according to some scheme
defined in terms of the Fourier components. In that case, the first node would
Fourier-transform the data, the second one would operate on the Fourier coeffi-
cients (this is the actual filter) and a third one would Fourier-transform the results
back to real time; the three parts are arranged in a pipeline.

16.4 Parallel algorithms for molecular dynamics

In Chapter 8 we discussed the molecular dynamics (MD) method in some detail.
In the standard microcanonical MD algorithm, Newton’s equations of motion are
solved in order to predict the evolution in time of an isolated classical many-
particle system. From the trajectory of the system in phase space we can determine
expectation values of physical quantities such as temperature, pressure, and the pair
correlation function.

We consider the MD simulation of argon in the liquid phase, which was discussed
rather extensively in Chapter 8. The total interaction energy is a sum of the Lennard–
Jones potentials between all particle pairs. The force on a particular particle is
therefore the sum of the Lennard–Jones forces between this and all the other
particles in the system. The evaluation of these forces is the most time-consuming
step of the simulation, as this scales as the square of the number N of particles
in the system. It therefore seems useful to parallelise this part of the simulation.

There exist essentially two methods for doing this. The first method is based
on a spatial decomposition of the system volume: the system is divided up into
cells, and the particles in each cell are allocated to one node. The nodes must have
the same topology as the system cells, in the sense that neighbouring cells should
be allocated to neighbouring nodes whenever possible. The particles interact with
the other particles in their own cell, and with the particles in neighbouring cells.
Interactions between particles in non-neighbouring cells are neglected. The smallest
diameter of a cell must therefore be large enough to justify this approximation: in
other words, the Lennard–Jones interaction must be small enough for this distance
and beyond. A problem is that particles may tend to cluster in some regions in phase
space, in particular when there is phase separation or when the system is close to a
second order phase transition. Then some nodes may contain many more particles
than others. In that case the nodes with fewer particles remain inactive for a large
part of the time. This is a general problem in parallelism, called load balancing.
Moreover, particles move and may leave the cell they are in, and therefore the
allocation of the particles to the cells must be updated from time to time (similar to
the procedure in Verlet’s neighbour list: see Section 8.2).

The simplest version of this algorithm is realised by dividing up the system along
one dimension. In this way, one obtains slices of the system, the thickness of which

16.4 Parallel algorithms for molecular dynamics 553

Particles

Forces Forces

Particles

Figure 16.6. The parallel molecular dynamics procedure. At each time step, the
particle positions are sent to the right neighbours. There, the forces on the local
particles, and on the particles just received from the left box, are calculated. These
forces are then sent back to the left slice so that they can be added to the total
force calculated there. Now the particles can be moved according to the Verlet
algorithm.

should exceed the cut-off of the Lennard–Jones force. The force evaluation is then
implemented according to the following scheme.

Send particles in slice to the right neighbour;
Receive guest particles from left neighbour;
FOR all particle pairs in present slice DO

Calculate forces for particles in present slice due to
particles in this slice and store their values;

END FOR;
FOR all particles in present slice DO

FOR all particles received from left neighbour DO
Calculate forces between ‘resident’ and ‘guest’ particle;
Store force on resident particle in resident force array;
Store force on ‘guest’ particle in a sending array

END FOR;
END FOR;
Send forces on guest particles to left neighbour;
Receive forces on resident particles from right neighbour;
Add these last forces to total forces on resident particles;
Move particles according to Verlet algorithm.

The procedure is represented in Figure 16.6.
To evaluate this method, we give results for the performance of an MD simulation

for a rectangular box of size NL × L × L. This was divided up into N cubic L ×
L × L boxes, each of which was allocated to a different processor. In total N ×
2048 particles were present in the system, where N is the number of processors.

554 High performance computing and parallelism

The density was 1.0 and the temperature was 0.8 (in reduced units). Running this
program for 1000 time steps on a SGI Altix MIMD system took 20 ±1 seconds per
step using 4, 8 and 16 processors.

A second approach focuses on the evaluation of the double sum in the force
calculation. The p nodes available are connected in a ring topology: each node is
connected to a left and a right neighbour, and the leftmost node is connected to the
rightmost node and vice versa. The particles are again divided over the nodes, but
not in a way depending on their positions in the physical system: of the N particles,
the first N/p are allocated to node number 1, the next N/p to node number 2 and so
on (we suppose that N/p is an integer for simplicity). Each node therefore contains
the positions and momenta of the particles allocated to it (we shall use the leap-
frog algorithm for integrating the equations of motion) – these are called the local
particles. In addition to these data, each node contains memory to store the forces
acting on its local particles, and sufficient memory to contain positions and momenta
of ‘travelling particles’, which are to be sent by the other nodes. The number of
travelling particles at a node equals the number of local particles, and therefore we
need to keep free memory available for 6N/p real numbers in order to be able to
receive these travelling particle data.

In the first step of the force calculation, all the interactions of local particles with
other local particles are calculated, as described in Chapter 8. Then each node copies
its local positions and momenta to those of the travelling particles. Each node then
sends the positions and momenta of its travelling particles to the left, and it receives
the data sent by its right neighbour into its travelling particle memory area. At this
point, node 1, which still contains the momenta and positions of its local particles
in its local particle memory area, contains the positions and momenta of the local
particles of node 2 in its travelling memory area. The travelling particles of node 1
have been sent to node p.

Now the contributions to the forces acting on the local particles of each node
resulting from the interactions with the travelling particles are calculated and added
to the forces. Then the travelling particles are again sent to the left neighbour and
received from the right neighbour (modulo PBC), and the calculation proceeds in
the same fashion. When each segment of travelling particles has visited all the
nodes in this way, all the forces have been calculated, and the new local positions
and momenta are calculated according to the leap-frog scheme in each processor.
Then the procedure starts over again, and so on. The motion of the particles over the
nodes in the force calculation is depicted in Figure 16.7. This algorithm is called the
systolic algorithm [3], because of the similarity between the intermittent data-traffic
and the heart beat.

We now give the systolic algorithm in schematic from, using a data-parallel
programming mode. This means that at each node, memory is allocated for the local
particles, forces and travelling particles, but the data contained in this memory are

16.4 Parallel algorithms for molecular dynamics 555

p

local

travel

local local local local

2 3 p – 11

travel travel travel travel

Figure 16.7. The systolic algorithm for calculating the forces in a many-particle
system with pair-wise interactions.

different for each node. It is assumed that the local particles are initialised correctly
at the beginning – in practice this is done by a so-called host processor, which is
either one of the nodes, or a so-called front-end computer, which usually executes
the sequential parts of a program.

ROUTINE NodeStep
REPEAT

Calculate forces on local particles;
Perform leap-frog step for local particles;

UNTIL Program stops;
END ROUTINE Node Step;
ROUTINE Calculate forces on local particles

Calculate contributions from local particles;
Copy local particles to travelling particles;
DO K = 1, P − 1

Send travelling particles to the left (modulo PBC);
Receive data from right neighbour and load into

memory used by travelling particles;
Calculate contributions to local forces from travelling particles;

END DO
END ROUTINE Calculate forces on local particles;

The systolic algorithm does not suffer from load-balance problems, as the work
to be executed at each node is the same. Only if the number of particles N is not
equal to an integer times the number of nodes does the last processor contain fewer
particles than the remaining ones, so that a slight load-imbalance arises.

In the form described above, the systolic algorithm does not exploit the fact that
for every pair ij, the force exerted by particle j on particle i is opposite to the force
exerted by i on j, so that these two force contributions need only one calculation.
However, a modification exists which removes this disadvantage [4]. A drawback

556 High performance computing and parallelism

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20 25

1/
(C

PU
 ti

m
e)

Number of processors

Figure 16.8. Execution speed (given as the inverse of the execution time in
seconds) of the systolic MD algorithm for 864 particles executing 750 steps on a
Transtech Paramid parallel computer.

of the systolic algorithm is the fact that the interactions between all particle pairs are
taken into account in the force calculation, whereas neglecting contributions from
pairs with a large separation, in the case of rapidly decaying forces, can reduce
the number of calculations considerably without affecting the accuracy noticeably.
Of course we can leave out these calculations in the systolic algorithm as well, but
this does not reduce the total number of steps (although some steps will be carried
out faster) and it requires the use of IF-statements within loops, which may degrade
performance of nodes with pipelining facilities (see Section 16.2.2). Therefore,
the efficiency gain by parallelising the force calculation (and the integration of the
equation of motion) may not be dramatic for rapidly decaying interactions.

In Figure 16.8, the execution speed is shown as a function of the number of
processors for an 864 Lennard–Jones system, integrating 750 time steps. A parallel
program is called scalable if the execution speed is proportional to the number
of processors used. We see that for larger numbers of processors, the scalability
gets worse as a result of the increasing amount of interprocessor communication.
This is noticeable here because the runs were performed on a rather old machine: a
Transtech Paramid. On modern machines, the interprocessor communication is so
fast that this algorithm would be seen to be almost perfectly scalable.

References

[1] M. J. Flynn, ‘Very high speed computing systems,’ Proc. IEEE, 54 (1966), 1901–9.
[2] M. J. Flynn, ‘Some computer architectures and their effectiveness,’ IEEE Trans. Comp., C-21

(1972), 948–60.
[3] W. D. Hillis and J. Barnes, ‘Programming a highly parallel computer,’ Nature, 326 (1987), 27–30.
[4] A. J. van der Steen, ed., Aspects of Computational Science: A Textbook on High-Performance

Computing. Den Haag, National Computing Facilities Foundation, 1995.

Appendix A

Numerical methods

A1 About numerical methods

In computational physics, many mathematical operations have to be carried out
numerically. Techniques for doing this are studied in numerical analysis. For a large
variety of numerical problems, commercial or public domain software packages are
available, and on the whole these are recommended in preference to developing all
the numerical software oneself, not only because this saves time but also because
available routines are often coded by professionals and hence are hard to surpass in
generality and efficiency. To avoid eventual problems with using existing numerical
software, it is useful to have some background in numerical analysis. Moreover,
knowledge of this field enables you to write codes for special problems for which
no routine is available. This chapter reviews some numerical techniques which are
often used in computational physics.

There are several ways of obtaining ‘canned’ routines. Commercially available
libraries (such as NAG, IMSL) are of very high quality, but often the source code
is not available, which might prevent your software from being portable. How-
ever, several libraries, such as the ones quoted, are available at many institutes and
companies for various types of computers (‘platforms’), so that in practice this
restriction is not so severe.

Via the internet, it is possible to obtain a wide variety of public domain routines;
a particularly useful site is /www.netlib.org/. Most often these are provided
in source code. Another cheap way of obtaining routines is by purchasing a book on
numerical algorithms containing listings of source codes and, preferably, a CD (or
an internet address) with these sources. A well-known book is Numerical Recipes
by Press et al. [1]. This is extremely useful: it contains very readable introductions to
various subjects in numerical mathematics and describes many algorithms in detail.
It explains the pros and cons of the methods and, most importantly, it explains what
can go wrong and why. Source codes are provided on diskette or CD in C, Fortran
and Pascal, although in some cases people have found it better to use routines from
NAG or Netlib. Apart from Numerical Recipes there are many excellent books in

557

http://www.netlib.org

558 Appendix A

the field of numerical mathematics [2–6] and the interested reader is advised to
consult these.

This appendix serves as a refresher to those readers who have some knowledge
of the subject. Novice readers may catch an idea of the methods and can look up
the details in a specialised book. The choice of problems discussed in this appendix
is somewhat biased: although several methods described here are not used in the
rest of the book, the emphasis is on those that are.

A2 Iterative procedures for special functions

Physics abounds with special functions: functions which satisfy classes of differ-
ential equations or given by some other prescription, and which are usually more
complicated than simple sines, cosines or exponentials. Often we have an iterative
prescription for determining these functions. Such is the case for the solutions to
the radial Schrödinger equation for a free particle:[

−1

2

d2

dr2
+ l(l + 1)

2r2

]
[rRl(r)] = E[rRl(r)], (A.1)

where the units are chosen such that �
2/m ≡ 1 (it is always useful to choose such

natural units to avoid cumbersome exponents). The solutions Rl of (A.1) are known
as the spherical Bessel functions jl(kr) and nl(kr), k = √

2E. The jl are regular for
r = 0 and the nl are irregular (singular). For l = 0, 1, the spherical Bessel functions
are given by:

j0(x) = sin(x)

x
; n0(x) = −cos(x)

x
;

j1(x) = sin(x)

x2 − cos(x)

x
; n1(x) = −cos(x)

x2 − sin(x)

x
.

(A.2)

For higher l, we can find the functions by:

sl+1(x)+ sl−1(x) = 2l + 1

x
sl(x) (A.3)

where sl is either jl or nl. Equation (A.3) gives us a procedure for determining these
functions numerically. Knowing for example j0 and j1, Eq. (A.3) determines j2 and
so on. A three-point recursion relation has two independent solutions, and one of
these may grow strongly with l. If the solution we are after damps out and the other
one grows with l, the solution is unstable with respect to errors that will always
sneak into the solution owing to the fact that numbers are represented with finite
precision in the computer. It turns out that jl damps out rapidly with increasing l,
so that it is sensitive to errors of this kind, especially when l is significantly larger
than x. One can avoid such inaccuracies by performing the recursion downwards

A3 Finding the root of a function 559

instead of upwards. This is done by starting at a value ltop lying significantly higher
than the one we want the Bessel function for. We put sltop+1 equal to zero and
sltop equal to some small value δ. Then, the recursion procedure is carried out
downward until one arrives at the desired l. Notice that the normalisation of the
solution is arbitrary (since it is determined by the arbitrary small number δ). To
normalise the solution, we continue recursion down to l = 0 and then use the fact
that (j0 − xj1) cos x + xj0 sin x = 1 which determines the normalisation constant.

A problem is of course with how large an ltop one should start. In many cases this
can be read off from the asymptotic expression for the functions to be determined.

A3 Finding the root of a function

An important problem in numerical analysis is that of finding the root of a one-
dimensional, real function f :

f (x) = 0. (A.4)

If this problem cannot be solved analytically, numerical alternatives have to be
used, and here we shall describe three of these, the regula falsi, the secant method
and the Newton–Raphson method. Of course, the function f may have more than
one or perhaps no root in the interval under consideration; some knowledge of f is
therefore necessary for the algorithms to arrive at the desired root. If a continuous
function has opposite signs at two points x1 and x2, it must have at least one root
between these points. If we have two points x1 and x2 where our function has
equal signs, we can extend the interval beyond the point where the absolute value
of f is smallest until the resulting interval brackets a root. Also, if the number of
roots between x1 and x2 is even, the function has the same sign on both points; if
we suspect roots to lie within this interval, we split the interval up into a number
of smaller subintervals and check all of them for sign changes. We suppose in the
following that the user roughly knows the location of the root (it might be bracketed,
for example), but that its precise location is required.

The efficiency of a root-finding method is usually expressed in terms of a con-
vergence exponent y for the error in the location of the root. Since root-finding
methods are iterative, the expected error, δn, at some step in the iteration can be
expressed in terms of the error at the previous step, δn−1:

δn = Const. × |δn−1|y. (A.5)

The regula falsi, or false position method, starts with evaluating the function at
two points, x1 and x2, lying on either side of a single root, with x1 < x2. Therefore
the signs of f (x1) ≡ f1 and f (x2) ≡ f2 are opposite. A first guess for the root is

560 Appendix A

found by interpolating f linearly between x1 and x2, resulting in a location

x3 = x2f1 − x1f2
f1 − f2

. (A.6)

If f3 = f (x3) and f1 have opposite signs, we can be sure that the root lies between
x1 and x3 and the procedure is repeated for the interval [x1, x3], else the root lies
in the interval [x3, x2] and this is used in the next step. The procedure stops when
either the size of the interval lies below a prescribed value, or the absolute value of
the function is small enough.

Instead of checking which of the intervals, [x1, x3] or [x3, x2] contains the root,
we might simply use the two x-values calculated most recently to predict the next
one. In that case we use an equation similar to (A.6):

xn+1 = xnfn−1 − xn−1fn
fn−1 − fn

. (A.7)

Here, xn is the value of x obtained at the nth step, so the points xn and xn−1 do not
necessarily enclose the root. This method, called the secant method, is slightly more
efficient than the regula falsi; regula falsi method it has a convergence exponent
equal to the golden mean 1.618 If the function has a very irregular behaviour,
these methods become less efficient and it is more favourable in that case to take
at each step the middle of the current bracket interval as the new point, and then
check whether the root lies in the left or in the right half of the current interval.
This method is called the bisection method. As the size of the intervals is halved at
each step, the exponent y takes on the value 1. For more elaborate and fault-proof
methods, see Ref. [1].

For the Newton–Raphson method, the derivative of the function must be cal-
culated, which is not always possible. Again, a prediction based on a linear
approximation of the function f is made. Starting with a point x0 lying close to
the root, the values of f (x0) ≡ f0 and of its derivative f ′(x0) ≡ f ′

0 suffice to make a
linear interpolation for f , resulting in a guess x1 for the location of the root:

x1 = x0 − f0
f ′
0

. (A.8)

Just as in the secant method or the regula falsi, this procedure is repeated until the
convergence criterion is satisfied. Notice that for a successful guess of the root,
the sign of the derivative of the function f must not change in the region where
the points xi are located. The convergence of this method is quadratic, that is, the
scaling exponent y is equal to 2.

A4 Finding the optimum of a function

Suppose we want to locate the point where a function f assumes its minimum (for
a maximum, we consider the function −f and apply a minimisation procedure).

A4 Finding the optimum of a function 561

x x x x
1 3 24

x x x x
1 3 24

Figure A.1. Bracketing the minimum using the bisection method. The point x4 is
chosen midway between x1 and x3. The two graphs show two possibilities for the
interval at the next step of the iteration. These intervals are indicated by the dotted
lines.

We take f to depend on a single variable at first. A sufficient (but not a necessary)
condition to have a local minimum in the interval [x1, x2] is to have a point x3

between x1 and x2 where f assumes a value smaller than f (x1) and f (x2):

x1 < x3 < x2; (A.9a)

f (x3) < f (x1) and f (x3) < f (x2). (A.9b)

There must always exist such a triad of points closely around the local minimum.
We use this condition to find an interval in which f has a minimum; we say that the
interval [x1, x2] ‘brackets’ the minimum. Then we can apply an algorithm to narrow
this interval down to some required precision. In order to find the first bracketing
interval, consider two initial points x1 and x2 with f (x2) < f (x1). Then we choose a
point x3 beyond x2 and check whether the value of f in x3 is still smaller, or whether
we are going ‘uphill’ again. If that is the case we have bracketed the minimum,
otherwise we continue in the same manner with the points x1 and x3.

We consider now an algorithm for narrowing down the bracketing interval for
the case that we know the derivative of the function f . Then we can use the methods
of the previous section, applied to the derivative of f rather than to f itself. If the
derivative is not known, we can apply a variant of the bisection method described
in the previous section. The procedure is represented in Figure A.1. Suppose we
have points x1, x2, x3 satisfying (A.9). We take a new point x4 either halfway in
between x1 and x3, or between x3 and x2. Suppose we take the first option. Then
either x4 is the lowest point of (x1, x4, x3) or x3 is the lowest point of (x4, x3, x2).
In the first case, the new interval becomes [x1, x3], with x4 as the point in between,
in the second it becomes [x4, x2], with x3 as the point in between, where f assumes
a value lower than at the boundary points of the interval. There exist also methods
for minimising a function if we do not know the derivative. Usually, more elaborate
but more efficient procedures are used, which go by the name of Brent’s method;
for a description see Refs. [1, 7].

562 Appendix A

y

x

0
1

2

2′

Figure A.2. Finding the minimum of a quadratic function f depending on two
variables. The ellipses shown are the contour lines of the function f . The solid
lines represent the steps followed in the steepest decsent method. In the conjugate
gradient method, the minimum is found in two steps, the second step being the
dotted line.

Next we turn to the minimisation of a function depending on more than one
variable. We assume that the gradient of the function is known. To get a feeling for
this problem and the solution methods, imagine that you try to reach the nearest
lowest point in a mountainous landscape. We start off at some point x0 and we
restrict ourselves to piecewise linear paths. An obvious approach is the method of
steepest descent. Starting at some point x0, we walk on a straight line through x0

along the negative gradient g0 at x0:

g0 = −∇f (x0). (A.10)

The points x on this line can be parametrised as

x = x0 + λg0, λ > 0. (A.11)

We minimise f as a function of λ using a one-dimensional minimisation method as
described at the beginning of this section. At the minimum, which we shall call x1,
we have

d

dλ
f (x0 + λg0) = g0 · ∇f (x1) = 0. (A.12)

From this point, we proceed along the negative gradient g1 at the point x1: g1 =
−∇f (x1). Note that the condition (A.12) implies that g0 and g1 are perpendicular:
at each step we change direction by an angle of 90o.

Although the steepest descent method seems rather efficient, it is not the best
possible minimisation method. To see what can go wrong, consider the situation
shown in Figure A.2, for a function depending on two variables, x and y. We start
off from the point x0 along the negative gradient, which in Figure A.2 lies along

A4 Finding the optimum of a function 563

the x-axis. At the point x1, the gradient is along the y-axis:

∂f

∂x
= 0. (A.13)

It now remains to set the derivative along y to zero as well. To this end, we move
up the y-axis, but unfortunately the gradient in the x-direction will start deviating
from 0 again, so that, when we arrive at the point x2 where the y-gradient vanishes,
we must move again in the x-direction, whereby the y-gradient starts deviating
from zero and so on. Obviously, it may take a large number of steps to reduce both
derivatives to zero – only in the case where the contour lines are circular will the
minimum be found in two steps. The more eccentric the elliptic contours are, the
more steps are needed in order to find the minimum, and the minimum is approached
along a zigzag path.

To see how we can do a better job, we first realise that close to a minimum a
Taylor expansion of f has the form

f (x) = f0 + 1
2 x · Hx + · · · , (A.14)

where we have assumed that the minimum is located at the origin and that f assumes
the value f0 there (for the general case, a similar analysis applies). H is the Hessian
matrix, defined as

Hij = ∂2f (x0)

∂xi∂xj
. (A.15)

Note that H is symmetric if the partial derivatives of f are continuous; moreover H is
a positive definite matrix (positive definite means that all the diagonal elements of H
are positive), otherwise we would not be dealing with a minimum but with a saddle
point or a maximum. For the moment, we restrict ourselves to quadratic functions
of the form (A.14) – below we shall see how the same method can be applied to
general functions. The method we describe is called the conjugate gradient method.

If we move from a point xi along a direction hi, we find the point xi+1 by a line
minimisation. For this point xi+1 we have

hi · ∇f (xi+1) = 0. (A.16)

We want to move in a new direction hi+1 along which the gradient along hi remains
zero; therefore the gradient is allowed to change only in a direction perpendicular
to hi. If we move from the point xi over a vector λhi+1, the change in the negative
gradient is given by

�g = −λHhi+1 (A.17)

and we want this change to be orthogonal to the direction hi of the previous line
minimisation, and this implies that

hi · Hhi+1 = 0. (A.18)

564 Appendix A

Vectors hi and hi+1 satisfying this requirement are called conjugate. Since we have
guaranteed the gradient along hi to remain zero along the new path, and as the
second minimisation will annihilate the gradient along hi+1 (which is independent
of hi), at the next point the gradient is zero along two independent directions, and in
the two-dimensional case we have arrived at the minimum of f : in two dimensions,
only two steps are needed to arrive at the minimum of a quadratic function. For n
dimensions, we need n steps to arrive at the minimum. This is less obvious than it
seems. Remember that the second step (along hi+1) was designed such that it does
not spoil the gradient along the direction hi. The third step will be designed such
that it does not spoil the gradient along the direction hi+1. But does it leave the
gradient along hi unchanged as well? For this to be true at all stages of the iteration,
all the directions hi should be conjugate:

hi · Hhj = 0, alli �= j. (A.19)

If H is the unit matrix, this requirement is equivalent to the set {hi} being orthogonal.
For a symmetric and positive Hessian matrix, the set {H1/2hi} is orthogonal for a
conjugate set {hi}.

To see perhaps more clearly where the magic of the conjugate gradients arises
from, we define new vectors yi = √

Hhi. We can always take the square root of H
as this matrix has positive, real eigenvalues (see also Section 3.3). In terms of these
new vectors we have the trivial problem of minimising:

y · y. (A.20)

Starting at some arbitrary point, we can simply follow a sequence of orthogonal
directions along each of which we minimise this expression. Now it is trivial that
these minimisations do not spoil each other. But the fact that the vectors in the set
yi are othogonal implies

hi · Hhj = 0 (A.21)

for i �= j, that is, the directions hi form a conjugate set. Each sequence of con-
jugate search directions therefore corresponds to a sequence of orthogonal search
directions yi.

How can we construct a sequence of conjugate directions? It turns out that the
following recipe works. We start with the negative gradient g0 at x0 and we take
h0 = g0. The following algorithm constructs a new set of vectors xi+1, gi+1, hi+1

from the previous one (xi, gi, hi):

gi+1 = gi − λiHhi; (A.22a)

hi+1 = gi+1 + γihi; (A.22b)

xi+1 = xi + λihi (A.22c)

A5 Discretisation 565

with

λi = gi · gi

gi · Hhi
; (A.23a)

γi = −gi+1 · Hhi

hi · Hhi
. (A.23b)

For this algorithm, the following properties can be verified:

(i) gi · gi+1 = 0 for all i .
(ii) hi+1 · Hhi = 0, for all i.

(iii) gi+1 · hi = 0 for all i (this is equivalent to (A.16)).
(iv) gi · gj = 0 for all i �= j.
(v) hi · Hhj = 0 for all i �= j.

The proof of these statements will be considered in Problem A.2. It is now easy
to derive the following alternative formulas for λi and γi:

λi = gi · hi

hi · Hhi
; (A.24a)

γi = gi+1 · gi+1

gi · gi
. (A.24b)

For an arbitrary (i.e. nonquadratic) function, the conjugate gradient method will
probably be less efficient. However, it is expected to perform significantly better
than the steepest descent method, in particular close to the minimum where f can be
approximated well by a quadratic form. A problem is that the above prescription can-
not be used directly as we do not know the matrix H. However, in this case λi can be
found from a line minimisation: xi+1 should be such that it is a minimum of f along
the line xi +λihi, in other words hi · ∇f (xi +λihi) = 0. For a quadratic function as
considered above, this condition does indeed reduce to (A.24a); for a general func-
tion we use the bisection minimisation or Brent’s method. We know then the value
of xi+1. The gradients gi+1 can be calculated directly as gi+1 = −∇f (xi+1). We
use gi+1 and gi, together with equation (A.24b) to find γi+1, and use this in (A.22b)
to find hi+1. We see that the function values and gradients of f suffice to construct
a sequence of directions which in the case of a quadratic function are conjugate.

A5 Discretisation

In the equations of physics, most quantities are functions of continuous variables.
Obviously, it is impossible to represent such functions numerically in a computer
since real numbers are always stored using a finite number of bits (typically 32
or 64) and therefore only a finite number of different real numbers is available.
But even storing a function for all arguments allowed by the computer resolution is

566 Appendix A

impossible since the memory required for this would exceed any reasonable bounds.
Instead of representing the functions with the maximum precision possible, they are
usually defined on a much coarser grid, specified by the user and independent of the
representation of real numbers in the computer. Most problems can be solved with
sufficient accuracy using discretised variables. One should, however, in all cases
be careful in choosing the discretisation step; a balance must be found between the
number of values and the level of precision .

Suppose we want to solve Newton’s equations for the motion of a satellite orbiting
around the Earth. Its path is quite smooth, the velocity changes relatively slowly
so that a relatively large and constant time interval yields accurate results. If we
consider a rocket launched from the Earth which should orbit around the Moon,
most of the path between Earth and Moon will be smooth so that a large time step
is possible, but when the rocket comes close to the Moon, its velocity may change
strongly because of the Moon’s attraction, and a smaller time step will then be
necessary to keep the representation accurate.

Very many numerical methods are based on discretisation. If a function is repres-
ented on a discrete grid, it is possible to reconstruct the function by interpolation.
Interpolation often consists of constructing a polynomial that assumes the same
value as the discretised function on the grid points. The larger the number of points
taken into account, the higher the order of the interpolation polynomial. A higher
order implies a more accurate interpolation, but too high an order often results in
strongly oscillatory behaviour of the polynomial between the grid points, so that it
deviates strongly from the original function there. Interpolations are often used to
derive numerical methods with a high order of accuracy. Examples can be found
in the next two sections. When discretising a function, it should always be kept in
mind that the interval must be chosen such that the main features of the function
are preserved in the discretised representation.

A6 Numerical quadratures

Numerical integration (or quadrature) of a continuous and bounded function on the
interval [a, b] can be done straightforwardly. One defines an equidistant grid on the
interval [a, b]: the grid points xn are given by

xn = a + nh (A.25)

with h = (b − a)/N and the index n running from 0 to N . It is clear that a (crude)
approximation to the integral is given by the sum of the function values on the grid
points: ∫ b

a
f (x)dx ≈ h

N−1∑
n=0

f (xn). (A.26)

A6 Numerical quadratures 567

Such an approximation is useless without an estimate of the error in the result. If f is
continuous and bounded on the interval [xn, xn +h], its value does not deviate from
f (xn)more than Mh, with M some finite constant, depending on the function f and
the values of a and b. Therefore, the relative error in this result is O(h): doubling
the number of integration points reduces the error by a factor of about 2.

A way of approximating the integral of a differentiable function f to second order
in h using the grid points given in Eq. (A.25) is the following. Approximate f on
the interval [xn, xn+1] to first order in h by

f (xn)+ (x − xn)

h
[f (xn+1)− f (xn)] + O(h2), n = 0, . . . , N − 1. (A.27)

Integrating this form analytically on the interval, we obtain∫ b

a
f (x)dx = h

[
1

2
f (x0)+ f (x1)+ f (x2)+ · · · + f (xN−1)+ 1

2
f (xN)

]
+ O(h2).

(A.28)
This is called the trapezoidal rule.

If f is twice differentiable, we can approximate it by piecewise quadratic
functions. For a single interval using three equidistant points, we have∫ b

a
f (x)dx = b − a

6

[
f (a)+ 4f

(
a + b

2

)
+ f (b)

]
+ O[(b − a)5], (A.29)

which is one order of magnitude better than expected, because there is a cancellation
of errors at the left and right hand boundaries, resulting from the symmetry of this
formula. If the interval [a, b] is split up into N/2 subintervals, each of size 2h, we
obtain the following expression:∫ b

a
f (x)dx = h

1

3
[f (x0)+ 4f (x1)+ 2f (x3)+ 4f (x4)+ · · ·

+ 2f (xN−2)+ 4f (xN−1)+ f (xN)] + O(h4). (A.30)

This is an example of Simpson’s rule.
It would be easy to extend this list of algorithms. They all boil down to making

some polynomial approximation of the integrand and then integrating the approx-
imate formula analytically, which is trivial for a piecewise polynomial. Also, many
tricks exist for integrating functions containing singularities, but these are beyond
the scope of this discussion. In all cases, the order of the accuracy is equal to the
number of points used in fitting the polynomial, since for n points one can determine
a polynomial of order n − 1 having the same value as the function to be integrated
on all n points.

A very efficient method consists of repeating the trapezoidal rule and performing
it for successive values of h, each having half the size of the previous one. This
yields a sequence of approximants to the integral for various values of h. These

568 Appendix A

approximants can be fitted to a polynomial and the value for this polynomial at
h = 0 is a very accurate approximation to the exact value. This is called the
Romberg method.

The famous Gauss integration method works essentially the same way as the
polynomial methods for equidistant points described above, but for the grid points
xn the zeroes of the Legendre polynomials are taken, and on the interval [a, b] the
function f is approximated by Legendre polynomials. Legendre polynomials Pl

have the property of being orthonormal on the interval [−1, 1]:∫ 1

−1
Pl(x)Pl′(x)dx = δll′ . (A.31)

The advantage of the Gauss–Legendre method is that its accuracy is much better
than that of other methods using the same number of integration points: the accuracy
of an N-point Gauss–Legendre method is equivalent to that of an equidistant-point
method using 2N points!

We give no derivations but just present the resulting algorithm on the interval
[−1, 1]: ∫ 1

−1
dx f (x) =

N∑
n=1

wnf (xn)+ O(h2N). (A.32)

Here, xn are the zeroes of the Legendre polynomial PN , h is 2/N , xn and wn can be
found in many books. Moreover, there exist programs to generate them [1].

There exist other Gauss integration methods for nonbounded intervals [1].

A7 Differential equations

Many physical theories boil down to one or more differential equations: for example
Newton’s second law, the Schrödinger equation or Maxwell’s equations. It is there-
fore of primary importance to the computational physicist to have available reliable
and efficient methods for solving such equations. As we have seen in Chapter 3 of
this book, we can often determine the stationary functions of a functional instead
of solving the differential equations directly (these equations can even be derived
using such a stationarity condition), but here we restrict ourselves to the direct solu-
tion of the differential equations. In the field of numerical analysis, many methods
have been developed to solve differential equations. Here we shall not treat these
methods in great detail, but review the most common ones and their properties.

What makes a method ‘good’ depends on the problem at hand, and a number of
criteria can be distinguished:

• Precision and speed. Higher precision will generally cost more time, higher
speed will yield less precise results.

A7 Differential equations 569

• Stability. In some methods, errors in the starting values or errors due to the
discrete numerical representation tend to grow during integration, so that the
solutions obtained deviate sometimes strongly from the exact ones. If the errors
tend to grow during integration, the method is called unstable. It is essentially
the same phenomenon as we encountered in the discussion of recursion in
Appendix A2.

• Implementation. Very complicated algorithms are sometimes less favourable
because of the time needed to implement them correctly. This criterion is of
course irrelevant when using existing routines or programs (e.g. from numerical
libraries).

• Flexibility. In all methods, the coordinates are discretised: some methods
demand a fixed discretisation interval. These are less useful for problems with
solutions having strongly varying behaviour (somewhere very smooth and
elsewhere oscillating rapidly).

• Symmetry. For particular types of differential equations we would like the
numerical method to share symmetry properties of the original equation; an
example is time reversibility which might be present in the equation of motion
of a particle. In Chapter 8, symplectic symmetry properties of Hamiltonian
equations and particular integration schemes are discussed.

There are other criteria, such as analyticity of the functions occurring in the
differential equation, which make some methods more suitable than others.

A7.1 Ordinary differential equations

We now describe a number of numerical algorithms for the solution of this type of
equation. In one dimension, a first order differential equation looks like

ẋ(t) = f [x(t), t]. (A.33)

We call the variables x and t ‘space’ and ‘time’ respectively, although in various
problems they will represent completely different quantities. In the following we
integrate always from t = 0. In practice, one integrates from arbitrary values of t,
but the methods described here are trivially generalised.

By writing y(t) = ẋ(t), a second order equation

ẍ(t) = f [x(t), t] (A.34)

can be transformed into two differential equations of the form (A.33):

ẋ(t) = y(t) (A.35a)

ẏ(t) = f [x(t), t] (A.35b)

and the methods that will be discussed are easily generalised to this two-dimensional
case.

570 Appendix A

Stability

As noted above, some differential equations are susceptible to instabilities in the
numerical solution. In first order, one-dimensional equations, taking a small time
step usually guarantees stability, but in higher dimensions or for higher orders it is
not so easy to avoid instabilities. The reason is that such equations have in general
more than one independent solution; the initial values determine how these are
combined into the actual solution. The situation often occurs that the solution we
are after is a damped one (in the direction in which we integrate), but there exists a
growing solution to the equation too which will mix into our numerical solution and
spoil the latter as it grows, just as in the recursion problems discussed in Appendix
A2. If possible, one should integrate in the other direction with the appropriate
initial conditions, so that the required solution is the growing one, as instabilities
are absent in that case.

Sometimes, however, the problem cannot be solved so easily, and this is particu-
larly the case when the two solutions have a very different time scale. There might,
for example, be a combination of a fast and a slow oscillation, where the time scale
of the fast one determines the time step for which the integration is stable. More
tricky is the existence of a very strongly damped term in the solution, which is
easily overlooked (because it damps out so quickly) but might spoil the numerical
solution if the time step used is not adapted to the strongly damped term. Equations
that suffer from this type of problem are called ‘stiff equations’ [4]. For more details
about stiff equations see Ref. [4].

The Runge–Kutta method

This is a frequently used method for the solution of ordinary differential equations.
Like most methods for solving differential equations, the Runge–Kutta method can
be considered as a step-wise improvement of Euler’s forward method, the latter
predicting the solution to the differential equation (A.33), stating that, given x(0),
x(t) for t = h is given by

x(h) = x(0)+ hf [x(0), 0] + O(h2). (A.36)

It is clear that if we use Euler’s rule halfway across the interval (0, h) to estimate
x(h/2), and evaluate f (x, t) for this value of x and t = h/2, we obtain a better
estimate for x(h):

k1 = hf [x(0), 0]
k2 = hf

[
x(0)+ 1

2
k1, h/2

]
x(h) = x(0)+ k2 + O(h3). (A.37)

A7 Differential equations 571

This is called the midpoint rule. The fact that the error is of order h3 can be verified
by expanding x(t) in a power series in t to second order. One can systematically
derive similar rules for higher orders. The most popular one is the fourth order rule:

k1 = hf (x, 0)

k2 = hf

(
x + 1

2
k1, h/2

)

k3 = hf

(
x + 1

2
k2, h/2

)

k4 = hf (x + k3, h)

x(h) = x(0)+ 1

6
(k1 + 2k2 + 2k3 + k4)+ O(h5). (A.38)

We shall not present a derivation of this rule, because it involves some tedious
algebra. Although the name ‘Runge–Kutta method’ is used for the method for
arbitrary order, it is usually reserved for the fourth order version.

The Runge–Kutta method owes its popularity mostly to the possibility of using
a variable discretisation step: at every step, one can decide to use a different time
interval without difficulty. A severe disadvantage for some applications is the fact
that the function f (x, t) has to be evaluated four times per integration step. Espe-
cially when integrating Newton’s equations for many-particle systems, as is done
in molecular dynamics, the force evaluations demand a major part of the com-
puter time, and the Runge–Kutta method with its large number of force evaluations
becomes therefore very inefficient.1

It is possible to implement the Runge–Kutta method with a prescribed maximum
error, δ, to the resulting solution, by adapting the step size automatically. In this
method the fact that the Runge–Kutta rule has an order h5 error is used to predict for
which time step the desired accuracy will be achieved. For each time step t, the value
of x at time t +h is calculated twice, first using a time interval h and then using two
intervals, each of length h/2. By comparing the two results, it is possible to estimate
the time step needed to determine the resulting value with the prescribed precision
δ. If the absolute value of the difference between the two results is equal to �, the
new time step h′ is given by h′ = (15/16)h(δ/�)1/5, as can easily be verified. It
is recommended to use the Runge–Kutta rule only in this implementation, because
when using a constant time step the user gets no warning whatsoever about this
step being too large (for example when the function f is varying strongly) and the
solution may deviate appreciably from the exact one without this being noticed.

1 The fact that Runge–Kutta methods are not symplectic is another reason why they are not suitable for this
application – see Chapter 8.

572 Appendix A

Verlet algorithm

The Verlet algorithm is a simple method for integrating second order differential
equations of the form

ẍ(t) = F[x(t), t]. (A.39)

It is used very often in molecular dynamics simulations because of its simplicity
and stability (see Chapter 8). It had been mentioned already at the end of the
eighteenth century [8, 9]. It has a fixed time discretisation interval and it needs only
one evaluation of the ‘force’ F per step. The Verlet algorithm is easily derived by
adding the Taylor expansions for the coordinate x at t = ±h about t = 0:

x(h) = x(0)+ hẋ(0)+ h2

2
F[x(0), 0] + h3

6
...
x (0)+ O(h4) (A.40)

x(−h) = x(0)− hẋ(0)+ h2

2
F[x(0), 0] − h3

6
...
x (0)+ O(h4) (A.41)

leading to

x(h) = 2x(0)− x(−h)+ h2F[x(0), 0] + O(h4). (A.42)

Knowing the values of x at time 0 and −h, this algorithm predicts the value of x(h).
We always need the last two values of x to produce the next one. If we only have the
initial position, x(0), and velocity, v(0), at our disposal, we approximate x(h) by

x(h) = x(0)+ v(0)h + h2

2
F[x(0), 0] + O(h3). (A.43)

The algorithm is invariant under time reversal (as is the original differential equa-
tion). This means that if, after having integrated the equations for some time, time
is reversed by swapping the two most recent values of x, exactly the same path in
phase space should be followed backward in time. In practice, there will always be
small differences as a result of finite numerical precision of the computer.

As we shall see in Problem A.3, the accumulated error in the position after a large
number of integration steps is of order O(h2). As there is no point in calculating
the velocities with higher precision than that of the positions, we can evaluate the
velocities using the simple formula

v(0) = x(h)− x(−h)

2h
(A.44)

which gives the velocity with the required O(h2) error.
Using the velocities at half-integer time steps:

v[(n + 1/2)h] = {x[(n + 1)h] − x(nh)}/h + O(h2), (A.45)

A7 Differential equations 573

we may reformulate the Verlet algorithm in the leap-frog form:

v(h/2) = v(−h/2)+ hF[x(0), 0] (A.46a)

x(h) = x(0)+ hv(h/2). (A.46b)

Note that this form is exactly equivalent to the Verlet form, so the error in the
positions is still O(h4). This form is less sensitive to errors resulting from finite
precision arithmetic in the computer than the Verlet form (A.42).

Note that the time step is not easily adapted in the Verlet/leap-frog algorithm.
This is, however, possible, either by changing the coefficients of the various terms
in the equation, or by reconstructing the starting values with the new time step by
interpolation.

Consider the Verlet solution for the harmonic oscillator ẍ = −Cx:

x(t + h) = 2x(t)− x(t − h)− h2Cx(t). (A.47)

The analytic solution to this algorithm (not the exact solution to the continuum
differential equation) can be written in the form x(t) = exp(iωt), with ω satisfying

2 − 2 cos(ωh) = h2C. (A.48)

If h2C > 4, ω becomes imaginary, and the analytical solution becomes unstable.
Of course we would not take h that large in actual applications, as we always take
it substantially smaller than the period of the continuum solution. It is, however,
useful to be aware of this instability, especially when integrating systems of second
order differential equations, which reduce to a set of coupled harmonic equations
close to the stationary solutions. High-frequency degrees of variables are then often
easily overlooked.

Numerov’s method

This is an efficient method for solving equations of the type

ẍ(t) = f (t)x(t) (A.49)

of which the stationary Schrödinger equation is an example [10]. Numerov’s method
makes use of the special structure of this equation in order to have the fourth
order contribution to x(h) cancel, leading to a form similar to the Verlet algorithm,
but accurate to order h6 (only even orders of h occur because of time-reversal
symmetry). The Verlet algorithm (see above) was derived by expanding x(t) up to
second order around t = 0 and adding the resulting expression for t = h and for
t = −h. If we do the same for Eq. (A.49) but now expand x(t) to order six in t, we

574 Appendix A

obtain

x(h)+ x(−h)− 2x(0) = h2f (0)x(0)+ h4

12
x(4)(0)+ h6

360
x(6)(0)+ O(h8)

(A.50)

with x(4) being the fourth and x(6) the sixth derivative of x with respect to t. As
these derivatives are not known, this formula is not useful as such. However, we
can evaluate the fourth derivative as the discrete second derivative of the second
derivative of x(t) taken at t = 0. Using the differential equation (A.49) we then
obtain

x(4)(0) = x(h)f (h)+ x(−h)f (−h)− 2x(0)f (0)

h2
, (A.51)

and then, after switching to another variable w(t) = [1 − (h2/12)f (t)]x(t),
Eq. (A.50) becomes

w(h)+ w(−h)− 2w(0) = h2f (0)x(0)+ O(h6). (A.52)

Now we see that, using a second order integration scheme for w (i.e. using only two
values of the solution to predict the next one), x(h) is known to order h6. Whenever
x(t) is required, it can be calculated as x(t) = [1 − (h2/12)f (t)]−1w(t). Note that
the integration error over a fixed interval scales as h4, that is, two orders less than
the single-step error – see the analysis in Problem A.3.

The implementation of the initial conditions is not straightforward: when not dealt
with carefully enough, we might obtain errors which at the end of the integration
interval scale worse than O(h4). Usually the initial value x(0) and the derivative
ẋ(0) are known. From these, we need to predict the value at x(h)with an accuracy of
at least O(h6). This can be done by first subtracting the Taylor expansions for x(h)
and x(−h) rather than adding them as was done in the derivation of the Numerov
algorithm. The result is

2hẋ(0) = [1 − h2f (h)/6]x(h)− [1 − h2f (−h)/6]x(−h)+ O(h5). (A.53)

The derivative ẋ(0) is known: together with the Numerov algorithm, we have two
equations for x(h) and x(−h). Eliminating the latter, we are left with

x(h) = [2 + 5h2f (0)/6][1 − h2f (−h)/12]x(0)+ 2hẋ(0)[1 − h2f (−h)/6]
[1 − h2f (h)/12][1 − h2f (−h)/6] + [1 − h2f (−h)/12][1 − h2f (h)/6] .

(A.54)
Starting with x(0) and x(h), the Numerov algorithm can be applied straightfor-
wardly.

More details about this method and its applications can be found in Ref. [11].

A7 Differential equations 575

Finite difference methods

The Verlet algorithm is a special example of this class of methods. Finite difference
algorithms exist for various numerical problems, like interpolation, numerical dif-
ferentiation and solving ordinary differential equations [12]. Here we consider the
solution of a differential equation of the form

ẋ(t) = f [x(t), t], (A.55)

and in passing we touch upon the interpolation method.
For any function x depending on the coordinate t, one can build the following

table (the entries in this table will be explained below):

−3 x−3

δx−5/2

−2 x−2 δ2x−2

δx−3/2 δ3x−3/2

−1 x−1 δ2x−1 δ4x−1

δx−1/2 δ3x−1/2 δ5x−1/2

0 x0 δ2x0 δ4x0 δ6x0

δx1/2 δ3x1/2 δ5x1/2

1 x1 δ2x1 δ4x1

δx3/2 δ3x3/2

2 x2 δ2x2

δx5/2

3 x3

The first column contains equidistant time steps at separation h, and the second
one the values xt for the times t of the first column. We measure the time in units
of h. The third column contains the differences between two subsequent values of
the second one; therefore they are written just halfway between these two values.
The fourth column contains differences of these differences and so on. Formally,
except for the first column, the entries are defined by

δjxi−1/2 = δj−1xi − δj−1xi−1

δjxi = δj−1xi+1/2 − δj−1xi−1/2 and

δ0xi ≡ xi.

(A.56)

It is possible to build the entire table from the second column only, or from the
values δ2jx0 and δ2j+1x1/2 (that is, the elements on the middle horizontal line and
the line just below), because the table is highly redundant.

576 Appendix A

Such a table can be used to construct an interpolation polynomial for xt . First we
note that

x±1 = x0 ± δx±1/2

x±2 = x0 ± 2δx±1/2 + δ2x±1

x±3 = x0 ± 3δx±1/2 + 3δ2x±1 ± δ3x±3/2 (A.57)

and so on. In these expressions the binomial coefficients are recognised. From these
equations, it can be directly seen that

xt = x0 + tδx1/2 + t(t − 1)

2
δ2x1 + t(t − 1)(t − 2)

3! δ3x3/2 + · · · (A.58)

is a polynomial which coincides with xt for t = 1, 2, 3. One can also build higher
order polynomials in the same fashion. For negative t-values, this formula reads

xt = x0 + tδx−1/2 + t(t + 1)

2
δ2x−1 + t(t + 1)(t + 2)

3! δ3x−3/2 + · · · (A.59)

These formulas are called Newton interpolation formulas.
We now use this table to integrate differential equations of type (A.55). Therefore

we consider a difference table, not for x, but for ẋ:

−2 ẋ−2 δ2ẋ−2

δẋ−3/2 δ3ẋ−3/2

−1 ẋ−1 δ2ẋ−1

δẋ−1/2

0 ẋ0

1

For simplicity we did not make this table too ‘deep’ (up to third differences).
Suppose the equation has been integrated up to t = 1, so x1 is known, and we would
like to calculate x2. This is possible by adding an extra row to the lower end of the
table. This can be done because from (A.55), ẋ1 = f (x1, 1) and the table can be
extended as follows:

−2 ẋ−2 δ2ẋ−2

δẋ−3/2 δ3ẋ−3/2

−1 ẋ−1 δ2ẋ−1

δẋ−1/2 δ3ẋ−1/2

0 ẋ0 δ2ẋ0

δẋ1/2

1 ẋ1

A7 Differential equations 577

Using this table, an interpolation polynomial for ẋt can be constructed. The
Newton interpolation polynomial (A.59) for ẋ reads

ẋt = ẋ1 + (t − 1)δẋ1/2 + (t − 1)t

2! δ2ẋ0 + (t − 1)(t + 1)t

3! δ3ẋ−1/2 + · · · (A.60)

We can now use this as an extrapolation polynomial to calculate x2 (we assumed
x1 to be known). Using

x2 = x1 +
∫ 2

1
ẋtdt, (A.61)

one finds, using (A.60):

x2 = x1 + ẋ1 + 1

2
δẋ1/2 + 5

12
δ2ẋ0 + 3

8
δ3ẋ−1/2. (A.62)

This value can then be used to add another row to the table, and so on.
Up to order 6, the formula reads

x2 = x1 + ẋ1 + 1

2
δẋ1/2 + 5

12
δ2ẋ0 + 3

8
δ3ẋ−1/2 + 251

720
δ4ẋ−1

+ 95

288
δ5ẋ−3/2 + 19087

60480
δ6ẋ−2 + · · · (A.63)

This equation is known as Adams’ formula. Note that during the integration it is
needed to renew the lower diagonal of the table only and therefore we need not
store the entire table in memory.

To start the algorithm, we need the solution to the differential equation at the first
few time steps to be able to set up the table. This solution can be generated using
a Runge–Kutta starter, for example. The starting points should, however, be of the
same order of accuracy as Adams’ method itself. If this is not the case, we can use
a special procedure which improves the accuracy of the table iteratively [13].

Finite difference methods are often very efficient as they can be of quite high
order. As soon as the integration becomes inaccurate because of too large a time
step, the deepest (i.e. the rightmost) differences tend to diverge and will lead to an
overflow. This means that absence of such trouble implies high accuracy.

One can also construct so-called predictor-corrector methods in this way. In
these methods, after every integration step the last value of xt (in our case this
is x2) is calculated again, now using also ẋt which is determined by the value of
xt and the differential equation (A.55). This procedure is repeated until the new
value for xt is close enough to the previous one. Predictor-corrector methods are
seldom used nowadays, since using a sufficiently small integration step makes the
time-consuming corrector cycle superfluous.

578 Appendix A

Bulirsch–Stoer method

This method is similar to the Romberg method for numerical integration. Suppose
the value of xt is wanted, x0 being known. Over the interval [0, t], the equation can
be integrated using a simple method with a few steps. Then the method is repeated
with a larger number of steps and so on. The resulting predictions for xt are stored
as a function of the inverse of the number of steps used. Then these values are used
to build an interpolation polynomial which is extrapolated to an infinite number
of steps. The efficiency of this method is another reason why predictor-corrector
methods are seldom used.

A7.2 Partial differential equations

In mathematics, one usually classifies partial differential equations (PDE) accord-
ing to their characteristics, leading to three different types: parabolic, elliptic and
hyperbolic. In numerical analysis, this classification is less relevant, and only two
different types of equations are distinguished: initial value and boundary value prob-
lems. We study examples of both categories. In the next two sections, we describe
finite difference methods for these two types and then we discuss several other
methods for partial differential equations very briefly.

Initial value problems

An important example of this class of problems is the diffusion equation or the time-
dependent Schrödinger equation (see Section 12.2.4 for a discussion of the relation
between these two equations) which is mathematically the same as the diffusion
equation, the only difference being a factor i before the time derivative. In the
following, we shall consider the Schrödinger equation, but the analysis is the same
for the diffusion equation.

Consider the one-dimensional time-dependent Schrödinger equation (we take
� = 2m = 1):

i
∂ψ(x, t)

∂t
= −∂

2ψ(x, t)

∂x2
+ V(x)ψ(x, t), (A.64)

or, in a more compact notation:

i
∂ψ(x, t)

∂t
= Hψ(x, t) (A.65)

with H standing for the Hamilton operator. First we discretise H at L equidistant
positions on the real axis, with separation�x. The value ofψ at the point xj = j�x,
j = 1, . . . , L, is denoted byψj. We can then approximate the second order derivative

A7 Differential equations 579

with respect to x on the jth position as follows:

∂2ψ(xj, t)

∂x2 = 1

�x2 [ψj−1(t)+ ψj+1(t)− 2ψj(t)] + O(�x2). (A.66)

We denote the discretised Hamiltonian by HD, so that the Schrödinger equation can
be written as

i
dψj(t)

dt
= HDψj(t). (A.67)

As a next step, we discretise time using intervals �t. Indicating the nth time step
with an upper index n to the wave function ψ , the time derivative of ψn

j at this time

step can be approximated by (ψn+1
j − ψn

j)/�t (with an error of order �t), so that
the discretised form of Eq. (A.64) is given by

i
1

�t
(ψn+1

j − ψn
j) = 1

�x2 [−ψn
j−1(t)− ψn

j+1(t)+ 2ψn
j (t)] + Vjψ

n
j (A.68)

or, in shorthand notation:

ψn+1
j = (1 − i�tHD)ψ

n
j . (A.69)

The stability of this method can be investigated using the so-called Von Neumann
analysis. In this analysis, one considers the analytical solution to Eq. (A.69) for Vj

constant:

ψn
j = ξn exp(ikj�x). (A.70)

The wave vector k depends on the boundary conditions, and ξ and k are related –
the relation can be found by substituting this solution in Eq. (A.68). If there exists
such a solution with |ξ | > 1, it follows that a small perturbation in the solution
tends to grow exponentially, because an expansion of a generic small perturbation
in terms of the solutions (A.70) will almost certainly contain the |ξ | > 1 modes.
For our algorithm, we find

ξ = 1 − i�t

[
4

�2x
sin2(k�x/2)+ Vj

]
(A.71)

which means that in all cases |ξ | > 1, indicating that this method is always unstable.
Therefore, we shall consider a modification of the method.

First, the wave function occurring in the right hand side of (A.69) is calculated
at time t = (n + 1)�t. We then arrive at a form which reads in shorthand:

ψn+1
j = ψn

j − i�tHDψ
n+1
j . (A.72)

This algorithm seems impractical, however, because to determine ψn+1 on the left
hand side of (A.72) it is needed on the right hand side: it is an implicit form. We can

580 Appendix A

make this explicit by an inversion:

ψn+1
j =

∑
j′
(1 + i�tHD)

−1
jj′ ψ

n
j′ . (A.73)

As the matrix in brackets is tridiagonal, the inversion can be done efficiently – it
requires only O(L) steps, i.e. of the same order as the other steps of the algorithm.
The inversion method will be discussed in Appendix A8.1.

Performing the Von Neumann analysis for this method, we find

ξ = 1

1 + i�t[(4/�2x) sin2(k�x/2)+ Vj]
. (A.74)

This looks more promising than the first method: for every choice of �t and �x
one gets |ξ | < 1, so that the method is stable. It is important to take �t small as
the time-derivative of ψi has a first order accuracy in �t only. The accuracy of the
discretised second derivative with respect to x is still of order �x2.

We have neglected an important point: we would like ψn to be normalised at
every time step. This is unfortunately not the case for the methods discussed up to
now. Writing the exact solution to the continuous differential equation (A.64) as

ψ(x, t) = exp(−itH/�)ψ(x, 0), (A.75)

we notice that for all times t, the norm of ψ is equal to that at t = 0 since
exp(−itH/�) is a unitary operator:

〈ψ(t)|ψ(t)〉 = 〈exp(−itH/�)ψ(0)| exp(−itH/�)ψ(0)〉 = 〈ψ(0)|ψ(0)〉. (A.76)

The operator 1 ± i�tHD is in general not unitary. If we are able to find a unitary
operator which gives us at the same time a stable method, we have the best method
we can think of (apart from finite accuracy inherent to discretisation). It turns out
that the operator

1 − i�tHD/2

1 + i�tHD/2
(A.77)

does the job, and surpasses expectations: not only is it unitary and stable, it is even
correct to second order in �t. This can be seen by realising that using this matrix
is equivalent to taking the average of H acting on ψn and ψn+1, or by noticing that
the matrix in (A.77) is a second order approximation to exp(−i�tH/�) in �t.

This method is recommended for solving the time-dependent Schrödinger equa-
tion using finite difference methods. It is known as the Crank–Nicholson method.
Note that the presence of the denominator in the operator (A.77) makes this an impli-
cit method: a matrix inversion must be carried out at every time step, requiring O(L)
calculations, which is the overall time scaling of the algorithm.

A7 Differential equations 581

In the Crank–Nicholson and in the implicit scheme we need to solve a tridiagonal
matrix equation. This is rather straightforward using back-substitution, and you may
want to use a library routine for this purpose. However, when periodic boundaries
are used, the matrix is no longer tridiagonal, but has elements in the upper right and
lower left corner:

H =




a1 b 0 . . . 0 b
b a2 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . aN−1 b
b 0 0 . . . b aN


 , (A.78)

where ak and b are complex numbers. In order to solve this equation we use the
Sherman–Morrison formula. This is a formula which gives the inverse of a matrix
of the form (in Dirac notation):

A + |u〉〈v|. (A.79)

Applied to our problem, the Sherman–Morrison formula leads to a prescription for
finding the solution of:

H|ψ〉 = (A + |u〉〈v|)|ψ〉 = |b〉. (A.80)

In fact we should find solutions to the two following problems:

A|φ〉 = |b〉; (A.81a)

A|χ〉 = |u〉. (A.81b)

It is then easily shown that

|ψ〉 = |φ〉 −
(〈v|φ〉

1 + 〈v|χ〉
)

|χ〉 (A.82)

gives the correct solution.
In order to apply this recipe to our problem, we take

|u〉 =




−a1

0
...
0
b


 ; |v〉 =




1
0
...
0

(−b/a1)
∗


 . (A.83)

The complex conjugate in the last element of |v〉 should not be forgotten! The matrix
A is identical to the matrix H except for the upper left and lower right diagonal
elements. The first should be replaced by a′

1 = 2a1 and the last by a′
N = αN +b2/aN .

It can easily be checked that these values yield the correct matrix to appear in the

582 Appendix A

matrix equation. We need to solve two tridiagonal matrix equations for |φ〉 and |χ〉
to obtain the solution to the problem with periodic boundaries.

Finally, we describe a fourth method which can be applied to initial value
problems: the split operator method. The idea of this method is based on prin-
ciples which have been used extensively in Chapter 12. It consists of splitting the
Hamiltonian into the kinetic and potential operator, and using representations in
which these operators are diagonal. To be specific, the operator V(x) is diagonal
in the x-representation, whereas the kinetic energy term, T = p2/(2m) is diagonal
in the p-representation. The two representations are connected through a Fourier
transform:

〈x|p〉 = 1√
2π

eipx/�. (A.84)

The time-evolution operator is split into three terms:

e−i�t(V+T)/� = e−i�tV/(2�)e−i�tT/�e−i�tV/(2�) + O(�t3) (A.85)

Suppose we know the initial state in the x-representation. Then we act on it with the
front term (exponent of the potential) which is diagonal. Then we Fourier-transform
the result and multiply it by the second term (exponent of the kinetic energy) and
then, after Fourier-transforming back again, we multiply the result by the last factor
(potential). This method has a similar efficiency to the Crank–Nicholson method.

Boundary value problems

We consider the Poisson equation for the potential of a charge distribution as a
typical example of this category:

∇2ψ(r) = −ρ(r). (A.86)

∇2 is the Laplace operator and ψ is the potential resulting from the charge distri-
bution ρ. Furthermore, there are boundary conditions, which are generally of the
Von Neumann or of the Dirichlet type (according to whether the derivative or the
value of the potential is given at the boundary respectively). In this section we shall
discuss iterative methods for solving this type of equation. For more details the
reader is referred to standard books on the subject [14, 15].

We restrict ourselves to two dimensions, and we can discretise the Laplace
equation on a square lattice, analogous to the way in which this was done for
the Schrödinger equation in the previous subsection:

∇2ψ(r) =
(
∂2

∂x2
+ ∂2

∂y2

)
ψ(r); (A.87a)

∇2
Dψi, j = 1

�x2
(ψi+1, j + ψi−1, j + ψi, j+1 + ψi, j−1 − 4ψij)

= ∇2ψ(r)+ O(�x2). (A.87b)

A7 Differential equations 583

This leads to the discretised form of (A.86):

∇2
Dψij = −ρij. (A.88)

The grid on which the Laplace operator is discretised is called a finite difference
grid. An obvious approach to solving (A.88) is to use a relaxation method. We can
interpret (A.88) as a self-consistency equation for ψ : on every grid point (i, j), the
value ψij must be equal to the average of its four neighbours, plus�x2ρij/4. So, if
we start with an arbitrary trial functionψ0, we can generate a sequence of potentials
ψn according to

ψn+1
i,j = 1

4
(ψn

i+1,j + ψn
i−1,j + ψn

i,j+1 + ψn
i,j−1)+ �x2

4
ρij. (A.89)

If we interpret the upper index n as the time, we recognise in this equation an initial
value problem. Indeed, the stationary solutions of the initial value problem,

∂ψ

∂t
(r, t) = ∇2ψ(r, t)+ ρ(r, t), (A.90)

is a solution to (A.86). Equation (A.89) is the discretised version of (A.90) with
�x2 = 4�t. In fact, we have turned the boundary value problem into an initial value
problem, and we are now after the stationary solution of the latter. The method given
in (A.89) is called the Jacobi method.

Unfortunately, the relaxation to the stationary solution is very slow. For an L ×L
lattice with periodic boundary conditions, and taking ρ ≡ 0, we can find solutions
similar to the Von Neumann modes of the previous subsection. These are given as:

ψ(j, l; t) = e−αte±ikxje±ikyl; (A.91)

kx = 2n

L
π ; ky = 2m

L
π ; n, m = 0, 1, 2, . . .

e−α = [cos(kx)+ cos(ky)]/2.

Obviously, the mode with kx = ky = 0 remains constant in time, as it is a solution
of the stationary equation. From the last equation we see that when kx and ky

are not both zero, α is positive, so that stability is guaranteed. We see that the
nontrivial modes with slowest relaxation (smallest α) occur for (n, m) = (1, 0),
(0, 1), (L−1, 0), or (0, L −1). For these modes, we have α = O(1/L2). This shows
that if we discretise our problem on a finer grid in order to achieve a more accurate
representation of the continuum solution, we pay a price not only via an increase in
the time per iteration but also in the convergence rate, which forces us to perform
more iterations before the solutions converge satisfactorily. Doubling of L causes
the relaxation time to be increased by a factor of four.

584 Appendix A

We can change the convergence rate by another discretisation of the con-
tinuum initial value problem (A.90), in which instead of ψn+1

ij in (A.89), a linear
combination of this function and the ‘old one’, ψn

ij is taken:

ψn+1
ij = (1 − ω)ψn

ij + ω

[
1

4
(ψn

i+1, j + ψn
i−1, j + ψn

i, j+1 + ψn
i, j−1)

]
+ �x2

4
ρij.

(A.92)

Another way of looking at this method is to consider it as a discretisation of (A.86)
with ω�x2 = 4�t. The solutions to this equation are again modes of the form
(A.91), but now with

e−α = 1 − ω[1 − (cos kn + cos ky)/2]. (A.93)

We see that the relaxation time of the slowest modes is still of order L2. This method
is called the damped Jacobi method.

Yet another type of iteration is the one in which we scan the rows of the grid in
lexicographic order and overwrite the old values of the solution, ψn

ij , with the new

ones, ψn+1
ij , during the scan so that these new values are then used instead of the

old ones in the evaluation of the right hand side of the iteration Eq. (A.89). This
method is called the Gauss–Seidel method. In formula this leads to the rule:

ψn+1
i, j = 1

4
(ψn

i+1, j + ψn+1
i−1, j + ψn

i, j+1 + ψn+1
i, j−1)+ �x2

4
ρij. (A.94)

In this method, the slowest modes still relax with e−α ≈ 1 − O(1/L2) although
the prefactor turns out to be half that of the Jacobi method. An improvement can
be achieved by considering an extension similar to the damped Jacobi method, by
combining the old and new solutions according to

ψn+1
ij (ω) = (1 − ω)ψn

ij + ω

4
[(ψn

i+1, j + ψn+1
i−1, j + ψn

i, j+1 + ψn+1
i, j−1)]. (A.95)

The method can be shown to converge for 0 ≤ ω < 2 and there exists some optimal
value forω for which the relaxation rate is given by e−α ≈ 1−O(1/L), substantially
better than all the methods described up to now. This optimal value turns out to
be close to 2. This can be understood by a heuristic argument. In a Gauss–Seidel
update of a particular site, half of its neighbours have their old, and the other half the
new values. We would obviously like the new value at the present site to be equal to
the average of the new values of all its neighbours. We therefore compensate for the
fact that half of the neighbours still have the old value by multiplying the change
in the potential ψ at each site by a factor of two. The precise optimal value for ω
is related to the parameter α for the slowest mode in the simple Jacobi method,
which is in general unknown (we have found this parameter above from the exact

A7 Differential equations 585

solution which is in general unknown). In practice, a theoretical approximation of
this optimal value is used, or it is determined empirically using the Jacobi method.
This method is called successive over-relaxation.

Summarising, we can say that the iterative methods discussed in this section are
subject to slow mode relaxation problems; some more than others. The reason for
the slow relaxation is that the update of the value of the solution at the grid points
takes only nearest neighbour points into account and acts hence on a short range.
It will take many iterations in order to update a long-wavelength mode. In the next
subsections we shall consider ways to get round this problem.

The conjugate gradient method for elliptic differential equations

For ease of notation and for generality we denote the PDE problem as

Ax = b (A.96)

where xij is the solution; x and b are considered as vectors whose indices are the
grid points (i, j) (in two dimensions), and A is a matrix with similar indices. When
solving Poisson’s equation, A is the matrix corresponding to the discretised Laplace
operator, as defined in (A.87). Using this notation, the Jacobi relaxation method
can be represented as

xn+1
ij − xn

ij =
∑

kl

Aij,klx
n
kl − bij. (A.97)

The result on the left hand side can be viewed as the extent to which the solution
xn fails to satisfy the equation (A.96). The left hand side is called the residual r of
the trial solution xn.

We would like to find the value x for which the residual vanishes. It turns out
that this is possible using the conjugate gradients method. To this end, we consider
the function

f (x) = 1
2 x · Ax − b · x. (A.98)

The gradient of this function is

∇f (x) = Ax − b. (A.99)

Therefore, when we can minimise this equation, we have solved the matrix equation
(A.96). But we have already encountered a method which is very efficient at doing
this: the conjugate gradient method (see Appendix A4). We now give this algorithm
in pseudocode for the present problem.

h = b; (b is the right hand side of (A.96)
g = b;
r2 = g · g;
WHILE r2 is not small enough DO

586 Appendix A

k = Ah;
λ = r2/(h · k);
g = g − λk;
r′

2 = g · g;
γ = r′

2/r2;
x = x + λh;
h = g + γh;
r2 = r′

2;
END WHILE.

The algorithm can be directly related to the discussion of the conjugate gradient
method in Appendix A4.

The convergence of the algorithm is fast: O(L) steps are needed, each of which
takes Ld floating point operations (as a step involves a sparse matrix–vector mul-
tiplication). We see that we only need a matrix–vector multiplication routine. The
algorithm is so simple to implement and so efficient that it should always be
preferred over the Gauss–Seidel method.

Fast Fourier transform methods

The first method uses the fast Fourier transform (FFT), which enables us to calculate
the Fourier transform of a function defined on a one-dimensional grid of N points
in a number of steps which scales as N log N , in contrast with the direct method
of evaluating all the Fourier sums, which takes O(N2) steps. The FFT method will
be described in Appendix A9. We now explain how the FFT method can be used
in order to solve PDEs of the type discussed in the previous section. On a two-
dimensional square grid of size L × L, the FFT requires O(L2 log L) steps. In the
following we assume periodic boundary conditions.

The idea behind using Fourier transforms for these equations is that the Laplace
operator is diagonal in Fourier space. For our model problem of the previous section,
we have ∑

jm

(∇2
Dψjm)e

i(kxj+kym) = (2 cos kx + 2 cos ky − 4)ψ̂kxky , (A.100)

where ψ̂ is the Fourier transform of ψ . The wave numbers kx, ky assume the values
2πn/L. We see that acting with the Laplace operator on ψ corresponds to mul-
tiplying by the factor 2 cos kx − 2 cos ky − 4 in k-space. If we are to determine the
solution to the PDE ∇2

Dψ = −ρ, we perform a Fourier transform on the left and
right sides of this equation, and we arrive at

(4 − 2 cos kx − 2 cos ky)ψ̂kxky = ρ̂kxky . (A.101)

A7 Differential equations 587

This equation is easily solved because it is diagonal: we have simply L2 independent
trivial equations. The solution in direct space is found by Fourier transforming ψ̂
back to real space.

The computational cost is that of performing the necessary Fourier transforms,
and this requires O(L2 log L) floating point operations in two dimensions. The
method is therefore very efficient with respect to relaxation methods, which require
L2 floating point operations per scan over the lattice. Remember this is to be multi-
plied by the number of iterations, which is at least O(L) for satisfactory accuracy (in
the SOR method), so that the total time needed for these methods scales as O(L3).

Multigrid methods

Multigrid methods are based on iterative ideas (see ‘Boundary value problems’
above) and aim – crudely speaking – at increasing the relaxation rate by updating the
solution on blocks of grid points alongside the short-range update on the grid points
themselves. The method is based on residual minimisation; see ‘The conjugate
gradient method’ above. For some trial solution ψij with residual rij, we consider
the difference between ψ and the exact solution χ

A(ψ − χ) = r, (A.102)

hence, if we would have a solution δ of the equation

Aδ = r, (A.103)

the exact solution χ would be given by

χ = ψ − δ. (A.104)

If we have performed a few iterations, e.g. Gauss–Seidel iterations, the residual
will contain on average an important contribution from the long-wavelength com-
ponents and only weak short-wavelength modes, since iteration methods tend to
eliminate the short-wavelength errors in the solution faster than the long-wavelength
ones, because a Gauss–Seidel update involves only nearest neighbours. In the mul-
tigrid method, the remaining smooth components are dealt with in a coarser grid.
We shall roughly describe the idea of the multigrid method; details will be given
below. The coarse grid is a grid with half as many grid points along each cartesian
direction, so in our two-dimensional case the number of points on the coarse grid
is one-fourth of the number of fine grid points. A function defined on the fine grid
is restricted to the coarser grid by a suitable coarsening procedure. We apply this
coarsening procedure to the residual and perform a few Gauss–Seidel iterations on
the result. The idea is that the wavelength of the long-wavelength modes is effect-
ively twice as small on the coarse grid, so hence the long-wavelength modes can
be dealt with more efficiently. The solution on the coarse grid must somehow be

588 Appendix A

Figure A.3. Restriction and prolongation. The coarse grid points are marked by
× and the fine grid points by •. The arrows in the left hand figure represent the
restriction, and those in the right hand figure, the prolongation map.

transferred to the fine grid, and the mapping used for this purpose is called pro-
longation. On the fine grid, finally, a few Gauss–Seidel iterations are then carried
out to smooth out errors resulting from the somewhat crude representation of the
solution at the higher level. Schematically we can represent the method described
by the following diagram:

Coarse: δ = A−1r → δ
→ →

Fine: Gauss–Seidel → r Gauss–Seidel

The obvious extension then is to play the same game at the coarse level, go to a
‘doubly coarse’ grid etc., and this is done in the multigrid method.

We now fill in some details. First of all, we must specifiy a restriction mapping,
which maps a function defined on the fine grid onto the coarse grid. We consider
here a coarse grid with sites being the centres of half of the plaquettes of the fine
grid as in Figure A.3. The value of a function on the coarse grid point is then given
as the average value of the four function values on the corners of the plaquette.
Using ψ for a function on the fine grid and φ for a function on the coarse grid, we
can write the restriction operator as

φij = (Pl−1,lψ)ij = 1
4 (ψ2i,2j + ψ2i+1,2j + ψ2i,2j+1 + ψ2i+1,2j+1). (A.105)

φij can be thought of as centred on the plaquette of the four ψ functions at the right
hand side. We also need a prolongation mapping from the coarse grid to the fine
grid. This consists of copying the value of the function on the coarse grid to the four
neighbouring fine grid points as in the right hand side of Figure A.3. The formula
for the prolongation mapping (Pl,l−1) is

ψij = (Pl,l−1φ)ij = φi/2,j/2 (A.106)

where i/2 and j/2 denote (truncated) integer divisions of these indices.
We need the matrix A on the coarse grid. However, we know its form only on

the fine grid. We use the most natural option of taking for the coarse form also a

A7 Differential equations 589

Level 5 Level 4 Level 3 Level 2 Level 1

Level 1 Level 2 Level 3 Level 4 Level 5

Level 5

Figure A.4. The evolution of the trial solution to Poisson’s equation in two dimen-
sions with a positive and a negative point charge. The upper row shows the solution
during coarsening, and the lower row during refinement. The rightmost picture
is the rightmost configuration of the lower row with some extra Gauss–Seidel
iterations performed.

Laplace operator coupling neighbouring sites:

∇2
Dφ = 1

4�x2 (φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j), (A.107)

where�x is taken twice as large as on the fine grid. We now have all the ingredients
for the multigrid method at our disposal and we can write down the general algorithm
in a recursive form:

ROUTINE MultiGrid(Level, ψ , Residual)
Perform a few Gauss–Seidel iterations: ψ → ψ ′;
IF (Level>0) THEN

Calculate Residual;
Restrict Residual to coarser grid: → Residual′;
Set φ equal zero;
Multigrid(Level-1, φ, Residual′);

END IF;
Prolongate φ :→ φ′;
ψ ′′ = ψ ′ − φ′;
Perform a few Gauss–Seidel iterations: ψ ′′ → ψ ′′′;

END MultiGrid.

The number of Gauss–Seidel iterations before and after the coarsening procedure
must be chosen – typical values are two to five iterations. This algorithm can be
coded directly (see Problem A.7). Figure A.4 shows how the method works for a
two-dimensional Poisson problem with a positive and a negative charge.

590 Appendix A

How efficient is the multigrid method? The Gauss–Seidel iterations on a grid
of size L × L require O(L2) steps, as do the restriction and prolongation oper-
ations for such a grid. These operations must be carried out on grids of size
L2, L2/4, L2/16, . . . , so that the total number of operations required is

L2
log2 L∑
n=0

1

22n
= L2 1

1 − 1/4
(A.108)

which means that a full multigrid step takes O(L2) steps. For various types of
problems, theorems exist which state that the number of full multigrid steps required
to achieve convergence for Poisson’s equation is independent of L, so that the
method has the best possible time scaling, that is time ∝ L2.

Obviously, the definition of the coarse grid and the restriction and prolongation
operators are not unique; in setting up the multigrid method there are quite a few
options at each stage. We have only given one example in order to expose the
method. For more details, the specialised literature should be consulted [16–19].

A8 Linear algebra problems

A8.1 Systems of linear equations

This section is devoted to an overview of matrix calculations, a topic that we have
touched on several times in previous sections. A first example is the solution of a
set of N linear equations of N unknowns. In a matrix formulation, the equations
can be formulated as


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN






x1

x2
...

xN


 =




b1

b2
...

bN


 , (A.109)

which can be written in a more compact way as

Ax = b. (A.110)

Here, A is a nonsingular N × N matrix with elements aij, x is an N-dimensional
vector containing the unknowns and b is a known N-dimensional vector.

Dense matrices

A dense matrix is one whose elements are mostly nonzero, so all its elements have
to be taken into account in a solution method involving such a matrix, such as the
solution of a system of linear equations.

A8 Linear algebra problems 591

The method used for this problem is straightforward. We use the fact that the rows
of A can be interchanged if the corresponding elements of b are also interchanged,
and it is also allowed to replace a row of A by a linear combination of that row
and another, provided similar transformations are performed to the elements of b.
These properties can now be used to transform A into an upper triangular matrix.
This is done proceeding step by step from the left column of A to the right one,
making the elements below the diagonal for each column equal to zero. Suppose
we have zeroed the lower parts of columns 1 through to m − 1. The equation now
looks as follows:



a′
11 a′

12 · · · a′
1,m−1 a′

1m · · · a′
1N

0 a′
22 · · · a′

2,m−1 a′
2m · · · a′

2N
...

.
...

...
...

0
. . . a′

m−1,m−1 a′
m−1,m · · · a′

mN
0 · · · · · · 0 a′

mm · · · a′
mN

0 · · · · · · 0 a′
m+1,m · · · a′

m+1,N
...

...
...

...
0 · · · · · · 0 a′

Nm · · · a′
NN







x1

x2
...
...
.
...
...

xN




=




b′
1

b′
2
...
...
...
...
...

b′
N




(A.111)

Now we must treat column number m. To do this, we take rows i = m + 1 to N of
A′, a′

mi/a
′
mm times the mth row of A′ and subtract, which causes all elements a′

im,
that is, the elements of the mth column below the diagonal, to vanish.

Obviously, there is a problem when a′
m,m is equal to zero. In that case we have to

search from this diagonal element downward until we find an element a′
i,m, i > m,

which is nonzero. We then interchange rows m and i and we proceed in the same
way as described above. The calculation takes a number of m2 steps for column
m. Summing over m, we obtain a total number of O(N3) steps. Unfortunately, for
a generic matrix which does not contain many zeroes, the N3 scaling cannot be
altered by using other methods.

Finally, we are left with an upper triangular matrix A′′ (and a right hand side b′′)
with elements a′′

ij (b′′
i):




a′′
11 a′′

12 · · · a′′
1,N−1 a′′

1N
0 a′′

22 · · · a′′
2,N−1 a′′

2N
...

...
. . .

...
...

0 0 · · · a′′
N−1,N−1 a′′

N−1,N
0 0 · · · 0 a′′

NN







x1

x2
...
...

xN




=




b′′
1

b′′
2
...
...

b′′
N




(A.112)

592 Appendix A

We can now solve for the xi straightforwardly: first, we see that its last element xN

is equal to b′′
N/a

′′
NN . Then the remaining xi are found as

xi =

b′′

i −
N∑

j=i+1

a′′
ijxj


 /a′′

ii. (A.113)

The latter procedure is called back-substitution. It requires only O(N2) steps since
finding xi requires O(N − i) steps.

For large matrices, the procedure described above is often unstable. This is
because the element a′

mm, which is used to zero the elements below it, may become
small. As the factor by which the lower rows are multiplied contains 1/a′

mm, it is
clear that the elements of these lower rows may become very large. Combinations
of small and large numbers often cause numerical instabilities in the computer. To
avoid such problems in matrix calculations it is advised to use pivoting. Pivoting
means that the largest element (in absolute value) a′

im, i = m, . . . , N is looked for.
If this largest element is not a′

mm, then rows i and m are interchanged so that the
largest possible number now occurs in the denominator of the multiplication factor.
This largest element is called the pivot.

Up to now, we have described a stable and efficient method for solving the
fundamental problem of linear algebra, Eq. (A.110), finding x for one given vector
b. However, we may often have to face the problem of solving for several, or even
many, vectors bi. For the case of several bs (by several we mean less than the
dimension of the matrix A), we can perform the row changes needed to diagonalise
A on the corresponding elements of all the bi simultaneously. It is even possible,
by initially putting the bi equal to the N unit vectors, to calculate the inverse of A.
However, instead of following the procedure described above, it is preferable to zero
not only the part below but also above the diagonal of A (meanwhile performing
the same changes to the elements of the bis on the right hand side) and finally to
normalise the remaining diagonal elements of A to 1, so that it is now in unit matrix
form. The bi are then the columns of the inverse of A, and no back-substitution is
necessary.

For many bi (i.e. more than the dimension of A) it is tempting to use the inverse
A−1 of A to solve for the solutions x by

x = A−1b (A.114)

but this procedure is quite susceptible to round-off errors and therefore not recom-
mended. A stable and efficient method for solving Eq. (A.110) for many vectors bi

is the LU decomposition. In this method, one decomposes A into two matrices L
and U with A = L · U. The matrix L is lower, and U upper triangular. Because L
and U contain together N(N + 1) nonzero elements and A only N2, the problem is

A8 Linear algebra problems 593

redundant and we are allowed to put the diagonal elements of L equal to 1. In that
case we have


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN




=




1 0 · · · 0 0
l21 1 · · · 0 0
l31 l32 · · · 0 0
...

...
...

...
lN−1,1 lN−1,2 · · · 1 0

lN1 lN2 · · · lN ,N−1 1







u11 u12 · · · u1,N−1 u1N

0 u22 · · · u1,N−1 u2N
... 0

...
...

... 0
...

...
0 0 · · · uN−1,N−1 uN−1,N

0 0 · · · 0 uNN




,

(A.115)

lij and uij being the matrix elements of L and U respectively. The decomposition
matrices L and U are now easily determined: multiplying the first row of L with
the columns of U and putting the result equal to a1i it is found that the first row of
U is equal to the first row of A. We then proceed, determining l21 by multiplying
the second row of L with the first column of U, and then finding the elements of
the second row of U and so on.

Having the LU decomposition for A, it is easy to solve for an unknown vector x
in the linear equation (A.110). First we search for the vector y obeying

Ly = b (A.116)

and then for a vector x which satisfies

Ux = y. (A.117)

Using A = LU, it then immediately follows that Ax = b . Both problems can be
solved using back-substitution, and thus require only O(N2) calculations [finding
L and U requires O(N3) steps].

Sparse matrices

Differential operators, which frequently occur in physics, can be discretised on a
finite difference grid, leading to the differential operator being represented by a
sparse matrix: the overwhelming majority of the matrix elements are equal to zero.
A typical example is the discrete Laplacian mentioned previously in the context
of partial differential equations. There, space was discretised on a grid and the
discrete Laplacian coupled nearest neighbour points on the grid only, so that the
matrix representation of this operator contains only nonzero elements for indices

594 Appendix A

corresponding to neighbouring or identical grid points. In two dimensions with a
grid constant h we obtain

∇2ψ(r) → 1

h2
(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j). (A.118)

In numerical problems involving sparse matrices, it usually pays off to exploit the
sparseness: this enables us in many cases to reduce the effort involved in solving
matrix problems from O(N3) to O(N).

As an example, let us consider a tridiagonal matrix. This arises when discretising
the one-dimensional Laplace operator on a grid with fixed boundary conditions. The
tridiagonal matrix has the form

A =




a1 b1 0 · · · 0 0 0
c2 a2 b2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · cN−1 aN−1 bN−1

0 0 0 · · · 0 cN aN


 , (A.119)

and we want to solve the equation Ax = d. This is done as in the previous sub-
section, by first zeroing the lower diagonal followed by backward substitution.
Implementation is straightforward. Only subdiagonal elements are to be eliminated
and there is only one candidate row to be subtracted off the row containing that
subdiagonal element: the row just above it. All steps amount to order N .

Dedicated algorithms exist for matrices with different patterns (e.g. band-
diagonal, scattered, striped) of nonzero elements. There exist also methods which
rely exclusively on simple matrix operations such as a matrix–vector multiplication.
You only have to supply an efficient routine for multiplying the matrix under con-
sideration with an arbitrary vector to such a sparse matrix routine. An example
is the conjugate gradient method for solving the problem Ax = b. We have
encountered the conjugate gradient method for minimising an arbitrary smooth
function in Appendix A4, and as a sparse-matrix method in Appendix A7.2.

A8.2 Matrix diagonalisation

We now turn to another important problem in linear algebra: that of finding the
eigenvalues and eigenvectors of a matrix A. This problem is commonly referred to
as the eigenvalue problem for matrices. Expressing the matrix with respect to the
basis formed by its eigenvectors, it assumes a diagonal form. In physics, solving the
eigenvalue problem for general operators occurs frequently (solving the stationary
Schrödinger equation is an eigenvalue problem for example) and in computational
physics, it is usually transformed into matrix form in order to solve it efficiently in
a computer.

A8 Linear algebra problems 595

Dense matrices: the Householder method

The majority of the matrices to be diagonalised in computational physics are Her-
mitian – the elements hij of an Hermitian matrix H satisfy hij = h∗

ji. If a physical
problem leads to a non-Hermitian matrix to be diagonalised, it is always advisable
to try casting the problem in a form such that the matrix becomes Hermitian, as the
diagonalisation is generally more efficient for this case.

Here we restrict ourselves to the subclass of real symmetric matrices S because
this procedure is completely analogous to that for the complex Hermitian case.
Diagonalising the matrix involves finding an orthogonal matrix O which brings S
to diagonal form s:

s = OTSO. (A.120)

The columns of O are the eigenvectors, which form an orthonormal set. We first
construct a sequence of matrices Oi which, when applied one after another in a
fashion as indicated by (A.120), transform S to a tridiagonal form. In the same spirit
as the treatment of the elimination procedure described in the previous section, we
assume that we have brought the matrix to tridiagonal form except for the upper
left i × i block and construct the matrix Oi which tridiagonalises S one step further.

S′ =




sjk c

cT sii bi

bi di+1 bi+1

bi+1
.
. bN−1

bN−1 dN




(A.121)

The matrix Oi which does the job is given by

Oi = I − 2uuT/(|u|2), (A.122)

where I is the N × N unit matrix and u is the vector of size i − 1 given in terms
of the vector c occurring at the right end and the bottom of the nontridiagonalised
part of S′ with zeroes at positions i . . .N :

u = c − |c|ei−1. (A.123)

596 Appendix A

So, uuT is an N × N matrix, which can be written as


u1uT 0 · · · 0
u2uT 0 · · · 0

... 0 · · · 0
ui−1uT 0 · · · 0
0 · · · 0 0 · · · 0

...
...

...
0 · · · 0 0 · · · 0




(A.124)

from which it is readily seen that multiplication of S′ with the matrix OT
i from the

left, zeroes the upper i−2 elements of the right column c of the not yet diagonalised
block in S′. Similarly, multiplying the resulting matrix from the right with Oi zeroes
the i − 2 leftmost elements of the ith row, and we arrive at the form (A.121) but
now tridiagonalised one step further.

We still have to solve the eigenvalue problem for the tridiagonalised matrix
obtained in this way. This is rather difficult and we give only an outline of the
procedure. The method consists again of constructing a sequence of matrices which
are successive orthogonal transformations of the original matrix. After some time,
the latter takes on a lower triangular form (or upper triangular, depending on the
transformation) with the eigenvalues appearing on the diagonal. This algorithm is
called the QL or QR algorithm according to whether one arrives at a lower or upper
tridiagonal form. For tridiagonal matrices, this procedure scales as O(N2).

It is clear that the tridiagonalisation procedure preceding the QR (or QL) step
takes O(m2) steps for stage m of the process. Therefore, the procedure as a whole
takes O(N3) steps. The O(N3) time complexity makes the diagonalisation of large
matrices very time consuming.

If the matrix is not Hermitian, the Householder method does not work. The
algorithm to be used in that case is the Hessenberg method, which we shall not
discuss here [1].

Sparse matrices

For diagonalisation problems, we can exploit sparseness of the matrices involved,
just as in the case of linear systems of equations, discussed in Appendix A8.1. An
example of a sparse diagonalisation problem is when we discretise a quantum
Hamiltonian on a cubic grid, leading to a sparse matrix, as we have seen in
Appendix A7.2.

A multiplication of such a matrix with a vector takes only O(N) steps. For sparse
matrices like this, there exist special algorithms for solving the eigenvalue problem,
requiring fewer steps than the Householder method, which does not exploit the

A8 Linear algebra problems 597

sparseness. In most cases we need only the lowest part of the eigenvalue spectrum
of the discretised operator, as it is only for these eigenvalues that the discrete
eigenfunctions represent the continuum solutions adequately. We can then use the
Lanczos or recursion method. This method yields the lowest few eigenvalues and
eigenvectors in O(N) steps, thus gaining two orders of efficiency with respect to
Householder’s method [20–22].

The Lanczos method works for Hermitian matrices, of which the Hamiltonian
matrix for a quantum system is an example. We denote the matrix to be diagonalised
by A. We start with an arbitrary vectorψ0, normalised to one and construct a second
vector, ψ1, in the following way:

Aψ0 = a0ψ0 + b0ψ1. (A.125)

We require ψ1 to be normalised and perpendicular to ψ0; ψ1, a0 and b0 are then
defined uniquely:

a0 = 〈ψ0|A|ψ0〉
b0ψ1 = Aψ0 − a0ψ0

||ψ1|| = 1. (A.126)

Next we construct a normalised vector ψ2 by letting A act on ψ1:

Aψ1 = c1ψ0 + a1ψ1 + b1ψ2. (A.127)

The vector ψ2 is taken perpendicular to ψ0 and ψ1 and normalised, so ψ2, a1, b1

and c1 are determined uniquely too. We proceed in the same way, and at step p we
have

Aψp =
p−1∑
q=0

c(q)p ψq + apψp + bpψp+1 (A.128)

where ψp+1 is taken orthogonal to all its predecessors ψq, q ≤ p. Using the fact
that A is Hermitian we find for q < p − 1:

c(q)p = 〈ψq|Aψp〉 = 〈Aψq|ψp〉 = 0. (A.129)

The last inequality follows from the fact that we have encountered q already in the
iteration procedure, so ψp is perpendicular to Aψq. In the same way we find for

c(p−1)
p :

c(p−1)
p = 〈ψp−1|Aψp〉 = 〈Aψp−1|ψp〉 = bp−1. (A.130)

So after p steps we obtain

Aψp = bp−1ψp−1 + apψp + bpψp+1, (A.131)

whereψp+1 is normalised and orthogonal toψp andψp−1. By the foregoing analysis,
it is then orthogonal to all the previous ψq (q < p − 1). We see that A, expressed

598 Appendix A

with respect to the basis ψp, takes on a tridiagonal form; the eigenvalues of the
p × p tridiagonal matrix obtained after p Lanczos-iterations will converge to the
eigenvalues of the original matrix. It can be shown that the lowest and highest
eigenvalues converge most rapidly in this process, so that the method can be used
successfully for these parts of the spectrum. The number of steps needed to achieve
sufficient accuracy depends strongly on the spectrum; for example, if a set of small
eigenvalues is separated from the rest by a relatively large gap, convergence to these
small eigenvalues is fast.

A9 The fast Fourier transform

A9.1 General considerations

Fourier transforms occur very often in physics. They can be used to diagonalise
operators, for example when an equation contains the operator ∇2 acting on a func-
tion ψ . After Fourier-transforming the equation, this differential operator becomes
a multiplicative factor −k2 in front of the Fourier transform of ψ , where k is the
wave vector. In quantum mechanics the stationary solutions for a free particle are
found in this way: these are plane waves with energy E = �

2k2/2m.
In data analysis, the Fourier transform is often used as a tool to reduce the data: in

music notation one uses the fact that specifying tones by their pitch (which is nothing
but a frequency) requires much less data than specifying the real-time oscillatory
signal. A further application of Fourier transform is filtering out high-frequency
noise present in experimental data.

The fast Fourier transform, or FFT, is a method to perform the Fourier trans-
form much more efficiently than the straightforward calculation. It is based on
the Danielson–Lanczos lemma (see the next subsection) and uses the fact that in
determining the Fourier transform of a discrete periodic function, the factor eikx

assumes the same value for different combinations of x and k. We shall explain
the method in the next subsection, emphasising the main idea and why it works,
but avoid the details involved in coding it up for the computer. Here we recall the
definition and some generalities concerning the Fourier transform.

First, we define the Fourier transform for the one-dimensional case. General-
isation to more dimensions is obvious. We consider first the Fourier transform of
a periodic function f (x) with period L, defined on a discrete set of N equidistant
points with spacing h = L/N :

xj = jL/N , j = 0, . . . , N − 1. (A.132)

Note that in contrast to our discussion of partial differential equations, L does not
denote the number of grid points (N), but a distance. In that case, the Fourier

A9 The fast Fourier transform 599

transform f̂ is also a function defined on discrete points, kn, defined by

kn = 2nπ

L
, n = 0, . . . , N − 1. (A.133)

The Fourier transform reads

f̂ (kn) =
N−1∑
j=0

f (xj)e
2π inj/N . (A.134)

We can also define the backward transform:

f (xj) = 1

L

∑
j

f̂ (kn)e
−2π inj/N . (A.135)

If the points are not discrete, the Fourier transform is defined for the infinite set
of k-values 2πn/L with n = 0, . . .∞, and the sum over the index j is replaced by
an integral:

f̂ (kn) =
∫ L

0
dx f (x)eiknx. (A.136)

If the function is not periodic, L goes to infinity, and the Fourier transform is defined
for every real k as

f̂ (k) =
∫ ∞

−∞
dx f (x)eikx, (A.137)

with backward transform

f (x) = 1

2π

∫ ∞

−∞
dk f̂ (k)e−ikx. (A.138)

When Fourier-transforming a nonperiodic function on a computer, it is usually
restricted to a finite interval using discrete points within that interval. Furthermore,
the function is considered to be continued periodically outside this interval. This
restriction to a discrete set combined with periodic continuation should always
be handled carefully. For example, after Fourier-transforming and back again, we
must use the result only on the original interval: extending the solution outside this
interval leads to periodic continuation of our function there. The usual problems
involved in discretisation should be taken care of – see Appendix A5.

A9.2 How does the FFT work?

To determine the discrete Fourier transform directly, the sum over j is carried out
for each kn, that is, N times a sum of N terms has to be calculated, which amounts
to a total number of multiplications/additions of N2. In the fast Fourier transform,
it is possible to reduce the work to O(N log2 N) operations. This is an important
difference: for large N , log2 N is much smaller than N . For example, log2 106 ≈ 20!

600 Appendix A

From now on, we shall use the notation f (xj) = fj and f̂ (xn) = f̂n. We assume
that the number of points N is equal to a power of 2: N = 2m. If this is not the
case, we put the function for j-values from N upward to the nearest power of 2 to
zero and do the transform on this larger interval. The Danielson–Lanczos lemma is
simple. The points xj fall into two subsets: one with j even and one with j odd. The
Fourier transforms of these subsets are called f̂2|0 and f̂2|1 This notation indicates
that we take the indices j modulo 2 and check if the result is equal to 0 (j even) or
1 (j odd). We obtain

f̂n =
N−1∑
j=0

fje2π inj/N

=
N/2−1∑

j=0

f2je
4π inj/N + e2π in/N

N/2−1∑
j=0

f2j+1e4π inj/N

= f̂2|0 + e2πn/N f̂2|1. (A.139)

The Fourier transform on the full set of N points is thus split into two transforms
on sets containing half the number of points. If we were to calculate these sub-
transforms using the direct method, each would take (N/2)2 steps. Adding them as
in the last line of (A.139) takes another N steps, so in total we have N2/2 + N as
opposed to N2 operations if we had applied the direct method to the original series.
Where does the gain in speed come from? Compare the transforms for k0 and kN/2

respectively. For any point xj with j even, we have the exponential exp(2π inj/N)
which are equal for these two k-values, but in the direct method, these exponentials
are calculated twice! The same holds for odd j-values and for other pairs of kn-values
spaced by kN/2. Indeed, the two sub-transforms f̂2|0 and f̂2|1 are periodic with period
N/2 instead of N – therefore their evaluation for all j = 0, . . . , N − 1 takes only
(N/2)2 steps, and the total work involved in finding the Fourier transform is reduced
approximately by a factor of two. That is not yet the N log2 N promised above. But
this can be found straightforwardly by applying the transform of (A.139) to the
sub-transforms of length N/2. One then splits the sum into four sub-transforms of
length N/4. The reader can verify that the new form becomes

f̂n = f̂4|0 + e4π ikn/N f̂4|2 + e2π ikn/N f̂4|1 + e6π ikn/N f̂4|3. (A.140)

The same transformation can be performed recursively m times (remember N = 2m)
to arrive at N log2 N sub-transforms of length 1, which are trivial.

It will be clear that the FFT can be coded most easily using recursive program-
ming. When recursion is avoided for reasons of efficiency, a bit more bookkeeping
is required: see Refs. [1, 23, 24].

Exercises 601

Exercises

A.1 [C] Write routines for generating the spherical Bessel functions jl and nl according to
the method described in Appendix A2. For jl, downward recursion is necessary to
obtain accurate results.

The upper value Lmax from which the downward recursion must start must be
sufficiently large. In this problem, we take the following value for N :

Lmax = max

{[
3[x]

2

]
+ 20, l + 20

}
where [x] is the largest integer smaller than x and l is the value we want the spherical
Bessel function for.

Write a function that yields jl(x). Check the result using the following values:

j5(1.5) = 6.696 205 96 · 10−4

n5(1.5) = −94.236 110 1.

A.2 Check the statements (i)–(v) given on page 565. In all cases, proofs by induction can
be given. The following hints may be useful:

(i) Use (A.22a) and (A.23a).
(ii) Use (A.22a), (A.22b) and (A.23b).

(iii) Use (A.22a) and (A.22b).

The last two items are proven together. Equations (A.22a) and (A.22b), and statement
(i) are used in the proof.

A.3 [C] Consider the Verlet algorithm:

xn+1 = 2xn − xn−1 + h2F[xn, n] + O(h4)

where xn = x(t + nh). The O(h4) means that the deviation of the exact solution from
the numerical one is smaller than αnh4, where αn are finite numbers that are
nonvanishing for h → 0. We write the exact solution of the differential equation at
times nh as x̃n, and the numerical solution xn deviates from the latter by an amount δn:

xn = x̃n + δn.

(a) Write down an equation for δn and show that integration over an interval of finite
width using a number of steps of size h, yields an error in the final result which, in
the absence of divergences in the force (or the solution), is at most O(h2).

(b) Carry out a similar analysis for the Numerov algorithm, showing that the final
accuracy is at most O(h4).

(c) Discuss when the ‘worst case’ error (O(h2) for Verlet and O(h4) for Numerov) is
found.

(d) [C] Check the results of (a), (b) and (c) by writing routines for the two algorithms.

A.4 [C] Consider the Schrödinger equation in one dimension for a particle moving in the
Morse potential: [

− d2

dx2
+ V0(e

−2x − 2e−x)

]
ψ(x) = Eψ(x).

602 Appendix A

We shall take �
2/2m = 1 in the following. This equation can be solved analytically

(it can be mapped onto the Laplace equation which plays an important role in the
solution of the hydrogen atom [25]), the bound state energies are given by

En = −V0

(
1 − n + 1

2√
V0

)
, n = 0, 1, 2, . . .

In this problem it is assumed that you have a routine available for integrating the
one-dimensional Schrödinger equation: you can write a Numerov routine or use a
library routine. We want to determine the bound state spectrum numerically. This is
done in the following way. First, a range xmax is defined, beyond which we can safely
approximate the potential by V(x) = 0; xmax ≈ 10 is a good value for this range. For
some energy E, the Numerov routine can be used to integrate the Schrödinger
equation numerically up to the range xmax yielding a solution u(x), and beyond xmax,
the solution, which we denote as v(x), is known analytically:

v(x) = Ae−qx + Beqx ,

q = √−E.

Consider the Wronskian W :

W = u′(xmax)v(xmax)− u(xmax)v
′(xmax)

(the prime ′ denotes a derivative). For a bound state, the coefficient B in the solution v
should vanish and we have for the Wronskian:

WB=0 = [u′(xmax)+ qu(xmax)]e−qxmax .

The matching condition between the analytical solution v and the numerical one (u),
is equivalent to the Wronskian becoming equal to zero, and we thus have to find the
energies for which the Wronskian with B = 0 vanishes. These energies can be found
using, for example, the secant method.

(a) [C] Write a function which uses the Numerov procedure for solving the
Schrödinger equation and returns the Wronskian with B = 0 as a function of the
energy E.

(b) [C] Write a code for the secant method of Appendix A3. Test this with some
simple function you know the roots of, for example sin x.

(c) [C] Use the secant code for finding the energies for which the Wronskian with
B = 0 vanishes. Note that the energies lie between 0 and −V0. The search starts
from E = −V0, and after increasing the energy by a small step (which is
predefined in the program or by the user), it is checked if the Wronskian changes
sign. If this is the case, the secant method is executed for the last energy interval.
When the root is found, the energy is increased again until the Wronskian changes
sign. The procedure is repeated until the energy becomes positive.

Check if the energies match the exact values given above.

References 603

A.5 Starting from Newton’s interpolation formula, derive the Gauss interpolation formula
to order three:

xi+t = xi + tδxi+1/2 + t(t − 1)

2! δ2xi + t(t2 − 1)

3! δ3xi+1/2 + · · ·

A.6 (a) Show explicitly that equating the time derivative (ψn+1
i − ψn

i)/�t to the average
value of the Hamiltonian acting on ψn+1

i and on ψn
i (see Eqs. (A.67), (A.68)),

yields the Crank–Nicholson algorithm.
(i) Show that the operator

1 − 1
2 i�tH

1 + 1
2 i�tH

is a second order approximation in �t to exp(−i�tH).
A.7 [C] Consider Poisson’s equation for two opposite point charges on a square of linear

size Lh (see Figure A.4). We take L to be a multiple of 4. The charges are placed at
positions r1/4,1/4 = Lh(1/4, 1/4) and r3/4,3/4 = Lh(3/4, 3/4), so that the charge
distribution is given as

ρ(r) = δ(r − r1/4,1/4)− δ(r − r3/4,3/4).

We discretise Poisson’s equation on an L × L grid with periodic boundary conditions,
and with grid constant h. The Laplace operator is given in discretised form in
Appendix A7.2 (‘Boundary value problems’) and the discretised charge distribution
is given in terms of Kronecker deltas:

ρ(i, j) = (δi,L/4δj,L/4 − δi,3L/4δj,3L/4)/h
2.

As the Laplace operator and the charge distribution both contain a pre-factor 1/h2,
this drops out of the equation.

(a) [C] Solve Poisson’s equation (A.88) for this charge distribution using the
Gauss–Seidel iteration method.

(b) [C] Apply the multigrid method using the prolongation and discretisation
mappings described in Appendix A7.2 (‘Multigrid methods’) to solve the same
problem.

(c) [C] Compare the performance (measured as a time to arrive at the solution within
some accuracy) for the methods in (a) and (b). Check in particular that the number
of multigrid steps needed to obtain convergence is more or less independent of L.

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd edn.
Cambridge, Cambridge University Press, 1992.

[2] R. W. Hamming, Numerical Methods for Scientists and Engineers. International Series in Pure
and Applied Mathematics, New York, McGraw-Hill, 1973.

[3] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations. Englewood Cliffs, NJ, Prentice-Hall, 1977.

604 Appendix A

[4] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. New York, Springer Verlag, 1977.
[5] D. Kincaid and W. Cheney, Numerical Analysis. Belmont, CA, Wadsworth, 1991.
[6] D. Greenspan and V. Casulli, Numerical Analysis for Applied Mathematics, Science and

Engineering. Redwood City, CA, Addison-Wesley, 1988.
[7] R. P. Brent, Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ, Prentice-

Hall, 1973.
[8] D. Levesque and L. Verlet, ‘Molecular dynamics and time reversibility,’ J. Stat. Phys., 72 (1993),

519–37.
[9] J. Delambre, Mem. Acad. Turin, 5 (1790), 1411.

[10] B. Numerov, Publ. l’Observ. Astrophys. Central Russie, 2 (1933), 188.
[11] D. R. Hartree, Numerical Analysis, 2nd edn. London, Oxford University Press, 1958.
[12] L. M. Milne-Thomson, The Calculus of Finite Differences. London, Macmillan, 1960.
[13] S. Herrick, Astrodynamics, vol. 2. New York, Van Nostrand Reinhold, 1972.
[14] R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs, NJ, Prentice-Hall, 1962.
[15] D. M. Young, Iterative Solution of Large Linear Systems. New York, Academic Press, 1971.
[16] W. Hackbusch and U. Trottenberg, eds., Multigrid Methods, Berlin, Springer, 1982.
[17] W. Hackbusch, Multigrid Methods and Applications. Berlin, Springer, 1984.
[18] P. Wesseling, An Introduction to Multigrid Methods. Chichester, John Wiley, 1992.
[19] W. L. Briggs, A Multigrid Tutorial. Philadelphia, SIAM, 1987.
[20] H. H. Roomany, H. W. Wyld, and L. E. Holloway, ‘New method for the Hamiltonian formulation

for lattice spin systems,’ Phys. Rev. D, 21 (1980), 1557–63.
[21] R. Haydock, V. Heine, and M. J. Kelly, ‘Electronic structure based on the local atomic

environment for tight-binding bands,’ J. Phys. C, 5 (1972), 2845–58.
[22] C. G. Paige,, ‘Computational variants of the Lanczos method for the eigenproblem,’ J. Inst.

Math. Appl., 10 (1972), 373–81.
[23] J. W. Cooley and J. W. Tukey, ‘An algorithm for the machine calculation of complex Fourier

series,’ Math. Comp., 19 (1965), 297–301.
[24] R. J. Higgins, ‘Fast Fourier transform: an introduction with some minicomputer experiments,’

Am. J. Phys., 44 (1976), 766–73.
[25] A. Messiah, Quantum Mechanics, vols. 1 and 2. Amsterdam, North-Holland, 1961.

Appendix B

Random number generators

B1 Random numbers and pseudo-random numbers

Random numbers are used in many simulations, not only of gambling tables but
also of particle accelerators, fluids and gases, surface phenomena, traffic and so
forth. In all these simulations some part of the system responsible for the behaviour
under investigation is replaced by events generated by a random number generator,
such as particles being injected into the system, whereas the source itself is not
considered. Here we discuss various methods used for generating random numbers
and study the properties of these numbers.

Random numbers are characterised by the fact that their value cannot be
predicted. More precisely, if we construct a sequence of random numbers, the
probability distribution for a new number is independent of all the numbers gen-
erated so far. As an example, one may think of throwing a die: the probability of
throwing a 3 is independent of the results obtained before. Pure random numbers
may occur in experiments: for a radioactive nucleus having a certain probability of
decay, it is not possible to predict when it will decay. There is an internet service,
http://www.fourmilab.ch/hotbits/which creates random numbers in
this way and sends them over the internet (a careful correction has been carried out
to remove any bias resulting in a majority of either 1 or 0). These numbers are truly
random [1, 2].

On the other hand, random numbers as generated by a computer are not truly ran-
dom. In all computer generators the new numbers are generated from the previous
ones by a mathematical formula. This means that the new value is fully determ-
ined by the previous ones! However, the numbers generated with these algorithms
often have properties making them very suitable for simulations. Therefore they
are called pseudo-random numbers. In fact, a ‘good’ random number generator
yields sequences of numbers that are difficult to distinguish from sequences of pure
random numbers, although it is not possible to generate pseudo-random numbers
that are completely indistinguishable from pure ones. In the following, we drop the
prefix ‘pseudo’ when we are dealing with random numbers generated in a computer.

605

http://www.fourmilab.ch/hotbits

606 Appendix B

Random numbers from standard generators are uniformly distributed over the
interval [0, 1]. This means that each number between 0 and 1 has the same probabil-
ity of occurrence, although in reality only values on a dense discrete set are possible
because of the finite number of bits used in the representation of the numbers. It is
also possible to make nonuniform random number generators: in that case, some
numbers have a higher probability of occurrence than others (nonuniform generat-
ors will be considered in Appendix B3). We define a distribution function P such
that P(x)dx gives us the probability of finding a random number in the interval
(x, x + dx). For the uniform distribution we have

P(x) =
{

1 for 0 ≤ x ≤ 1

0 else.

A more precise criterion for the quality of random number generators involves
the absence of correlations. The absence of correlations can be expressed in terms
of more complicated distribution functions. As an example, we would like the dis-
tribution function P(xi, xi+1), giving the probability for the successive occurrence
of two random numbers xi and xi+1, to satisfy

P(xi, xi+1) = P(xi)P(xi+1) = 1. (B.1)

Similar conditions are required for P(xi, xj) with j − i > 1 and also for distribution
functions of more than two variables.

B2 Random number generators and properties of pseudo-random numbers

In a computer, (pseudo-)random numbers are always represented by a finite number
of bits. This means that they can conveniently be interpreted as integers. If these
integer numbers are distributed uniformly, we can obtain real numbers by dividing
them by the largest integer that can be generated.

As a first example, we consider the most commonly used generator, the linear
congruent or modulo generator [3]. Given fixed integers a, c and m, we have the
following prescription for generating the next random integer xi from the previous
one (xi−1):

xi = (a · xi−1 + c) mod m, i > 0. (B.2)

The initial number x0, which must be chosen before starting the process of generat-
ing numbers, is called the seed of the generator. A real number between 0 and 1 is
obtained by dividing xi by m. In most cases c is taken to be equal to 0. We now see
a problem arising when x0 = 0: in that case, all subsequent numbers remain equal
to 0, which can hardly be taken for a random sequence. The choice for the seed
must therefore be made carefully. Since x = 0 is ruled out, the maximum number of

B2 Random number generators 607

different random numbers is m−1. It turns out that there exist special combinations
of a and m allowing for m−1 different random numbers to be generated. If the first
number of the sequence reappears, the sequence will repeat itself and the random
character is obviously lost.

To show that the choice of a and m is indeed a subtle one, consider a = 12 and
m = 143. In that case:

xi+1 = 12xi mod 143

xi+2 = 122xi mod 143

= 144xi mod 143 = xi (B.3)

so the sequence has a length of only 2! It is not too difficult to see that the following
conditions are necessary and sufficient for obtaining a maximum length of the
random number sequence:

• x0 is relatively prime to m, that is, x0 and m have no common factors;
• a is a primitive element modulo m, that is, it is the integer with the largest order

modulo m possible. The order modulo m, denoted by λ, for a number a is the
smallest integer number λ for which it holds that aλ mod m = 1.

The maximum length of the random number sequence is λ for the primitive element
a. If m is prime, this length is equal to m − 1. For m = 2r , the maximum length
is 2r−1.

If we use r bits to represent the random numbers of our generator, there are in
principle 2r different numbers possible. The choice m = 2r is a convenient one
since calculations involving computer words are carried out modulo 2r after cutting
off beyond the r least significant bits. In particular, for 32-bit integers with the first
bit acting as a sign-bit, r can be chosen as 31. Primitive elements for this value of
m are all integers a with a mod 8 = 3 or 5. A random generator which has been
used frequently is IBM’s randu which used m = 231 and a = 65 539. This turns
out to have poor statistical properties (see below), and moreover it is not really
portable as it depends on the computer’s word length and on a specific handling of
the overflow in integer multiplication. A better choice is m = 231 − 1, which is a
prime, leading to a maximal sequence length of 231 − 2 ≈ 2 × 109. A primitive
element for this m is a = 16 807 [4]. Schrage has given a method for calculating
xi · a mod m without causing overflow, even if xi · a is larger than the computer
word size [5, 6]; see also Problem B.1. In fact, 16 807 is not the only primitive
element modulo 231 − 1: there are more than half a million of them! Extensive
research has been carried out to find the ‘best’ ones among them and those to which
Schrage’s method is applicable [7]. It turns out that 16 807 is not the very best, but
it is not bad at all. Moreover, people feel safe using it, because it has been tested
more extensively than any other multiplier and has not exhibited really dangerous

608 Appendix B

behaviour in any test so far [4]. The sequence lengths in all these examples might
seem large, but in practice they are not sufficient for large-scale simulations, so that
sometimes one has to look for generators with larger periods.

Before treating another type of random number generator, we discuss statist-
ical deficiencies intrinsic to all types of generators, although some suffer more
from them than others. It turns out that when pairs of subsequent random num-
bers from a sequence are considered, fairly small correlations are found between
them. However, if triples or higher multiples of subsequent random numbers are
taken, the correlations become stronger. This can be shown by taking triples of
random numbers, for example, and considering these as the indices of points in
three-dimensional space. For pure random numbers, these points should fill the
unit cube homogeneously, but for pseudo-random sequences from a modulo gen-
erator, the points fall near a set of parallel planes. A theoretical upper bound to the
number of such planes in dimension d has been found [8] – it is given by (d!m)1/d .
In general one can say that the better the random number generator, the more planes
fill the d-dimensional hypercube. It is not clear to what extent such deviations from
pure random sequences influence the outcome of simulations using random number
generators: this depends on the type of simulation.

In the case of the modulo random number generator, the importance of correla-
tions varies with the multiplier a. A small value of the multiplier a for example
results in a small random number xi to be followed by a few more relatively
small numbers, and this is of course highly correlated. To obtain a good multiplier,
extensive tests have to be performed [4, 7].

It should be stressed that bad random number generators abound in cur-
rently available software, and it is recommended to check the results of any
simulation with different random number generators. Surprisingly, random gen-
erators may be better on paper than others but have less favourable properties
in particular simulations. It has been noted, for example, that the simple mod-
ulo generator has better properties in cluster Monte Carlo simulations (see
Section 15.5.1) than several others that perform better in general statistical tests [9],
because the formation of the clusters induces a higher sensitivity to long-range
correlations.

A second example of a random number generator, which suffers less from cor-
relations than the modulo generator, is a shift-register generator. This works as
follows. The random numbers are strings of, say, r bits. Each bit of the next number
in the sequence is determined by the corresponding bits of the previous n numbers.
If we denote the kth bit of the ith number in the sequence by b(k)i , we can write
down the production rule for the new bits:

b(k)i = (c1b(k)i−1 + c2b(k)i−2 + · · · + cnb(k)i−n) mod 2 (B.4)

B3 Nonuniform random number generators 609

where the numbers ci are all equal to 0 or 1. We see that the shift-register generator is
a generalisation of the modulo generator. The maximum cycle length is 2n −1. This
maximum length is obtained for special combinations of the numbers ci. Of course,
the algorithm presented can also be used to generate rows of random bits [10].

A simple form of this generator is the one for which only two ci are nonzero:

x(k)i = (
x(k)i−q + x(k)i−p

)
mod 2. (B.5)

The sum combined with the mod 2 condition is precisely the XOR operation which
can be executed very fast in a computer. ‘Magical’ (p, q) pairs yielding an optimal
cycle length are: (98, 27), (521, 32) and finally (250, 103), which is frequently used.

Before the generator (B.4) can be started, the first n random numbers have to
be known already. These can be generated with a modulo generator. Since only a
limited number of starting values is needed, correlations between these are not yet
noticeable [11].

B3 Nonuniform random number generators

Random numbers with a nonuniform distribution are usually constructed starting
from a uniform generator. In this section, we show how this can be done. As a first
example we consider a generator with a Gaussian distribution:

P(x) = e−(x−x0)
2/2σ 2

. (B.6)

From the central limit theorem, which states that the sum of many uncorrelated
random numbers is distributed according to a Gaussian with a width proportional
to 1/

√
N , it follows directly that we can obtain a Gaussian distribution just by

adding n uniform random numbers; the higher n the more accurate this distribution
will match the Gaussian form. If we want to have a Gaussian with a width σ and a
centre x̄, we transform the sum S of n uniform random numbers according to

x = x̄ − 2σ(S/n − 1/2)
√

3 (B.7)

This method for achieving a Gaussian distribution of the random numbers is very
inefficient as we have to generate n uniform random numbers to obtain a single
Gaussian one. We discuss more efficient methods below.

More generally, one can make a nonuniform random number generator using a
real function f , and for each number x generated by a uniform generator, taking
f (x) as the new nonuniform random number, where f is a function designed such as
to arrive at the prescribed distribution P. As the number of random numbers lying
between x and x + dx is proportional to dx and the same number of nonuniform
random numbers y = f (x) will lie between y and y + dy with dy/dx = f ′(x), the

610 Appendix B

density of the numbers y = f (x) is given by 1/f ′(x), so this should be equal to the
prescribed distribution P(y):

1/f ′(x) = P(y) with (B.8a)

y = f (x). (B.8b)

We must construct a function f that yields the prescribed distribution P, i.e. one
that satisfies (B.8b). To this end, we use the following relation between f and its
inverse f −1:

(f −1)′(y)f ′(x) = 1 (B.9)

from which it follows that
P(y) = (f −1)′(y). (B.10)

There is a restricted number of distributions for which such a function f can be
found, because it is not always possible to find an invertible primitive function to the
distribution P. A good example for which this is possible is the Maxwell distribution
for the velocities in two dimensions. Taking the Boltzmann factor 1/(kBT) equal
to 1/2 for simplicity, the velocities are distributed according to

P(vx, vy)dvxdvy = e−v2/2dvxdvy = e−v2/2vdvdϕ = P(v)dvdϕ, (B.11)

so the norm v of the velocity is distributed according to

P(y) = ye−y2/2. (B.12)

From (B.10) we find that the function f is defined by

f −1(y) = −e−y2/2 + Const. = x (B.13)

so that
y = f (x) = √−2 ln(Const. − x). (B.14)

Because x lies between 0 and 1, and y between 0 and ∞, we find for the constant
the value 1, and a substitution x → 1 − x (preserving the interval [0,1] of allowed
values for x) enables us to write

y = f (x) = √−2 ln(x). (B.15)

This method is very efficient since each random number generated by the uniform
generator yields a nonuniformly distributed random number.

From (B.11), we see that it is possible to generate Gaussian random numbers
starting from a distribution (B.12), since we can consider the Maxwell distribution
as a distribution for the generation of two independent Gaussian random numbers
vx = v cosϕ, vy = v sin ϕ. From this it is clear that by generating two random
numbers, one being the value v with a distribution according to (B.12) and another
being the value ϕ with a uniform distribution between 0 and 2π , we can construct

Exercises 611

0 1
x

h(x)

P(x)

rejected

accepted

Figure B.1. The von Neumann method for generating nonuniform random
numbers.

two numbers vx and vy which are both distributed according to a Gaussian. This is
called the Box–Müller method.

If we cannot find a primitive function for P, we must use a different method. A
method by Von Neumann uses at least two uniform random numbers to generate
a single nonuniform one. Suppose we want to have a distribution P(x) for x lying
between a and b. We start by constructing a generator whose distribution h satisfies
h(x) > αP(x) on the interval [a, b]. A simple choice is of course the uniform
generator, but it is efficient to have a function h with a shape roughly similar to
that of P. Now for every x generated by the h-generator, we generate a second
random number y uniformly between 0 and 1 and check if y is smaller or larger
than αP(x)/h(x). If y is smaller, then x is accepted as the next random number
and if y is larger than αP(x)/h(x), it is rejected. The procedure is represented in
Figure B.1. Clearly, it is important to have as few rejections as possible, which can
be achieved by choosing h such that αP(x)/h(x) is as close as possible to 1 for x
between a and b.

Exercises

B.1 Schrage’s method [5] enables us to carry out the transformation axn mod m as it
occurs in the modulo random number generator without causing overflow, even when
axn is greater than the computer’s word size. It works as follows. Suppose that for a
given a and m, we have two numbers q and r satisfying

m = aq + r with 0 ≤ r < q.

612 Appendix B

(a) Show that if 0 < x < m, both a(x mod q) and r[x/q] lie in the range 0, . . . , m − 1
([z] is the largest integer smaller than or equal to z).

(b) Using this, show that ax mod m can be found as:

ax mod m =
{

a(x mod q)− r[x/q] if this is ≥ 0
a(x mod q)− r[x/q] + m otherwise.

(c) Find q and r for m = 231 − 1 and a = 16 807(= 75).

References

[1] N. A. Frigerio and N. Clarck, Trans. Am. Nucl. Soc., 22 (1975), 283–4.
[2] N. A. Frigerio, N. Clarck, and S. Tyler, Toward Truly Random Random Numbers, Report,

ANL/ES-26 Part 4. Argonne National Laboratory, 1978.
[3] D. E. Knuth, Seminumerical Algorithms. The Art of Computer Programming, vol. 2. Reading,

MA, Addison-Wesley, 1981.
[4] S. W. Park and K. W. Miller, ‘Random number generators: good ones are hard to find,’ Commun.

ACM, 31 (1988), 1192–201.
[5] L. Schrage, ‘A more portable random number generator,’ ACM Trans. Math. Software, 5 (1979),

132–8.
[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd edn.

Cambridge, Cambridge University Press, 1992.
[7] P. l’Ecuyer, ‘Efficient and portable combined random number generators,’ Commun. ACM, 31

(1988), 742–9 and 774.
[8] G. Marsaglia, ‘Random numbers fall mainly in the planes,’ Proc. Nat. Acad. Sci., 61 (1968),

25–8.
[9] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, ‘Monte Carlo simulations: hidden errors from

“good” random number generators,’ Phys. Rev. Lett., 69 (1992), 3382–4.
[10] R. C. Tausworthe, ‘Random numbers generated by linear recurrence modulo 2,’ Math. Comp.,

19 (1965), 201–9.
[11] S. Kirkpatrick and E. P. Stoll, ‘A very fast shift-register sequence random number generator,’

J. Comp. Phys., 40 (1981), 517–26.

Index

ab initio method, see electronic structure
calculations, 293

Adams’ formula, 578
aluminium, see band structure, 126
Amdahl’s law, 547
Andersen methods, see molecular

dynamics(MD), 226
antisymmetric wave function, 49
Ashcroft empty-core pseudopotential, see band

structure calculations, 146
asymptotic freedom, see quantum

chromodynamics (QCD) and quarks,
518

atomic units, 125, 137, 148, 151, 158
augmented plane wave (APW) method, see

band structure calculations, 122, 168

back-substitution, 582, 593, 594
back-tracking, 494
band gap, see band structure, 104
band structure, 104, 123, 126, 130, 131, 133,

134, 142, 145, 148, 163, 169
aluminium, 128
band gap, 115, 121, 127, 130, 148
copper, 142, 144

band structure calculations, 130
augmented plane wave(APW)method,

136
linearised muffin tin Orbitals (LMTO)

method, 169
muffin tin approximation, 136
pseudopotential method

Ashcroft pseudopotential
energy-independent pseudopotential, 143,

146, 149, 150, 164
orthogonality hole, 150

pseudopotential methods, 122, 135, 136, 145,
146, 163, 168

real space method, 126
tight-binding (TB) approximation, 127

Barker algorithm, see Monte Carlo, 303
Barnes–Hut algorithm, 245
basin of attraction, 328
basis sets, 37, 61, 68, 71, 130, 135, 136, 148,

274, 288, 354, 359
contracted, 68
Gaussian type orbitals (GTO), 65–68, 73

Gaussian product theorem, 66, 74, 76
linear combination of atomic orbitals,

(LCAO), 65, 127
minimal, 67, 173, 269, 368
molecular orbitals (MO), 65, 66
palarisation orbitals
Slater type orbitals (STO), 67, 130, 88

Bethe–Salpeter method, 108
binary hypercube, 547
binary systems, see fluid dynamics, 448
binding energy, 168
Bloch state, 128, 135, 165, 353
Bloch theorem, 125
body-centred cubic, see crystal lattices, 123
Boltzmann equation, 449, 452, 455, 460
Born approximation, see quantum scattering, 27
Born–Oppenheimer approximation, 43, 45, 46,

79, 80, 134, 263, 269
boundary value problem, 579, 583, 584, 588,

604
Bragg planes, 127
branching process, see quantum Monte Carlo

(QMC), 392
Bravais lattice, 124, 130
Brent’s method, 562, 565
Bulirsch–Stoer method, 579

cache memory, 543
cache trashing, 544
Campbell–Baker–Hausdorff commutator

formula, 221, 383
canonical ensemble, see ensemble theory, 466
Car–Parrinello method, see quantum molecular

dynamics (QMD), 485
carbon nanotubes, 126, 130, 132, 133, 443

613

614 Index

central charge, 346, 367, 370, 415, 417
central limit theorem, 609
central processing unit (CPU), 541
chaos, 180
chemical potential, 3, 5, 102, 119, 161, 172,

174–176, 186, 260, 312, 314–316, 318,
319, 334, 335, 337, 338

chiral symmetry, 521, 522
clock cycle, 541–543
closed-shell, 61, 62, 96, 152
compact QED, 518, 535
configuration interaction (CI), 44, 56, 79
confinement, see quantum chromodynamics

(QCD) and quarks, 517
conformal field theory, 346
conjugate gradients method, 284–286, 292, 293,

423, 428, 434, see quantum molecular
dynamics (QMD)

constant pressure(MD), see molecular dynamics
(MD), 261

contracted, see basis sets, 67
copper, see band structure, 136
correlation effects, 7, 54, 80, 91, 119, 198, 248,

250, 372, 379
correlation length, 170, 187, 189–192, 195, 199,

471, 473, 475, 476, 483, 491, 492
correlation potential, see density functional

theory (DFT), 90
correlation time, 170, 189, 193, 194, 200, 206,

207, 307, 308, 310, 334, 409, 487, 489,
491, 495–498, 509, 510

exponential, 491
integrated, 193

Coulomb hole, screened exchange(COHSEX)
method, 106, 107

Coulson–Fisher point, 62
Crank–Nicholson method, 581, 583
critical exponent, see phase transition, 188
critical slowing down, see phase transition, 9,

190, 310, 467
cross section, see quantum scattering, 472
crystal lattices, 123

body centred cubic, 123
diamond structure, 147
lattice with a basis, 131
reciprocal lattice, 242, 243

Brillouin zone, 104, 124, 125, 127, 128,
132, 133, 135, 138–140, 142, 147, 150,
162, 522, 551

simple cubic, 123
CS2 molecule, see molecular dynamics (MD),

237
cumulant expansion, 407, 419
cusp condition, see trial wave function 380, 420

d2q6, see lattice Boltzmann method, 456
d2q9, see lattice Boltzmann method, 456
damped Jacobi method, see Jacobi method
Danielson–Lanczos lemma, see fast Fourier

transform (FFT), 599
data-blocking, 194, 334
delta-SCF method, 103, 104
dense matrices, 591, 596
density functional theory (DFT), 7, 10, 89–91,

93, 95–97, 108, 116, 117, 122, 130, 134,
161, 163, 267, 268, 270, 271, 279, 284,
377, 379, 395

correlation potential, 108, 103, 117, 118, 120,
121, 157, 158, 161

exchange correlation potential, 90, 91, 94–96,
98, 110, 114, 117, 130, 158, 268

generalised gradient approximation, (GGA)
100, 101

local density approximation (LDA), 8, 89, 95,
96, 100, 101, 107

self-energy correction, 118
density of states, 161, 162, 168
detailed balance, 301, 303, 309, 315, 325, 326,

328, 334, 382, 392, 482, 486, 488, 489,
492–494, 497, 500, 505, 526, 535

detonation waves, 252
diamond structure, see crystal lattices, 147
differential cross section, see quantum

scattering, 22
diffusion equation, 380
diffusion limited aggregation (DLA), 4, 5, 12
diffusion Monte Carlo, see quantum Monte

Carlo (QMC), 372
direct Monte Carlo, see Monte Carlo (MC), 296
distributed memory, 546, 549, 550
Duffing oscillator, 2, 3, 11
dynamic correlation effects, 7, 91, 96
dynamical fermions, see lattice field theory, 521

eigenvalue problem, 6, 7, 31, 36, 138, 595, 597
generalised, 32, 33, 36, 40, 51, 128, 138, 143,

166, 595
overlap matrix, 32, 33, 36, 37, 40, 51, 63, 66,

70, 71, 73, 85, 128, 130, 138, 143, 144,
148, 271, 273, 274, 276

electronic structure, 10, 35, 43, 56, 80, 84, 123,
126, 162, 263, 266, 269, 272, 273, 284,
288, 373

helium atom, 10, 44, 46, 49, 51, 69, 82, 85,
89, 376, 377, 379, 380, 389, 391, 393,
400, 420

hydrogen atom, 84
electronic structure calculations, 8, 29, 32, 34,

89, 96, 122, 123, 127, 134, 265, 266,
269, 288

Index 615

energy estimator, 213, 214, 256, 396, 397, 406
energy functional, 267, 268, 290–293; see also

variational calculus, 39
energy surface, 212, 487
energy-independent pseudo potentials, see band

structure calculations
ensemble average, see ensemble theory, 313,

316
ensemble theory, 170, 311

canonical (NVT) ensemble, 172, 299, 311,
313, 314, 316

ensemble average, 171, 172, 174, 175, 178,
179, 183, 192, 193, 197, 229, 230, 302,
311, 316–318

grand canonical ensemble, 174, 310, 312, 313
microcanonical (NVE) ensemble, 200, 207
partition function, 7, 8, 172–174, 177, 180,

185, 190, 228, 229, 231, 311, 317, 318,
325, 326, 339, 340, 398–400, 402, 403,
406, 478, 485, 515–517, 526, 537

equation of state, 3, 207, 312
ergodicity, 183
Euler equations, see fluid dynamics, 236, 423
Euler’s forward method, 571
Ewald method, 243, 245
Ewald–Kornfeld method, 244
exchange correlation, see density functional

theory (DFT), 90
exchange correlation hole, 99, 100
exchange hole, 54, 91, 100, 113
exponential correlation time, see correlation

time

F model, 370
face centred cubic, see crystal lattices, 123, 309
false position (regula falsi) method, 559
farmer–worker paradigm, 551
fast Fourier Transform (FFT), 153, 288, 481,

509, 587, 599–601
Danielson–Lanczos lemma, 601

fast multipole method (FMM), 247
fermion problem, see quantum Monte Carlo

(QMC), 390
Feynman, 372, 398
FFTW package, 153
finite difference grid, 584, 594
finite difference method, 5, 448, 579, 581
finite difference method 31, 578
finite element method, (FEM), 5, 423, 424, 448,

444
adaptive refinement, 424, 434, 439
local error estimator, 434
local refinement, 439

finite-size scaling, see phase transition, 476

fixed-node method, see quantum Monte Carlo
(QMC), 394

floating point operation (FLOP), 542
fluctuation-dissipation theorem, 250, 252
fluid dynamics, 448

binary system, 449, 459, 464
Euler equations, 451
Navier–Stokes equations for fluid dynamics,

448, 449, 460, 463
Flynn’s classification, 545

multiple instruction multiple data stream
(MIMD), 545, 546, 553

multiple instruction single data stream
(MISD), 545, 546

single instruction multiple data stream
(SIMD), 545, 546, 549

single instruction single data stream (SISD),
545, 546, 550

Fock matrix, 64, 70–72, 87, 271, 273, 274, 276,
279

Fock operator, see Hartree–Fock, 80
Fokker–Planck equation, 250, 384–386, 391,

490
force fields, 258, 263, 265
Fourier-accelerated Langevin method, 507–510
fractal dimension, 11–13
free energy calculation, 176, 316
free field theory, see quantum field theory, 470
Frobenius’ theorem, 342
front-end computer, 555
fundamental postulate of statistical mechanics,

170

gauge field theory, see quantum field theory, 516
Gauss–Legendre integration, 176
Gauss–Seidel method, 423, 481, 585, 587
Gaussian distribution, see random number

generators, 473
Gaussian product theorem, 73, 74
Gaussian type orbitals (GTO), see basis sets,

272
Gear algorithms, 215
Gell–Mann matrices, 529
generalised eigenvalue problem, see eigenvalue

problem, 32
generalised gradient approximation, 101
generalised Metropolis method, see Monte

Carlo (MC), 303
genetic algorithm, 329
Gibbs ensemble method, see Monte Carlo

(MC), 314
Gibbs–Duhem relation, 174
gluons, see quantum chromodynamics (QCD)

and quarks, 528

616 Index

Goedecker–Teter–Hutter (GTH)
pseudopotential, 154

gradient corrections, see density functional
theory (DFT), 96

grand canonical ensemble, see ensemble theory,
174

grand canonical potential, 174
graphene, 126, 130–133
Grassmann anticommuting numbers, 513
gravitational interactions, 2
Green’s function, 107, 108, 138, 161, 167,

381–389, 405, 472–474, 479

hard sphere liquid, 180, 208, 254, 309
harmonic oscillator, 2, 20, 29, 213–215, 223,

253, 264, 375, 376, 378, 387, 389, 393,
406, 470, 508, 533, 574

Hartree potential, 49, 56, 109–111, 113, 114,
157, 163

Hartree-Fock
Coulomb operator, 58
exchange operator, 53
Fock operator, 54, 55, 59, 62, 63, 83
Restricted Hartree-Fock(RHF), 62, 64, 85
Roothaan equations, 63, 69, 72
two-electron integral, 69, 71, 76, 101
unrestricted Hartree–Fock (UHF), 62

Hartree–Fock theory, 43, 49, 56, 78, 90, 91, 101,
117, 279

heat-bath algorithm, see Monte Carlo (MC), 303
Heisenberg model, 350, 410, 411, 413
helicity modulus, see XY model, 502
helium atom, 46, 109, 121
Hellmann–Feynman theorem, see quantum

molecular dynamics (QMD), 98
Hessian matrix, 563, 564
high performance computing, 540
highest occupied molecular orbital (HOMO),

103
Hohenberg–Kohn theorem, 108
Hoshen–Kopelman method, 464, 495
host processor, 555
Householder method, 596, 597
Hubbard model, 349, 350, 352, 411
hybrid method, 485, 510, 525, 527
hybrid Monte Carlo method, 489
hydrogen atom, see electonic structure, 110
hysteresis, 186, 210

importance sampling, see Monte Carlo (MC),
298

independent-particle approximation(IP), 46
infinitely deep potential well, see variational

calculus, 290

initial value problem, 583–585
integrated correlation time, see correlation time,

193
integration algorithms

drift, 206, 211, 212, 214, 215, 285
noise, 211, 215, 396, 397, 519, 525, 599

intermolecular interactions, see molecular
dynamics (MD), 232

intramolecular interactions, see molecular
dynamics (MD), 265

ionisation energy, 83, 101–104
ionisation potential, 78, 101
irreducibility, connectedness, 300
Ising model, 10, 180–182, 185–190, 304,

306–308, 310, 334, 339, 341–343, 346,
347, 366, 367, 415–417, 466, 476, 491,
492, 496, 497, 499, 500, 502

Jacobi method, 584–586
damped, 585

Janak’s theorem, 102, 119

kinetic integral, see Hartree-Fock, 74
Klein–Gordon equation, 469
Kohn–Sham equations, see density functional

theory (DFT), 102
Kondo effect, 355
Korringa–Kohn–Rostocker (KKR) method, see

band structure calculations, 163
Kosterlitz–Thouless (KT) transition, see phase

transition, 500

Lagrange function, 292
Lagrange multiplier theorem, 58
Lagrangian, 225, 229, 234, 237, 238, 269, 290,

293, 399, 400, 402, 467, 471–474,
511–513, 516, 521, 522, 533, 534

Lanczos diagonalisation method, 417
Langevin dynamics, 247, 251
Langevin equation, 249, 250, 257, 382, 385,

386, 524, 525
lattice Boltzmann method, 455, 459

d2q6 grid, 456
d2q9 grid, 456
stick boundary conditions, 458

lattice field theory, 180, 296, 476, 477, 522, 547
dynamical fermions, 521, 522, 524

lattice gas cellular automaton, 455
lattice spin systems, 10, 398
lattice with a basis, see crystal lattices, 123
leap-frog algorithm, 209, 236, 256, 257,

487–490, 554, 574

Index 617

Lehmann–Symanzik–Zimmermann relation, see
quantum field theory, 472

Lie–Trotter–Suzuki formula, 401, 418
linear combination of atomic orbitals (LCAO),

see basis sets, 65
linear congruent (modulo) generator, see

random number generators, 606
linear variational calculus, see variational

calculus, 30
linearised augmented plane wave (LAPW)

method, see band structure calculations,
139

linearised muffin tin orbitals (LMTO) method,
see band structure calculations, 164

linked-cell method, see molecular dynamics
(MD), 204

liquid argon, 200, 208
liquid helium, 107, 372
load balancing, 553
local density approximation (LDA), see density

functional theory (DFT), 7
local density of states, 161
local energy, see quantum Monte Carlo (QMC),

374
local error estimator, see finite element method

(FEM), 434
Local refinement, see finite element method

(FEM), 436
Löwdin perturbation theory, see perturbation

theory, 37

MacDonald’s theorem, see variational calculus,
39

macro-pipelining model, 551
magnetic exponent, 346, 347
Markov chain, 225, 295, 299, 300, 302, 307,

309, 311, 334, 382, 384, 385, 486
mask register, 545
master equation, 301, 365, 381, 382, 486
master–slave paradigm, 550
matrix diagonalisation, 31, 32, 41, 64, 134, 293,

352, 373, 595
Maxwell velocity distribution, 201, 208, 224,

250, 485, 610
mechanical average, 175, 316, 317, 338
memory banks, 543
mesoscopic physics, 288
message passing, 547, 550
microcanonical (NVE) ensemble, see ensemble

theory, 171
midpoint rule, 440, 572
minimal basis, see basis sets, 67
minimum image convention, 203, 209, 241,

243, 482

Minkowski metric, 468, 471, 512
modified Bessel function, 518, 536
molecular dynamics (MD), 3–5, 8–10, 170, 175,

180, 186, 192, 197–201, 210, 211, 214,
224, 232, 251, 253, 265, 266, 269, 272,
278, 284, 285, 288, 293, 310, 330, 332,
334, 336, 424, 440, 449, 485, 524, 552,
572, 573, 605

CS2 molecule, 238, 239
Anderse thermostat method, 225, 227, 255,

486, 485, 509
cell method, 205, 253
molecular systems, 89, 150, 187, 232, 310
nitrogen molecule, 234, 237, 239, 255
nonequilibrium molecular dynamics

(NEMD), 252
Nosé–Hoover thermostat, 227, 231, 257, 283,

286
partial constraints, 240
particle–mesh (PM) method, 244
particle–particle (PP)method, 244
particle–particle/particle–mesh (P3M)

method, 245
rigid molecules, 234, 237, 239, 240
SHAKE, 241, 271, 280

molecuar orbitals, see basis sets, 65
molecular systems, see molecular dynamics

(MD), 44
momentum tensor, see fluid dynamics, 451
Monte Carlo (MC), 551

Barker algorithm
direct Monte Carlo, 295
generalised Metropolis method, 303, 335, 392
Gibbs ensemble method, 316
heat-bath algorithm, 334, 408, 409, 480, 483,

519, 524, 526
importance sampling, 392, 393
integration, 295–298
Metropolis method, 299, 303, 307–310, 321,

491
heat-bath algorithm, 483
importance sampling, 299, 392
integration, stratified, 298
pruned-enriched Rosenbluth method

(PERM), 322
replica exchange Monte Carlo, 325, 327
simulated annealing, 269, 329
simulated tempering, 337
Rosenbluth algorithm, 321–323
Widom’s particle insertion method, 318
Wolff’s cluster algorithm, 500, 504
Wolff’s method, 496

Morse potential, 264, 265, 602
muffin tin approximation, see band structure

calculations, 136

618 Index

multigrid method, 355, 481, 504, 588–591, 604
multigrid Monte Carlo (MGMC) method, 504

Navier–Stokes equations, see fluid dynamics,
448

nearly free electron (NFE) approximation, 127
Newton–Raphson method, 559, 560
nitrogen molecule, see molecular dynamics

(MD), 234
non-equilibrium molecular dynamics (NEMD),

see molecular dynamics (MD), 251
Norman–Filinov method, see Monte Carlo

(MC), 334
Nosé–Hoover method, see molecular dynamics,

224
nuclear attraction integral, see Hartree-Fock, 74
number operator, 410, 411, 470
numerical quadrature, 566
Numerov integration method, 21
NVE, see ensemble theory, 200
(NVT), see ensemble theory, 299

open-shell, 61, 62, 96
orbitals, 43, 62, 63, 65–69, 80, 82, 85, 89, 90,

96, 101, 102, 104, 107–109, 115, 126,
131, 133, 151, 268, 270, 274, 279–286,
288, 289, 377

order parameter, 184–186
ordinary differential equations, 6, 211, 570, 571,

576
orthogonality hole, see band structure

calculations, 149
overlap integral, see Hartree-Fock, 73
overlap matrix, see eigenvalue problem, 61

Padé–Jastrow wave functions, see trail wave
function, 379

pair correlation function, 3, 178, 187, 207, 208,
210, 309, 339, 552

parallelism, 540, 541, 552
partial constraints, see molecular dynamics

(MD), 240
partial differential equations, 5, 7, 423, 448,

579, 594, 599
particle–mesh (PM) method, see molecular

dynamics (MD), 245
particle–particle (PP) method, see molecular

dynamics (MD), 244
particle–particle/particle–mesh (P3M) method,

see molecular dynamics (MD), 245
partition function, see ensemble theory, 228

path-integral formalism, 400, 402, 405, 467,
468, 512, 514, 521, 523, 525, 526, 533,
534

peer-to-peer model, 551
Peierls domain wall arguement, 183
periodic boundary conditions (PBC), 124, 125,

180, 199, 202, 203, 208, 209, 241, 252,
255, 288, 309, 339, 341, 343, 347, 399,
400, 404, 405, 443, 547, 584, 587, 604

perturbation theory, 9, 106, 474, 517, 528
Löwdin perturbation theory, 39

phase shift, see quantum scattering, 17–19, 22,
26–28, 145, 146, 149

phase space, 169, 171, 175, 176, 197, 200,
215–219, 221, 225, 230, 232, 299, 317,
318, 325, 328, 329, 449, 487, 490, 507,
552, 573

phase transition, 176, 180, 182, 184–187, 207,
210, 305, 307, 492, 531, 552

critical, 186–188, 327
critical slowing down, 476, 492, 496, 504,

506, 508
finite-size scaling, 476
scaling laws, 536

universality
critical exponent, 188–190, 307, 346, 348,

355, 476, 491, 492, 501, 502
universality, 188, 319

first order, 184, 186, 305, 306
Kosterlitz–Thouless (KT) transition, 415,

502, 532
phonons, 469
pipelining, 540, 541, 556
pivoting, 593
Poincaré invariants, 215, 219
Poincaré time, 200, 214
Poisson’s equation, 111, 112, 163, 244, 481,

505, 586, 590, 591, 604
polarisation orbitals, see basis sets, 69
polymers, 247, 319–322, 324
Pople–Nesbet equations, see Hartree-Fock, 64
potential surface, 263
Potts model, 348, 492, 502
predictor-corrector methods, 578, 579
processor efficiency, 548
propagator, 508, 510, 521, 522
pruned-enriched Rosenbluth method (PERM),

see Monte Carlo (MC), 322
pseudo-random numbers, 605, 606
pseudopotential, see band structure calculations,

39

quantum chromodynamics (QCD) and quarks
asymptotic freedom, 528, 531

Index 619

gluons, 528, 529, 532
strong interactions, 527, 528

quantum electrodynamics (QED), 9, 467,
512–514, 517, 518, 527–531

quantum field theory, 9, 15, 342, 466, 467, 469,
528

free field theory, 470, 471, 473, 477, 481,
482, 512, 533, 535

gauge field theory, 528
non-abelian, 527
Wilson loop correlation function, 516–518,

520, 530, 535, 536
Lehmann–Symanzik–Zimmermann relation,

472
regularisation, 474, 530
renormalisable field theory, 475
scalar quantum field theory, 510
vacuum polarisation, 517, 530

quantum molecular dynamics (QMD), 263, 288
Car–Parrinello method, 267, 272, 278, 284,

290
conjugate gradients method, 284, 291, 586
Hellmann–Feynman theorem, 98, 266

primitive approximation, 407
quantum Monte Carlo (QMC), 8, 96, 100, 114,

117, 348, 372, 373, 378, 387, 394, 488,
540

checkerboard decomposition, 412
diffusion Monte Carlo (DMC), 391, 395, 402
fermion problem, 394
fixed-node method, 394, 395

normal mode sampling, 409
path-integral Monte Carlo, 372, 398, 402,

406, 407
primitive approximation, 406

transient estimator method, 397, 414
variational Monte Carlo(VMC), 373, 387,

389, 391, 394, 420
virial expression for the energy, 417
local energy, 271, 375, 377, 391, 393, 420

quantum scattering, 14
Born approximation, 27
differential cross section, 15, 17, 18, 25, 26
hydrogen/krypton, 17, 18, 23, 24, 27, 177
phase shift, 16
scattering cross section, 16, 17, 22, 25, 110,

194, 472
total cross section, 15, 22–24, 26

quasi Monte Carlo, see Monte Carlo (MC), 299

Random number generators, 605, 606
Gaussian distribution, 208, 243, 245, 259,

385, 409, 480, 481, 490, 519, 609

Box–Müller method, 611
linear congruent, 606

Schrage’s method, 607, 611
modulo random number generator, 611
nonuniform random numbers, 609
shift register random generator, 609

random numbers, 4, 7, 201, 208, 295, 296, 480,
490, 605–609

truly random number, 299
random phase approximation (RPA), 106
real-space methods, see

band structure calculations, 288
reciprocal lattice, see crystal lattices, 124
recurrence time, 200
recursion method, 22, 76, 288, 334, 495, 558,

559, 570, 571, 598, 601, 602
regula falsi method, 559
regularisation, see quantum field theory, 474
renormalisability, see quantum field theory, 475
renormalisation theory, 188, 467, 475, 479, 521,

530, 531
residual minimisation by direct inversion of the

iterative subspace (RMDIIS) method,
286, 588

restricted Hartree–Fock, see Hartree–Fock, 62
rigid molecules, see molecular dynamics (MD),

234
Romberg method, 569, 579
root-finding methods, 559
Roothaan equations, see Hartree-Fock, 69
routing, 547
Runge–Kutta integration method, 215
Runge–Kutta–Nystrom integrators, 215

scalability, 556
scaling laws, see phase transition, 189
scattering cross section, see quantum scattering,

16
scattering resonance, see quantum scattering, 23
secant method, 111, 559, 560, 603
self-avoiding walk (SAW), 320
self-consistency, 43, 47, 55, 60, 71, 91, 114,

122, 156, 157, 163, 273, 284, 584
self-consistent field (SCF) theory, 55
self-energy, 56, 118, 160, 244
self-energy correction, see density functional

theory (DFT), 118
semi-empirical methods, see electronic structure

calculations, 130
SHAKE, see molecular dynamics (MD), 240
shared memory, 546, 549
shear viscosity, 252
Sherman–Morrison formula, 582
shift register random generator, see random

number generators, 608

620 Index

silicon, see band structure, 146
simple cubic, see crystal lattices, 123
Simpson’s rule, 567
simulated annealing, see Monte Carlo (MC),

271
simulated tempering, see Monte Carlo (MC),

337
six-vertex model, 348, 366
Slater determinant, 54, 56–58, 60, 78–80, 82,

84, 89
Slater type orbitals (STO), see basis sets, 65
Slater–Koster method, 130
smart Monte Carlo, see Monte Carlo (MC), 303
sparse matrices, 343, 595, 597
sparse matrix methods, 288
special point method, 128, 147, 162, 168
spherical Bessel functions, 16, 18, 21, 22, 25,

558, 602
spin waves, see XY model, 48
spin-orbitals, 48, 53–55, 57–62, 80, 82–84, 90,

91, 93, 97, 267, 271
split basis, see basis sets, 68
split-operator scheme, 108
staggered fermions, 526
steepest descent method, 563, 565
stick boundary conditions, see lattice

Boltzmann method, 458
stiff equations, 571
strain tensor, 432
strange attractor, 11
stress tensor, 430, 453
strong interaction, see quantum

chromodynamics (QCD) and quarks,
528

structure factor, 148, 151, 154, 194, 195
successive over-relaxation (SOR), 481, 482,

524, 535, 588
superfluid transition in helium, 404
Swendsen–Wang (SW) method, see Monte

Carlo (MC), 492
symplectic geometry, 215, 217
symplectic integrators, 212, 215–217, 220
systems of linear equations, 591
systolic algorithm, 555, 556

thermodynamic integration, 176, 316, 317
three-dimensional harmonic oscillator, 20, 390
time-dependent density functional theory

(TDDFT), 108, 109
time-evolution operator, 219, 221, 223, 338,

342, 396, 399
total cross section, see quantum scattering, 17
transfer matrix, 10, 165, 186, 338–345, 347,

350, 366, 398, 414, 416, 417

transient estimator method, see quantum Monte
Carlo (QMC), 395

travelling salesperson problem (TSP), 327, 328
tree code method, 258
trial wave functions, 373, 379

cusp conditions, 379, 380, 392, 393
Padé–Jastrow wave function, 393

two-electron integral, see Hartree–Fock, 60

uncorrelated wave function, 393
universality, see phase transition, 188
unrestricted Hartree–Fock (UHF), see

Hartree–Fock, 64

vacuum polarisation, see quantum field theory,
518

variational calculus, 10, 30–32, 80
energy functionals, 291
for infinitely deep potential well, 33, 34
linear, 31, 39

variational Monte Carlo(VMC), see quantum
Monte Carlo (QMC), 372

vector processing, 541, 544
vector processor, 543, 546
vector registers, 543, 546
velocity autocorrelation function, 179, 225, 250
velocity rescaling, 225
Verlet algorithm, 113, 201, 202, 209, 211–215,

222, 240, 253–255, 257, 271–273, 276,
279–281, 283, 285, 289, 291, 443, 489,
553, 573, 574, 576, 602

virial theorem, 178, 254, 256
Von Neumann bottleneck, 541
Von Neumann method, 299, 310
Von Neumann stability analysis, 580, 581
vortex excitations, see XY model, 500

Weinert’s method, 163
Wick’s theorem, 473, 479
Widom’s particle insertion method, see Monte

Carlo (MC), 319
Wilson fermions, 530
world lines, 412, 413
Wronskian, 603

XY model
helicity modulus, 502, 503, 535
spin waves, 48
vortex excitations, 500, 501

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Preface to the first edition�����������������������������������
	Preface to the second edition������������������������������������
	1 Introduction���������������������
	1.1 Physics and computational physics��
	1.2 Classical mechanics and statistical mechanics��
	1.3 Stochastic simulations���������������������������������
	1.4 Electrodynamics and hydrodynamics��
	1.5 Quantum mechanics����������������������������
	1.6 Relations between quantum mechanics and classical statistical physics��
	1.7 Quantum molecular dynamics�������������������������������������
	1.8 Quantum field theory�������������������������������
	1.9 About this book��������������������������
	Exercises����������������
	References�����������������

	2 Quantum scattering with a spherically symmetric potential��
	2.1 Introduction�����������������������
	2.2 A program for calculating cross sections���
	2.3 Calculation of scattering cross sections���
	Exercises����������������
	References�����������������

	3 The variational method for the Schrödinger equation��
	3.1 Variational calculus�������������������������������
	3.2 Examples of variational calculations���
	3.3 Solution of the generalised eigenvalue problem���
	3.4 Perturbation theory and variational calculus���
	Exercises����������������
	References�����������������

	4 The Hartree–Fock method��������������������������������
	4.1 Introduction�����������������������
	4.2 The Born–Oppenheimer approximation and the independent-particle method���
	4.3 The helium atom��������������������������
	4.4 Many-electron systems and the Slater determinant���
	4.5 Self-consistency and exchange: Hartree–Fock theory���
	4.6 Basis functions��������������������������
	4.7 The structure of a Hartree–Fock computer program���
	4.8 Integrals involving Gaussian functions���
	4.9 Applications and results�����������������������������������
	4.10 Improving upon the Hartree–Fock approximation���
	Exercises����������������
	References�����������������

	5 Density functional theory����������������������������������
	5.1 Introduction�����������������������
	5.2 The local density approximation��
	5.3 Exchange and correlation: a closer look��
	5.4 Beyond DFT: one- and two-particle excitations��
	5.5 A density functional program for the helium atom���
	5.6 Applications and results�����������������������������������
	Exercises����������������
	References�����������������

	6 Solving the Schrödinger equation in periodic solids��
	6.1 Introduction: definitions������������������������������������
	6.2 Band structures and Bloch’s theorem��
	6.3 Approximations�������������������������
	6.4 Band structure methods and basis functions���
	6.5 Augmented plane wave methods���������������������������������������
	6.6 The linearised APW (LAPW) method���
	6.7 The pseudopotential method�������������������������������������
	6.8 Extracting information from band structures��
	6.9 Some additional remarks����������������������������������
	6.10 Other band methods������������������������������
	Exercises����������������
	References�����������������

	7 Classical equilibrium statistical mechanics��
	7.1 Basic theory�����������������������
	7.2 Examples of statistical models; phase transitions��
	7.3 Phase transitions����������������������������
	7.4 Determination of averages in simulations���
	Exercises����������������
	References�����������������

	8 Molecular dynamics simulations���������������������������������������
	8.1 Introduction�����������������������
	8.2 Molecular dynamics at constant energy��
	8.3 A molecular dynamics simulation program for argon��
	8.4 Integration methods: symplectic integrators��
	8.5 Molecular dynamics methods for different ensembles���
	8.6 Molecular systems����������������������������
	8.7 Long-range interactions����������������������������������
	8.8 Langevin dynamics simulation���������������������������������������
	8.9 Dynamical quantities: nonequilibrium molecular dynamics��
	Exercises����������������
	References�����������������

	9 Quantum molecular dynamics�����������������������������������
	9.1 Introduction�����������������������
	9.2 The molecular dynamics method��
	9.3 An example: quantum molecular dynamics for the hydrogen molecule���
	9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques��
	9.5 Implementation of the Car–Parrinello technique for pseudopotential DFT���
	Exercises����������������
	References�����������������

	10 The Monte Carlo method��������������������������������
	10.1 Introduction������������������������
	10.2 Monte Carlo integration�����������������������������������
	10.3 Importance sampling through Markov chains���
	10.4 Other ensembles���������������������������
	10.5 Estimation of free energy and chemical potential��
	10.6 Further applications and Monte Carlo methods��
	10.7 The temperature of a finite system��
	Exercises����������������
	References�����������������

	11 Transfer matrix and diagonalisation of spin chains��
	11.1 Introduction������������������������
	11.2 The one-dimensional Ising model and the transfer matrix���
	11.3 Two-dimensional spin models���������������������������������������
	11.4 More complicated models�����������������������������������
	11.5 ‘Exact’ diagonalisation of quantum chains���
	11.6 Quantum renormalisation in real space���
	11.7 The density matrix renormalisation group method���
	Exercises����������������
	References�����������������

	12 Quantum Monte Carlo methods�������������������������������������
	12.1 Introduction������������������������
	12.2 The variational Monte Carlo method��
	12.3 Diffusion Monte Carlo���������������������������������
	12.4 Path-integral Monte Carlo�������������������������������������
	12.5 Quantum Monte Carlo on a lattice��
	12.6 The Monte Carlo transfer matrix method��
	Exercises����������������
	References�����������������

	13 The finite element method for partial differential equations��
	13.1 Introduction������������������������
	13.2 The Poisson equation��������������������������������
	13.3 Linear elasticity�����������������������������
	13.4 Error estimators����������������������������
	13.5 Local refinement����������������������������
	13.6 Dynamical finite element method���
	13.7 Concurrent coupling of length scales: FEM and MD��
	Exercises����������������
	References�����������������

	14 The lattice Boltzmann method for fluid dynamics���
	14.1 Introduction������������������������
	14.2 Derivation of the Navier–Stokes equations���
	14.3 The lattice Boltzmann model���������������������������������������
	14.4 Additional remarks������������������������������
	14.5 Derivation of the Navier–Stokes equation from the lattice Boltzmann model���
	Exercises����������������
	References�����������������

	15 Computational methods for lattice field theories��
	15.1 Introduction������������������������
	15.2 Quantum field theory��������������������������������
	15.3 Interacting fields and renormalisation��
	15.4 Algorithms for lattice field theories���
	15.5 Reducing critical slowing down��
	15.6 Comparison of algorithms for scalar field theory��
	15.7 Gauge field theories��������������������������������
	Exercises����������������
	References�����������������

	16 High performance computing and parallelism��
	16.1 Introduction������������������������
	16.2 Pipelining����������������������
	16.3 Parallelism�����������������������
	16.4 Parallel algorithms for molecular dynamics��
	References�����������������

	Appendix A Numerical methods�����������������������������������
	A1 About numerical methods���������������������������������
	A2 Iterative procedures for special functions��
	A3 Finding the root of a function��
	A4 Finding the optimum of a function���
	A5 Discretisation������������������������
	A6 Numerical quadratures�������������������������������
	A7 Differential equations��������������������������������
	A8 Linear algebra problems���������������������������������
	A9 The fast Fourier transform������������������������������������
	Exercises����������������
	References�����������������

	Appendix B Random number generators��
	B1 Random numbers and pseudo-random numbers��
	B2 Random number generators and properties of pseudo-random numbers��
	B3 Nonuniform random number generators���
	Exercises����������������
	References�����������������

	Index������������

