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Preface to the first edition

This is a book on computational methods used in theoretical physics research, with
an emphasis on condensed matter applications.

Computational physics is concerned with performing computer calculations and
simulations for solving physical problems. Although computer memory and pro-
cessor performance have increased dramatically over the last two decades, most
physical problems are too complicated to be solved without approximations to the
physics, quite apart from the approximations inherent in any numerical method.
Therefore, most calculations done in computational physics involve some degree
of approximation. In this book, emphasis is on the derivation of algorithms and the
implementation of these: it is a book which tells you how methods work, why they
work, and what the approximations are. It does not contain extensive discussions
on results obtained for large classes of different physical systems.

This book is not elementary: the reader should have a background in basic under-
graduate physics and in computing. Some background in numerical analysis is also
helpful. On the other hand, the topics discussed are not treated in a comprehensive
way; rather, this book hopefully bridges the gap between more elementary texts by
Koonin, Gould and Giordano, and specialised monographs and review papers on
the applications described. The fact that a wide range of topics is included has
the advantage that the many similarities in the methods used in seemingly very
different fields could be highlighted. Many important topics and applications are
however not considered in this book — the material presented obviously reflects my
own expertise and interest.

I hope that this book will be useful as a source for intermediate and advanced
courses on the subject. I furthermore hope that it will be helpful for graduates and
researchers who want to increase their knowledge of the field.

Some variation in the degree of difficulty is inherent to the topics addressed in this
book. For example, in molecular dynamics, the equations of motion of a collection
of particles are solved numerically, and as such it is a rather elementary subject.
However, a careful analysis of the integration algorithms used, the problem of per-
forming these simulations in different statistical ensembles, and the problem of

xi



xii Preface

treating long range forces with periodic boundary conditions, are much more diffi-
cult. Therefore, sections addressing advanced material are marked with an asterisk
(*) —they can be skipped at first reading. Also, extensive theoretical derivations are
sometimes moved to sections with asterisks, so that the reader who wants to write
programs rather than go into the theory may use the results, taking the derivations
for granted.

Aside from theoretical sections, implementations of algorithms are discussed,
often in a step-by-step fashion, so that the reader can program the algorithms him-
or herself. Suggestions for checking the program are included. In the exercises
after each chapter, additional suggestions for programs are given, but there are also
exercises in which the computer is not used. The computer exercises are marked
by the symbol [C]; if the exercise is divided up into parts, this sign occurs before
the parts in which a computer program is to be written (a problem marked with [C]
may contain major parts which are to be done analytically). The programs are not
easy to write — most of them took me a long time to complete! Some data-files and
numerical routines can be found on www.cambridge.org/9780521833469.

The first person who suggested that I should write this book was Aloysio Janner.
Thanks to the support and enthusiasm of my colleague and friend John Inglesfield
in Nijmegen, I then started writing a proposal containing a draft of the first hundred
pages. After we both moved to the University of Cardiff (UK), he also checked many
chapters with painstaking precision, correcting the numerous errors, both in the
physics and in the English; without his support, this book would probably never
have been completed.

Bill Smith, from Daresbury Laboratories (UK), has checked the chapters on
classical many-particle systems and Professor Konrad Singer those on quantum
simulation methods. Simon Hands from the University of Swansea (UK) has read
the chapter on lattice field theories, and Hubert Knops (University of Nijmegen,
The Netherlands) those on statistical mechanics and transfer matrix calculations.
Maziar Nekovee (Imperial College, London, UK) commented on the chapter on
quantum Monte Carlo methods. I am very grateful for the numerous suggestions
and corrections from them all. I am also indebted to Paul Hayman for helping me
correcting the final version of the manuscript. Many errors in the book have been
pointed out to me by colleagues and students. I thank Professor Ron Cohen in
particular for spotting many mistakes and discussing several issues via email.

In writing this book, I have discovered that the acknowledgements to the author’s
family, often expressed in an apologetic tone as a result of the disruption caused
by the writing process to family life, are too real to be disqualified as a cliché.
My sons Maurice, Boudewijn and Arthur have in turn disrupted the process of
writing in the most pleasant way possible, regularly asking me to show growing
trees or fireworks on the screen of my PC, instead of the dull black-on-white text


http://www.cambridge.org/9780521833469
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windows. Boudewijn and Maurice’s professional imitation of their dad, tapping on
the keyboard, and sideways reading formulae, is promising for the future.

It is to my wife Ellen that I dedicate this book, with gratitude for her patience,
strength and everlasting support during the long, and sometimes difficult time in
which the book came into being.



Preface to the second edition

Six years have passed since the first edition of this book appeared. In these years
I have learned a lot more about computational physics — a process which will
hopefully never stop. I learned from books and papers, but also from the excellent
colleagues with whom I worked on teaching and research during this period. Some
of this knowledge has found its place in this edition, which is a substantial extension
of the first.

New topics include finite elements, lattice Boltzmann simulation and density
matrix renormalisation group, and there are quite a few sections here and there in
the book which either give a more in-depth treatment of the material than can be
found in the first edition, or extensions to widen the view on the subject matter.
Moreover I have tried to eliminate as many errors as possible, but I am afraid that
it is difficult for me to beat the entropy of possible things which can go wrong in
writing a book of over 650 pages.

In Delft, where I have now a position involving a substantial amount of teach-
ing, I worked for several years in the computational physics group of Simon the
Leeuw. I participated in an exciting and enjoyable effort: teaching in an interna-
tional context. Together with Rajiv Kalia, from Louisana State, we let students from
Delft collaborate with Louisiana students, having them do projects in the field of
computational physics. Both Simon and Rajiv are experts in the field of molecular
dynamics, and I learned a lot from them. Moreover, dealing with students and their
questions has often forced me to deepen my knowledge in this field. Similar courses
with Hiroshi Iyetomi from Niigata University in Japan, and now with Phil Duxbury
at Michigan State have followed, and form my most enjoyable teaching experience.
Much of the knowledge picked up in these courses has gone into the new material
in this edition.

For one of the new parts of the book, the self-consistent pseudopotential and the
Car—Parrinello program, I worked closely together with Erwin de Wolff for a few
months. I am grateful for his support in this, and not least for his structured, neat
way of tackling the problem.

Many students, university lecturers and researchers have shared their corrections
on the text with me. I want to thank Ronald Cohen, Dominic Holland, Ari Harju,

Xiv
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John Mauro, Joachim Stolze and all the others whose names may have disappeared
from my hard disks when moving to a new machine.

Preparing this edition in addition to the regular duties of a university position
has turned out to be a demanding job, which has prevented me now and then from
being a good husband and father. I thank Ellen and my sons Maurice, Boudewijn
and Arthur for their patience and support, and express the hope that I will have
more time for them in the future.
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Introduction

1.1 Physics and computational physics

Solving a physical problem often amounts to solving an ordinary or partial differ-
ential equation. This is the case in classical mechanics, electrodynamics, quantum
mechanics, fluid dynamics and so on. In statistical physics we must calculate sums
or integrals over large numbers of degrees of freedom. Whatever type of problem
we attack, it is very rare that analytical solutions are possible. In most cases we
therefore resort to numerical calculations to obtain useful results. Computer per-
formance has increased dramatically over the last few decades (see also Chapter 16)
and we can solve complicated equations and evaluate large integrals in a reasonable
amount of time.

Often we can apply numerical routines (found in software libraries for example)
directly to the physical equations and obtain a solution. We shall see, however, that
although computers have become very powerful, they are still unable to provide
a solution to most problems without approximations to the physical equations. In
this book, we shall focus on these approximations: that is, we shall concentrate on
the development of computational methods (and also on their implementation into
computer programs). In this introductory chapter we give a bird’s-eye perspective
of different fields of physics and the computational methods used to solve problems
in these areas. We give examples of direct application of numerical methods but
we also give brief and heuristic descriptions of the additional theoretical analysis
and approximations necessary to obtain workable methods for more complicated
problems which are described in more detail in the remainder of this book. The
order adopted in the following sections differs somewhat from the order in which
the material is treated in this book.

1.2 Classical mechanics and statistical mechanics

The motion of a point particle in one dimension subject to a force F' depending on
the particle’s position x, and perhaps on the velocity x and on time ¢, is determined



2 Introduction
by Newton’s equation of motion:
mx(t) = F[x(t),x(t),1]. (1.1)

The (double) dot denotes a (double) derivative with respect to time. A solution can
be found for each set of initial conditions x(#p) and x(#p) given at some time #y. Ana-
lytical solutions exist for constant force, for the harmonic oscillator (F' = Kx? /2),
and for a number of other cases. In Appendix A7.1 a simple numerical method
for solving this equation is described and this can be applied straightforwardly to
arbitrary forces and initial conditions.

Interesting and sometimes surprising physical phenomena can now be studied.
As an example, consider the Duffing oscillator [1], with a force given by

Flx,x,1] = —yx + 2ax — 4bx> + Fy cos(wt). (1.2)

The first term on the right hand side represents a velocity-dependent friction; the
second and third terms are the force a particle feels when it moves in a double
potential well bx* — ax?, and the last term is an external periodic force. An exper-
imental realisation is a pendulum consisting of an iron ball suspended by a thin
string, with two magnets below it. The pendulum and the magnets are placed on
a table which is moved back and forth with frequency w. The string and the air
provide the frictional force, the two magnets together with gravity form some kind
of double potential well, and, in the reference frame in which the pendulum is at
rest, the periodic motion of the table is felt as a periodic force. It turns out that the
Duffing oscillator exhibits chaotic behaviour for particular values of the parameters
¥, a, b, Fy and w. This means that the motion itself looks irregular and that a very
small change in the initial conditions will grow and result in a completely different
motion. Figure 1.1 shows the behaviour of the Duffing oscillator for two nearly
equal initial conditions, showing the sensitivity to these conditions. Over the past
few decades, chaotic systems have been studied extensively. A system that often
behaves chaotically is the weather: the difficulty in predicting the evolution of
chaotic systems causes weather forecasts to be increasingly unreliable as they look
further into the future, and occasionally to be dramatically wrong.

Another interesting problem is that of several particles, moving in three dimen-
sions and subject to each other’s gravitational interaction. Our Solar System is
an example. For the simplest nontrivial case of three particles (for two particles,
Newton has given the analytical solution), analytical solutions exist for particular
configurations, but the general problem can only be solved numerically. This prob-
lem is called the three-body problem (N-body problem in general). The motion of
satellites orbiting in space is calculated numerically using programs for the N-body
problem, and the evolution of galaxies is calculated with similar programs using
a large number of test particles (representing the stars). Millions of particles can



1.2 Classical mechanics and statistical mechanics 3

2.5
2t
15
1
05

25 A A A A A A A A A
0 10 20 30 40 50 60 70 80 90 100
t

Figure 1.1. Solution of the Duffing oscillator. Parameters are m = 1, a = 1/4,
b=1/2,Fy=2.0,w = 2.4, y = 0.1. Two solutions are shown: one with initial
position xg = 0.5, the other with xg = 0.5001 (xg = O in both cases). For these
nearly equal initial conditions, the solutions soon become uncorrelated, showing
the difficulty in predicting the time evolution of a chaotic system.

be treated using a combination of high-end computers and clever computational
methods which will be considered in Chapter 8. Electrostatic forces are related to
gravitational forces, as both the gravitational and the electrostatic (Coulomb) poten-
tial have a 1/r form. The difference between the two is that electrostatic forces can
be repulsive or attractive, whereas gravitational forces are always attractive.

Neutral atoms interact via a different potential: they attract each other weakly
through induced polarisation, unless they come too close — then the Pauli principle
causes the electron clouds to repel each other. The problem of many interacting
atoms and molecules is a very important subfield of computational physics: it is
called molecular dynamics. In molecular dynamics, the equations of motion for
the particles are solved straightforwardly using numerical algorithms similar to
those with which a Duffing oscillator is analysed, the main difference being the
larger number of degrees of freedom in molecular dynamics. The aim of molecular
dynamics simulations is to predict the behaviour of gases, liquids and solids (and
systems in other phases, like liquid crystals). An important result is the equation
of state: this is the relation between temperature, number of particles, pressure and
volume. Also, the microscopic structure as exhibited by the pair correlation func-
tion, which is experimentally accessible via neutron scattering, is an interesting
property which can be determined in simulations. There are, however, many prob-
lems and pitfalls associated with computer simulations: the systems that can be
simulated are always much smaller than realistic systems, and simulating a system
at a predefined temperature or chemical potential is nontrivial. All these aspects
will be considered in Chapter 8.
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1.3 Stochastic simulations

In the previous section we have explained how numerical algorithms for solving
Newton’s equations of motion can be used to simulate liquids. The particles are
moved around according to their mechanical trajectories which are governed by
the forces they exert on each other. Another way of moving them around is to
displace them in a random fashion. Of course this must be done in a controlled
way, and not every move should be allowed, but we shall see in Chapter 10 that it is
possible to obtain information in this way similar to that obtained from molecular
dynamics. This is an example of a Monte Carlo method — procedures in which
random numbers play an essential role. The Monte Carlo method is not suitable
for studying dynamical physical quantities such as transport coefficients, as it uses
artificial dynamics to simulate many-particle systems.

Random number generators can also be used in direct simulations: some process
of which we do not know the details is replaced by a random generator. If you
simulate a card game, for example, the cards are distributed among the players by
using random numbers. An example of a direct simulation in physics is diffusion
limited aggregation (DLA), which describes the growth of dendritic clusters (see
Figure 1.2). Consider a square lattice in two dimensions. The sites of the lattice
are either occupied or unoccupied. Initially, only one site in the centre is occupied.
We release a random walker from the boundary of the lattice. The walker moves
over the lattice in a stepwise fashion. At each step, the walker moves from a site to

Figure 1.2. Dendritic cluster grown in a DLA simulation. The cluster consists of
9400 sites and it was grown on a 175 x 175 lattice.
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one of its neighbour sites, which is chosen at random (there are four neighbours for
each site in the interior of the lattice; the boundary sites have three neighbours, or
two if they lie on a corner). If the walker arrives at a site neighbouring the occupied
central site, it sticks there, so that a two-site cluster is formed. Then a new walker
is released from the boundary. This walker also performs a random walk on the
lattice until it arrives at a site neighbouring the cluster of two occupied sites, to
form a three-site cluster, and so on. After a long time, a dendritic cluster is formed
(see Figure 1.2), which shows a strong resemblance to actual dendrites formed in
crystal growth, or by growing bacterial colonies [2], frost patterns on the window
and numerous other physical phenomena.

This shows again that interesting physics can be studied by straightforward
application of simple algorithms. In Chapter 10 we shall concentrate on the Monte
Carlo method for studying many-particle systems at a predefined temperature,
volume and particle number. This technique is less direct than DLA, and, just as in
molecular dynamics, studying the system for different predefined parameters, such
as chemical potential, and evaluating free energies are nontrivial aspects which
need further theoretical consideration. The Monte Carlo method also enables us
to analyse lattice spin models, which are important for studying magnetism and
field theory (see below). These models cannot always be analysed using molecular
dynamics methods, and Monte Carlo is often the only tool we have at our disposal
in that case. There also exist alternative, more powerful techniques for simulating
dendrite formation, but these are not treated in this book.

1.4 Electrodynamics and hydrodynamics

The equations of electrodynamics and hydrodynamics are partial differential equa-
tions. There exist numerical methods for solving these equations, but the problem
is intrinsically demanding because the fields are continuous and an infinite number
of variables is involved. The standard approach is to apply some sort of discretisa-
tion and consider the solution for the electric potential or for the flow field only on
the points of the discrete grid, thus reducing the infinite number of variables to a
finite number. Another method of solution consists of writing the field as a linear
combination of smooth functions, such as plane waves, and solving for the best
values of the expansion coefficients.

There exist several methods for solving partial differential equations: finite differ-
ence methods (FDM), finite element methods (FEM), Fourier transform methods
and multigrid methods. These methods are also very often used in engineering
problems, and are essentially the domain of numerical analysis. The finite element
method is very versatile and therefore receives our particular attention in Chapter 13.
The other methods can be found in Appendix A7.2.
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1.5 Quantum mechanics

In quantum mechanics we regularly need to solve the Schrédinger equation for one
or more particles. There is usually an external potential felt by the particles, and
in addition there might be interactions between the particles. For a single particle
moving in one dimension, the stationary form of the Schrodinger equation reduces
to an ordinary differential equation, and techniques similar to those used in solv-
ing Newton’s equations can be used. The main difference is that the stationary
Schrodinger equation is an eigenvalue equation, and in the case of a discrete spec-
trum, the energy eigenvalue must be varied until the wave function is physically
acceptable, which means that it matches some boundary conditions and is normal-
isable. Examples of this direct approach are discussed in Appendix A, in particular
Problem A4.

In two and more dimensions, or if we have more than one particle, or if we want to
solve the time-dependent Schrodinger equation, we must solve a partial differential
equation. Sometimes, the particular geometry of the problem and the boundary
conditions allow us to reduce the complexity of the problem and transform it into
ordinary differential equations. This will be done in Chapter 2, where we shall study
particles scattering off a spherically symmetric potential.

Among the most important quantum problems in physics is the behaviour of
electrons moving in the field generated by nuclei, which occurs in atoms, molecules
and solids. This problem is treated quite extensively in this book, but the methods we
develop for it are also applied in nuclear physics. Solving the Schrédinger equation
for one electron moving in the potential generated by the atomic static nuclei is
already a difficult problem, as it involves solving a partial differential equation.
Moreover, the potential is strong close to the nuclei and weak elsewhere, so the
typical length scale of the wave function varies strongly through space. Therefore,
discretisation methods must use grids which are finer close to the nuclei, rendering
such methods difficult. The method of choice is, in fact, to expand the wave function
as a linear combination of fixed basis functions that vary strongly close to the nuclei
and are smooth elsewhere, and find the optimal values for the expansion coefficients.
This is an example of the variational method, which will be discussed in Chapter 3.
This application of the variational method leads to a matrix eigenvalue problem
which can be solved very efficiently on a computer.

An extra complication arises when there are many (say N) electrons, interacting
via the Coulomb potential, so that we must solve a partial differential equation
in 3N dimensions. In addition to this we must realise that electrons are fermi-
ons and the many-electron wave function must therefore be antisymmetric with
respect to exchange of any pair of electrons. Because of the large number of
dimensions, solving the Schrodinger equation is not feasible using any of the
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standard numerical methods for solving partial differential equations, so we must
make approximations. One approach is the Hartree—Fock (HF) method,developed
in the early days of quantum mechanics, which takes into account the antisymmetry
of the many-electron wave function. This leads to an independent particle picture, in
which each electron moves in the potential generated by the nuclei plus an average
potential generated by the other electrons. The latter depends on the electronic wave
functions, and hence the problem must be solved self-consistently — in Chapter 4
we shall see how this is done. The HF method leads to wave functions that are fully
antisymmetric, but contributions arising from the Coulomb interaction between
the particles are taken into account in an approximate way, analogous to the way
correlations are treated in the mean field approach in statistical mechanics.

Another approach to the quantum many-electron problem is given by density
Sfunctional theory (DFT), which will be discussed in Chapter 5. This theory, which
is in principle exact, can in practice only be used in conjunction with approximate
schemes to be discussed in Chapter 5, the most important of which is the local dens-
ity approximation (LDA). This also leads to an independent-particle Schrodinger
equation, but in this case, the correlation effects resulting from the antisymmetry
of the wave function are not incorporated exactly, leading to a small, unphys-
ical interaction of an electron with itself (self-interaction). However, in contrast to
Hartree—Fock,the approach does account (in an approximate way) for the dynamic
correlation effects due to the electrons moving out of each other’s way as a result
of the Coulomb repulsion between them.

All these approaches lead in the end to a matrix eigenvalue problem, whose size
depends on the number of electrons present in the system. The resulting solutions
enable us to calculate total energies and excitation spectra which can be compared
with experimental results.

1.6 Relations between quantum mechanics and classical statistical physics

In the previous two sections we have seen that problems in classical statistical
mechanics can be studied with Monte Carlo techniques, using random numbers,
and that the solution of quantum mechanical problems reduces to solving matrix
eigenvalue problems. It turns out that quantum mechanics and classical statistical
mechanics are related in their mathematical structure. Consider for example the
partition function for a classical mechanics system at temperature 7', with degrees
of freedom denoted by the variable X and described by an energy function (that is,
a classical Hamiltonian) H:

Zo =Y e HO/GeT), (1.3)
X
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and that of a quantum system with quantum Hamiltonian H:
Zom = Tr(e™"/¢87); (14)

“Tr’ denotes the trace of the operator following it. We will show in Chapter 12 that
in the path-integral formalism, the second expression can be transformed into the
same form as the first one. Also, there is a strong similarity between the exponent
occurring in the quantum partition function and the quantum time-evolution oper-
ator U(t) = exp(—itH/h), so solving the time evolution of a quantum system is
equivalent to evaluating a classical or quantum partition function, the difference
being an imaginary factor i¢/h replacing the real factor 1/(kgT), and taking the
trace in the case of the quantum partition function rather than a sum over states in
the classical analogue.

These mathematical analogies suggest that numerical methods for either classical
statistical mechanics or quantum mechanics are applicable in both fields. Indeed,
in Chapter 11, we shall see that it is possible to analyse classical statistical spin
problems on lattices by diagonalising large matrices. In Chapter 12, on the other
hand, we shall use Monte Carlo methods for solving quantum problems. These
methods enable us to treat the quantum many-particle problem without systematic
approximations, because, as will be shown in Chapter 12, Monte Carlo techniques
are very efficient for calculating integrals in many dimensions. This, as we have seen
above, was precisely the problem arising in the solution of interacting many-particle
systems.

1.7 Quantum molecular dynamics

Systems of many interacting atoms or molecules can be studied classically by solv-
ing Newton’s equations of motion, as is done in molecular dynamics. Pair potentials
are often used to describe the atomic interactions, and these can be found from
quantum mechanical calculations, using Hartree—Fock,density functional theory or
quantum Monte Carlo methods. In a dense system, the pair potential is inadequate
as the interactions between two particles in the system are influenced by other
particles. In order to incorporate these effects in a simulation, it would be necessary
to calculate the forces from full electronic structure calculations for all configura-
tions occurring in the simulation. Car and Parrinello have devised a clever way to
calculate these forces as the calculation proceeds, by combining density functional
theory with molecular dynamics methods.

In the Car—Parrinello approach, electron correlations are not treated exactly
because of the reliance on LDA (see Section 1.5), but it will be clear that it is
an important improvement on fully classical simulations where the interatomic
interactions are described by a simple form, such as pair potentials. It is possible
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to include some damping mechanism in the equations of motion and then let the
nuclei relax to their ground state positions, so that equilibrium configurations of
molecules and solids can be determined (neglecting quantum fluctuations).

1.8 Quantum field theory

Quantum field theory provides a quantum description for fields: strings in one
dimension, sheets in two dimensions, etc. Quantum field theory is also believed
to describe elementary particles and their interactions. The best known example
is quantum electrodynamics (QED) which gives a very accurate description of
the interaction between charged spin-1/2 fermions (electrons) and electromag-
netic fields. The results of QED are obtained using perturbation theory which
works very well for this case, because the perturbative parameter remains small
for all but the smallest length scales (at large length scales this is the fine structure
constant).

In quantum chromodynamics (QCD), the theory which supposedly describes
quarks bound together in a proton or neutron, the coupling constant grows large for
large scales, and perturbation theory breaks down. One way to obtain useful results
for this theory is to discretise space-time, and simulate the theory on this space-time
lattice on a computer. This can be done using Monte Carlo or molecular dynam-
ics techniques. The application of these techniques is far from easy as the QCD
field theory is intrinsically complicated. A problem which needs to be addressed
is efficiency, notably overcoming critical slowing down, which decreases the effi-
ciency of simple Monte Carlo and molecular dynamics techniques for the cases
which are of physical interest. The fact that quarks are fermions leads to additional
complications.

QCD simulations relate quark masses to masses and interaction constants of
hadrons (mesons, protons, neutrons).

1.9 About this book

In this book, the emphasis is on methods which do not merely involve straightfor-
ward application of numerical methods, and which are specific to problems studied
in physics. In most cases, the theory is treated in some detail in order to exhibit
clearly what the approximations are and why the methods work. However, some of
this theoretical material can be skipped at first reading (this is the material in the
sections marked with an asterisk *). Details on implementation are given for most
of the methods described.

We start off with a chapter on quantum mechanical scattering theory. This is
a rather straightforward application of numerical techniques, and is used as an
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illustration of solving a rather simple (not completely trivial) physical problem
on a computer. The results of a sample program are compared with experiment.
In Chapters 3 to 5 we discuss computational methods for the electronic structure:
variational calculus, Hartree—Fock and density functional theory. We apply these
methods to some simple systems: the hydrogen and the helium atoms, and the
hydrogen molecule. We calculate the energies of these systems. Chapter 6 deals
with solving the independent-particle Schrédinger equation in solids.

In Chapters 7 to 12 we describe molecular dynamics and Monte Carlo techniques
for classical and quantum many-particle systems. Chapter 7 contains an overview
of classical statistical mechanics, with emphasis on ensembles and on critical phe-
nomena, which are also important for field theory, as discussed in Chapter 15. The
molecular dynamics and Monte Carlo techniques are treated in Chapters 8 and 10.
The standard example of a molecular liquid, argon, is analysed, but simulations
for liquid nitrogen and for lattice spin systems (Ising model) are also discussed.
Chapter 9 deals with the quantum molecular dynamics technique.

The relations between classical and statistical mechanics are exploited in
Chapter 11 where the transfer matrix method for lattice spin systems is described.
The next chapter deals with the application of Monte Carlo methods to quantum
mechanics, and we revisit the helium atom which is now treated without Hartree—
Fock or DFT approximations.

In Chapter 15 we consider numerical methods for field theory. Techniques for
analysing the simplest interesting field theory, the scalar ¢* theory, are studied,
and methods for studying more complicated field theories (QED and QCD) are
discussed. Because of the relation between statistical and quantum mechanics, some
of the techniques discussed in this chapter are also relevant for classical statistical
mechanics.

Finally, in Chapter 16 modern computer architectures are briefly considered and
an example of a parallel algorithm for molecular dynamics is given.

The algorithms presented, and the programs to be written in the exercises, can
be coded in different languages: C, C++, Java, Fortran 77, Fortran 90 etc. Also,
an integrated scientific computer environment such as MatLab may be used. They
all have their pluses and minuses: Fortran 77 allows for dirty programming, but is
quite efficient, and the same holds for C; Fortran 90 is efficient and neat. MatLab
is easy to use, but not as efficient as using a high-level programming language.
Perhaps the most structured way of programming is by using the objected-oriented
programming paradigm, as implemented in the langauges C++ and Java. For large
and complex projects, these languages are unbeatable. However, for smaller jobs
MatLab or Fortran 90 is usually sufficient. It is my experience that students relatively
new to programming get their programs to run correctly most quickly when using
Fortran 90 or MatLab.
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Perhaps the most decisive criterion for choosing a particular language is whether
you have experience with it. There is no emphasis on any of these languages in
this book: they are all suitable for writing the numerical types of programs con-
sidered here. If asked for a recommendation, I would not hesitate to advocate
Fortran 90 as the most suitable language for inexperienced programmers. Students
with substantial programming skills are probably better off using C++ or Java.

It is hoped that in the future it might be easier to move around pieces of software
and embed them in new programs, using graphical user interfaces (GUIs). Object-
oriented programming (OOP) techniques will play a major role in this development.
Ideally, the programs in this book could be built using a set of building blocks which
are graphically connected by the programmer to form programs which include the
numerical work along with a user-friendly input/output environment.

Exercises

1.1 [C] In this problem it is assumed that you have at your disposal a routine for solving
an ordinary second order differential equation with given initial conditions (see also
Appendix A7.1).

(a) Write a program for the Duffing oscillator [see Eqs. (1.1) and (1.2)] and study the
motion for different sets of values of the parameters Fy, w, y (usem = 1,
a =1/4, b = 1/2) and initial conditions xo and xg.

(b) For the same values of the parameters, print out the values of x and p = x each
time a period T = 27 /w has elapsed. Plotting these points should yield a
structure like Figure 1.3. The resulting curve is called the strange attractor.

It is possible to assign a dimension to such a structure. This is done by covering it
with grids of different sizes, and counting the number of squares N (b) needed to
cover the structure with squares of size b x b. This number then scales with b as

N(b) x b~Pr, small b,

and the exponent Dy is then the dimension. This is not always an integer number, and
if this is indeed not the case, we call the dimension, and the corresponding structure,
fractal.

(c) Argue that the dimension of a line determined in this way is equal to one, and that
that of a surface area is equal to two.

(d) Write a program to determine the fractal dimension of the strange attractor
constructed above. This proceeds as follows. First, read all the points of the
attractor into an array. The attractor lies in the square of side 6 centred at the
origin. Divide this square up into [ x [ cells, where [ is first taken to be 2, then 4,
and so on up to / = 128. The side of the cells is then b = 6/I/. A Boolean array of
size at least 128 by 128 assumes the value TRUE for cells which contain a point of
the attractor and FALSE if that is not the case. Fill this array by performing a loop
over the points on the attractor, and then count the number of filled cells N (b).
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Figure 1.3. Strange attractor for the Duffing oscillator. Values of the parameters
are Fp = 2.0, w = 2.4, y = 0.1. The initial conditions are xo = 0.5, o = 0.

1.2 [C]
(a)

(b)

The results log[N ()] and log(b) should be written to a file. For an attractor of
25000 points, the resulting points lie more or less on a straight line with slope
—Dr ~ —1.68,for2 <1 <7.

In this problem, we consider diffusion limited aggregation.

Write a program for generating DLA clusters on a square lattice of size

150 x 150 (see Section 1.3). Generate a cluster of about 9000 sites, and write the
sites occupied by this cluster to a file for viewing using a graphics program.
Another definition of the fractal dimension (see Problem 1.1) is obtained by
relating the number of sites N of the cluster to its radius of gyration, defined by

N

%]Z(ri —10)%,

i=1

Ry

where
1 N
ro = ]v ; r;

is the ‘centre of mass’ of the cluster. Show that the radius of gyration can be
rewritten as
Al
2 2
=
Use this formula to calculate the radius of gyration after every 200 newly added
sites, and write the values log(R;), log(N) to a file. Plot this file and fit the results
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to a straight line. The slope of this line is then the fractal dimension which must
be about 1.7.
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Quantum scattering with a spherically
symmetric potential

2.1 Introduction

In this chapter, we shall discuss quantum scattering with a spherically symmetric
potential as a typical example of the problems studied in computational physics
[1, 2]. Scattering experiments are perhaps the most important tool for obtaining
detailed information on the structure of matter, in particular the interaction between
particles. Examples of scattering techniques include neutron and X-ray scattering
for liquids, atoms scattering from crystal surfaces and elementary particle collisions
in accelerators. In most of these scattering experiments, a beam of incident particles
hits a target which also consists of many particles. The distribution of scattered
particles over the different directions is then measured, for different energies of the
incident particles. This distribution is the result of many individual scattering events.
Quantum mechanics enables us, in principle, to evaluate for an individual event the
probabilities for the incident particles to be scattered off in different directions; and
this probability is identified with the measured distribution.

Suppose we have an idea of what the potential between the particles involved
in the scattering process might look like, for example from quantum mechanical
energy calculations (programs for this purpose will be discussed in the next few
chapters). We can then parametrise the interaction potential, i.e. we write it as
an analytic expression involving a set of constants: the parameters. If we evaluate
the scattering probability as a function of the scattering angle for different values
of these parameters, and compare the results with experimental scattering data,
we can find those parameter values for which the agreement between theory and
experiment is optimal. Of course, it would be nice if we could evaluate the scattering
potential directly from the scattering data (this is called the inverse problem), but
this is unfortunately very difficult (if not impossible): many different interaction
potentials can have similar scattering properties, as we shall see below.

14
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Figure 2.1. Geometry of a scattering process.

There might be many different motives for obtaining accurate interaction poten-
tials. One is that we might use the interaction potential to make predictions about
the behaviour of a system consisting of many interacting particles, such as a dense
gas or a liquid. Methods for doing this will be discussed in Chapters 8 and 10.

Scattering may be elastic or inelastic. In the former case the energy is conserved,
in the latter it disappears. This means that energy transfer takes place from the
scattered particles to degrees of freedom which are not included explicitly in the
system (inclusion of these degrees of freedom would cause the energy to be con-
served). In this chapter we shall consider elastic scattering. We restrict ourselves
furthermore to spherically symmetric interaction potentials. In Chapter 15 we shall
briefly discuss scattering in the context of quantum field theory for elementary
particles.

We analyse the scattering process of a particle incident on a scattering centre
which is usually another particle." We assume that we know the scattering potential,
which is spherically symmetric so that it depends on the distance between the
particle and the scattering centre only.

In an experiment, one typically measures the scattered flux, that is, the intensity
of the outgoing beam for various directions which are denoted by the spatial angle
Q = (0, 9) as in Figure 2.1. The differential cross section, do (2)/d<2, describes
how these intensities are distributed over the various spatial angles €2, and the integ-
rated flux of the scattered particles is the fotal cross section, oo These experimental
quantities are what we want to calculate.

The scattering process is described by the solutions of the single-particle
Schrodinger equation involving the (reduced) mass m, the relative coordinate r
and the interaction potential V between the particle and the interaction centre:

2
[_h_vz + V(r):| Y(r) = Ey(r). (2.1)
2m

! Every two-particle collision can be transformed into a single scattering problem involving the relative

position; in the transformed problem the incoming particle has the reduced mass m = mymy /(my + my).
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This is a partial differential equation in three dimensions, which could be solved
using the ‘brute force’ discretisation methods presented in Appendix A, but exploit-
ing the spherical symmetry of the potential, we can solve the problem in another,
more elegant, way which, moreover, works much faster on a computer. More spe-
cifically, in Section 2.3 we shall establish a relation between the phase shift and the
scattering cross sections. In this section, we shall restrict ourselves to a description
of the concept of phase shift and describe how it can be obtained from the solutions
of the radial Schrédinger equation. The expressions for the scattering cross sections
will then be used to build the computer program which is described in Section 2.2.

For the potential V (r) we make the assumption that it vanishes for r larger than
a certain value rpax. If we are dealing with an asymptotically decaying potential,
we neglect contributions from the potential beyond the range rm,x, which must be
chosen suitably, or treat the tail in a perturbative manner as described in Problem 2.2.

For a spherically symmetric potential, the solution of the Schrodinger equation
can always be written as

00 1
v =YY A ”’ff) Y/"(0.¢) (2.2)
=0 m=—1

where u; satisfies the radial Schrédinger equation:

K S IO 5 (R P 53
aman T ETVO - [ju) =0 -

Figure 2.2 shows the solution of the radial Schrédinger equation with / = 0 for
a square well potential for various well depths — our discussion applies also to
nonzero values of [. Outside the well, the solution u; can be written as a linear
combination of the two independent solutions j; and n;, the regular and irregular
spherical Bessel functions. We write this linear combination in the particular form

w(r > rmax) o krcos 8 (kr) — sin 8y (kr)l; 2.4)
k = ~/2mE /h.

Here rmax is the radius of the well, and §; is determined via a matching procedure
at the well boundary. The motivation for writing u; in this form follows from the
asymptotic expansion for the spherical Bessel functions:

krji(kr) ~ sin(kr — I /2) (2.5a)
krny(kr) ~ — cos(kr — I /2) (2.5b)
which can be used to rewrite (2.4) as

w(r) o sin(kr — Imw /2 4 8;), large r. (2.6)
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V=205

Figure 2.2. The radial wave functions for / = 0 for various square well potential
depths.

We see that u; approaches a sine-wave form for large r and the phase of this wave
is determined by §;, hence the name ‘phase shift’ for §; (for [ = 0, u; is a sine wave
for all ¥ > rmax).

The phase shift as a function of energy and / contains all the information about
the scattering properties of the potential. In particular, the phase shift enables us
to calculate the scattering cross sections and this will be done in Section 2.3; here
we simply quote the results. The differential cross section is given in terms of the
phase shift by

2

d - .

d_?z =2 Z(Zl + 1)e'¥ sin(8;)P;(cos 0) 2.7)
=0

and for the total cross section we find
. do dr & .9
Ot =27 [ d0sin0-—(0) = 5 > @1+ 1ysin® 4. (2.8)
=0

Summarising the analysis up to this point, we see that the potential determines
the phase shift through the solution of the Schrédinger equation for r < rpax. The
phase shift acts as an intermediate object between the interaction potential and the
experimental scattering cross sections, as the latter can be determined from it.

Unfortunately, the expressions (2.7) and (2.8) contain sums over an infinite num-
ber of terms — hence they cannot be evaluated on the computer exactly. However,
there is a physical argument for cutting off these sums. Classically, only those waves
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with an angular momentum smaller than Aly,x = hkrmax will ‘feel” the potential —
particles with higher /-values will pass by unaffected. Therefore we can safely cut
off the sums at a somewhat higher value of /; we can always check whether the res-
ults obtained change significantly when taking more terms into account. We shall
frequently encounter procedures similar to the cutting off described here. It is the
art of computational physics to find clever ways to reduce infinite problems to ones
which fit into the computer and still provide a reliable description.

How is the phase shift determined in practice? First, the Schrodinger equation
must be integrated from » = 0 outwards with boundary condition u#;(r = 0) = 0. At
Fmax, the numerical solution must be matched to the form (2.4) to fix §;. The match-
ing can be done either via the logarithmic derivative or using the value of the
numerical solution at two different points | and r» beyond rmax. We will use the
latter method in order to avoid calculating derivatives. From (2.4) it follows directly
that the phase shift is given by

(1 .(2
A

tan §; = with (2.9a)
Kn§“ - nl(z)
ri u(2)
= 1(1) . (2.9b)
rzul

In this equation, jl(l) stands for j;(kry) etc.

2.2 A program for calculating cross sections

In this section we describe the construction of a program for calculating cross
sections for a particular scattering problem: hydrogen atoms scattered off (much
heavier) krypton atoms. Both atoms are considered as single particles and their
structure (nucleus and electrons) is not explicitly taken into account. After com-
pletion, we are able to compare the results with experimental data. The program
described here closely follows the work of Toennies et al. who carried out various
atomic collisions experimentally and modelled the results using a similar computer
program [3].
The program is built up in several steps.

o First, the integration method for solving the radial Schrédinger equation is
programmed. Various numerical methods can be used; we consider in particular
Numerov’s method (see Appendix A7.1).

e Second, we need routines yielding spherical Bessel functions in order to
determine the phase shift via the matching procedure Eq. (2.9a). If we want to
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calculate differential cross sections, we need Legendre polynomials too. In
Appendix A2, iterative methods for evaluating special functions are discussed.

o Finally, we complete the program with a routine for calculating the cross
sections from the phase shifts.

2.2.1 Numerov’s algorithm for the radial Schrodinger equation

The radial Schrodinger equation is given in Eq. (2.3). We define

R+ 1
F(,r,E) =V() + M+ D g (2.10)
2mr?
so that the radial Schrédinger equation now reads:
h? d?
ﬁﬁu(” =F(,r,E)u(r). 2.11)

Units are chosen in which A2 /(2m) assumes a reasonable value, that is, not
extremely large and not extremely small (see below). You can choose a lib-
rary routine for integrating this equation but if you prefer to write one yourself,
Numerov’s method is a good choice because it combines the simplicity of a regular
mesh with good efficiency. The Runge—Kutta method can be used if you want to
have the freedom of varying the integration step when the potential changes rapidly
(see Problem 2.1).

Numerov’s algorithm is described in Appendix A7.1. It makes use of the special
structure of this equation to solve it with an error of order 4° (4 is the discretisation
interval) using only a three-point method. For /%/2m = 1 it reads:

w(r + h) = 2w(r) — w(r — h) + K*F(, r, E)u(r) (2.12)
and
W -
u(r) = [1 — EF(z, r,E)} w(r). (2.13)

It is useful to keep several things in mind when coding this algorithm.

e The function F (I, r, E), consisting of the energy, potential and centrifugal
barrier, given in Eq. (2.10), is coded into a function F (L, R, E), with L an
integer and R and E being real variables.

e As you can see from Eq. (2.9a), the value of the wave function is needed for two
values of the radial coordinate r, both beyond rpax. We can take r; equal to the
first integration point beyond rmax (if the grid constant £ for the integration fits
an integer number of times into ryyx, it is natural to take 7| = rmax). The value
of ry is larger than r; and it is advisable to take it roughly half a wavelength
beyond the latter. The wavelength is given by A = 2w /k = 2mwh/~/2mE. As
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both r; and r, are equal to an integer times the integration step & (they will in
general not differ by exactly half a wavelength) the precise values of r; and
are determined in the routine and output to the appropriate routine parameters.

o The starting value at r = 0 is given by u(r = 0) = 0. We do not know the value
of the derivative, which determines the normalisation of the resulting function —
this normalisation can be determined afterward. We take 1;(0) = 0 and
up(h) = W'Y (h is the integration step), which is the asymptotic approximation
for u; near the origin for a regular potential (for the H-Kr interaction potential
which diverges strongly near the origin, we must use a different boundary
condition as we shall see below).

PROGRAMMING EXERCISE

Write a code for the Numerov algorithm. The input parameters to the routine
must include the integration step £, the radial quantum number [, the energy E
and the radial coordinate rpyax; on output it yields the coordinates r; and r;
and the values of the wave function u;(r) and u;(r7).

When building a program of some complexity, it is very important to build it
up step by step and to check every routine extensively. Comparison with analytical
solutions is then of prime importance. We now describe several checks that should
be performed after completion of the Numerov routine (it is also sensible to test a
library routine).

Check 1 The numerical solutions can be compared with analytical solutions for
the case of the three-dimensional harmonic oscillator. Bound states occur for
energies E = hw(n+3/2),n = 0,1,2,...Itis convenient in this case to choose
units such that 42/2m = 1. Taking V(r) = r?, we have hw = 2 and the lowest
state occurs for | = 0 with energy E = 3.0, with eigenfunction Ar exp(—r?/2), A
being some constant. Using £ = 3.0 in our numerical integration routine should
give us this solution with A = exp(h?/2) for the starting conditions described
above. Check this for r-values up to r;.

Check 2 The integration method has an error of O(h®) (where © indicates
‘order’). The error found at the end of a finite interval then turns out to be less
than O (h*) (see Problem A3). This can be checked by comparing the numerical
solution for the harmonic oscillator with the exact one. Carry out this compar-
ison for several values of N, for example N = 4,8, 16, ... For N large enough,
the difference between the exact and the numerical solution should decrease for
each new value of N by a factor of at least 16. If your program does not yield
this behaviour, there must be an error in the code!
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We shall now turn to the H-Kr interaction. The two-atom interaction potential for
atoms is often modelled by the so-called Lennard—Jones (LJ) potential, which has

the following form:
0 12 o 6
V() = ¢ (—) _2 (—) . (2.14)
r r

This form of potential contains two parameters, ¢ and p, and for H-Kr the best
values for these are

e=59meV and p=3.57A. (2.15)

Note that the energies are given in milli-electronvolts! In units of meV and
o for energy and distance respectively, the factor 2m/h” is equal to about
6.12 meV‘lp_z. The potential used by Toennies et al. [3] included small cor-
rections to the Lennard-Jones shape.

For the Lennard—Jones potential the integration of the radial Schrodinger equa-
tion gives problems for small r because of the 1/r!? divergence at the origin. We
avoid integrating in this region and start at a nonzero radius ryj, Where we use the
analytic approximation of the solution for small r to find the starting values of the
numerical solution. For r < rp;,, the term 1/ r12 dominates the other terms in the
potential and the energy, so that the Schrodinger equation reduces to

d’u 1
m = 80[}’31/{(7') (216)

with @ = 6.12. The solution of this equation is given by
u(r) = exp(—Cr=) (2.17)

with C = \/ea/25. This fixes the starting values of the numerical solution at 7,
which should be chosen such that it can safely be assumed that the 1/r!? dominates
the remaining terms in the potential; typical values for the starting value of r lie
between 0.50 and 0.8p (the minimum of the Lennard—Jones potential is found
at r = 2). Note that Eq. (2.17) provides the starting value and derivative of the
wavefunction u at the starting point. In Appendix A7.1 a procedure is described by
which two consecutive values can then be found which, when used as the starting
values of the Numerov method, provide a solution with the proper accuracy. This
will not be the case when two consecutive points are simply set to the solution
Eq. (2.17), as this is not an exact solution to either the continuum differential
equation or to its discrete (Numerov) form.

You can adapt your program to the problem at hand by simply changing the
function F (I, r, E) to contain the Lennard—Jones potential and by implementing the
boundary conditions as described. As a check, you can verify that the solution does
not become enormously large or remain very small.
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2.2.2 The spherical Bessel functions

For the present problem, you need only the first six spherical Bessel functions j; and
ny, and you can type in the explicit expressions directly. If you want a general routine
for the spherical Bessel functions, however, you can use the recursive procedures
described in Appendix A (see also Problem A1l). Although upward recursion can
be unstable for j; (see Appendix A), this is not noticeable for the small / values (up
to [ = 6) that we need and you can safely use the simple upward recursion for both
n; and j; (or use a library routine).

PROGRAMMING EXERCISE

Write routines for generating the values of the spherical Bessel functions jj
and n;. On input, the values of / and the argument x are specified and on output
the value of the appropriate Bessel function is obtained.

Check 3 1f your program is correct, it should yield the values for js and n5 given
in Problem Al.

2.2.3 Putting the pieces together: results

To obtain the scattering cross sections, some extra routines must be added to the
program. First of all, the phase shift must be extracted from the values 7, u(ry) and
ra, u(ry). This is straightforward using Eq. (2.9a). The total cross section can then
readily be calculated using Eq. (2.8). The choice of rpax must be made carefully,
preferably keeping the error of the same order as the O (h®) error of the Numerov
routine (or the error of your library routine). In Problem 2.2 it is shown that the
deviation in the phase shift caused by cutting off the potential at rpyax 1S given by

2m [ , )
A = _ﬁk/ Ji kr)Voy(r)redr (2.18)
max

and this formula can be used to estimate the resulting error in the phase shift or to
improve the value found for it with a potential cut-off beyond ryax. A good value
1S 7'max ~ 5p.

For the determination of the differential cross section you will need additional
routines for the Legendre polynomials.” In the following we shall only describe
results for the total cross section.

PROGRAMMING EXERCISE

Add the necessary routines to the ones you have written so far and combine
them into a program for calculating the total cross section.

2 These can be generated using the recursion relation (I + 1)Py41(x) = (21 + D)xP;(x) — IP;_ (x).
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Figure 2.3. The effective potential for the Lennard—Jones interaction for various
[-values.

A computer program similar to the one described here was used by Toennies ez al.
[3] to compare the results of scattering experiments with theory. The experiment
consisted of the bombardment of krypton atoms with hydrogen atoms. Figure 2.3
shows the Lennard—Jones interaction potential plus the centrifugal barrier /(I41) /r?
of the radial Schrodinger equation. For higher [-values, the potential consists essen-
tially of a hard core, a well and a barrier which is caused by the 1/ centrifugal term
in the Schrodinger equation. In such a potential, quasi-bound states are possible.
These are states which would be genuine bound states for a potential for which the
barrier does not drop to zero for larger values of r, but remains at its maximum
height. You can imagine the following to happen when a particle is injected into
the potential at precisely this energy: it tunnels through the barrier, remains in the
well for a relatively long time, and then tunnels outward through the barrier in
an arbitrary direction because it has ‘forgotten’ its original direction. In wave-like
terms, the particle resonates in the well, and this state decays after a relatively long
time. This phenomenon is called ‘scattering resonance’. This means that particles
injected at this energy are strongly scattered and this shows up as a peak in the total
Ccross section.

Such peaks can be seen in Figure 2.4, which shows the total cross section as a
function of the energy calculated with a program as described above. The peaks are
dueto! =4,/ = 5and/ = 6 scattering, with energies increasing with /. Figure 2.5
finally shows the experimental results for the total cross section for H-Kr. We see
that the agreement is excellent.

You should be able now to reproduce the data of Figure 2.4 with your program.
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Figure 2.4. The total cross section shown as function of the energy for a Lennard-
Jones potential modelling the H-Kr system. Peaks correspond to the resonant
scattering states. The total cross section is expressed in terms of the range p of the
Lennard—Jones potential.

l=4
f 5
)
5|4 00
§ T $ -n?&«
2 # { 31‘ # *%%"on
g |T b ¢y ’ ey
2 L] + + & L]
g | L 3
= §+ ) 4
oy
1 10

Energy [meV]

Figure 2.5. Experimental results as obtained by Toennies et al. [3] for the total
cross section (arbitrary units) of the scattering of hydrogen atoms by krypton atoms
as function of centre of mass energy.
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*2.3 Calculation of scattering cross sections

In this section we derive Egs. (2.7) and (2.8). At a large distance from the scattering
centre we can make an Ansatz for the wave function. This consists of the incoming
beam and a scattered wave:
) alkr
¥ (r) o elkT +fO)—. (2.19)

Here, 0 is the angle between the incoming beam and the line passing through r
and the scattering centre. The function f does not depend on the azimuthal angle ¢
because the incoming wave has azimuthal symmetry, and the spherically symmetric
potential will not generate m # 0 contributions to the scattered wave. f(6) is called
the scattering amplitude. From the Ansatz it follows that the differential cross section
is given directly by the square of this amplitude:

do ’
o= |f(6)] (2.20)

with the appropriate normalisation (see for example Ref. [1]).
Beyond rmax, the solution can also be written in the form (2.2) leaving out all
m # O contributions because of the azimuthal symmetry:

VU (r) = ZA,@P,(COS 0) (2.21)

=0

where we have used the fact that Yé (0, ¢) is proportional to P;(cos 6). Because the
potential vanishes in the region r > rpyax, the solution #;(r)/r is given by the linear
combination of the regular and irregular spherical Bessel functions, and as we have
seen this reduces for large r to

. I
u;(r) ~ sin (kr -5 + 51) . (2.22)

We want to derive the scattering amplitude f () by equating the expressions (2.19)
and (2.21) for the wave function. For large r we obtain, using (2.22):

e1kr

S, |:sin(kr —I7/2+8)

} Pi(cosf) = e*T 4+ £(6)
kr

. (2.23)
r

=0
We write the right hand side of this equation as an expansion similar to that in the

left hand side, using the following expression for a plane wave [4]

e*T = 3" + Diljikr)Pi(cos6). (2.24)
=0
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f(0) can also be written as an expansion in Legendre polynomials:
£(0) = Z fiPi(cos6), (2.25)

so that we obtain:

kr

ZAI [sm(kr — /2 + 81):| Py(cos0)
=0

0 ikr
= Z {(21 + Diljytkr) + f,eT} Pi(cos ). (2.26)

=0

If we substitute the asymptotic form (2.5a) of j; in the right hand side, we find:

ZAI [sin(kr — /2 4 &;)

o ] P;(cos )

=0

_1 Z [21 +1 (—)HHle=ikr 4 (fz " 2l-.|- 1) eikr] P(cosf). 2.27)

2ik

Both the left and the right hand sides of (2.27) contain incoming and outgoing spher-
ical waves (the occurrence of incoming spherical waves does not violate causality:
they arise from the incoming plane wave). For each [, the prefactors of the incoming
and outgoing waves should be equal on both sides in (2.27). This condition leads to

= (21 + 1)e'¥i! (2.28)
and
2+1 .
fi= TJre“” sin(8). (2.29)

Using (2.20), (2.25), and (2.29), we can write down an expression for the
differential cross section in terms of the phase shifts §;:
2

do 1| G
o= 2(21 + 1)e sin(6;)P;(cos 0)| . (2.30)
=0

For the total cross section we find, using the orthonormality relations of the Legendre
polynomials:

d 4 &
ot = 27T / d6 sin 0%(9) - k—f Y @1+ 1)sin® . 2.31)
=0



Exercises 27

Exercises

2.1 [C] Try using the Runge—Kutta method with an adaptive time step to integrate the
radial Schrodinger equation in the program of Section 2.2, keeping the estimated
error fixed as described in Appendix A7.1. What is the advantage of this method over
Numerov’s method for this particular case?

2.2 [C] Consider two radial potentials V1 and V> and the solutions ul(l) and ul(z) to the
radial Schrodinger equation for these two potentials (at the same energy):

2 2 2
[ﬁ;i—+(E—vma—ﬁii%ﬂ)}#%n=o

2m dr? 2mr
K d R+ 1)
[m 2 * (E — - zm—zﬂ u? () = 0.

(a) Show that by multlplylng the first equation from the left by ; )(r) and the second
one from the left by u (r) and then subtracting, it follows that:

L s )
Ad%%mmm Va(r)luy (r) = Z{m@) w _ Wm—%m]

(b) If V; — 0 for large r, then both solutions are given for large r by
sinfkr — (I /2) 4 8\”1/k. Show that from this it follows that:

[} 2
Ad%mem Va(nlup” (r) = ipmﬁhﬁ%

a

Now take V; = 0 and V, = V small everywhere. In that case, u; ) and u ) on the left

hand side can both be approximated by rj;(kr), so that we obtaln.
o
S ~—" | drr¥ikn)V).
0

This is the Born approximation for the phase shift. This approximation works well for
potentials that are small with respect to the energy.

(c) [C] Write a (very simple) routine for calculating this integral (or use a library
routine). Of course, it is sufficient to carry out the integration up to rpax since
beyond that range V = 0. Compare the Born approximation with the solution of
the program developed in the previous problem. For the potential, take a weak
Gaussian well:

V(r) = —Aexp[—(r — D*], X < Fmax
and
V(ir)=0, x> rmax.

with A = 0.01 and rpax chosen suitably. Result?
(d) Now consider the analysis of items (a) and (b) where V] is the Lennard—Jones
potential without cut-off and V, with cut-off. Show that the phase shift for the
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Lennard—Jones potential without cut-off is given by the phase shift for the
potential with cut-off plus a correction given by:

2m, [ , 2
A(S[ = ﬁk Ji (kr)VLJ(r)r dr.
T

max
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The variational method for the Schrodinger equation

3.1 Variational calculus

Quantum systems are governed by the Schrodinger equation. In particular, the solu-
tions to the stationary form of this equation determine many physical properties of
the system at hand. The stationary Schrodinger equation can be solved analytically
in a very restricted number of cases — examples include the free particle, the har-
monic oscillator and the hydrogen atom. In most cases we must resort to computers
to determine the solutions. It is of course possible to integrate the Schrédinger equa-
tion using discretisation methods — see the different methods in Appendix A7.2 —
but in most realistic electronic structure calculations we would need huge num-
bers of grid points, leading to high computer time and memory requirements. The
variational method on the other hand enables us to solve the Schrodinger equation
much more efficiently in many cases. In the next few chapters, which deal with elec-
tronic structure calculations, we shall make frequent use of the variational method
described in this chapter.

In the variational method, the possible solutions are restricted to a subspace of
the Hilbert space, and in this subspace we seek the best possible solution (below
we shall define what is to be understood by the ‘best’ solution). To see how this
works, we first show that the stationary Schrodinger equation can be derived by a
stationarity condition of the functional:

_ [IXYFOOHYX) _ (YIH|Y)
[ dXy*(X)y (X) (V1Y)

E[y] (3.1

which is recognised as the expectation value of the energy for a stationary state
(to keep the analysis general, we are not specific about the form of the generalised
coordinate X — it may include the space and spin coordinates of a collection of
particles). The stationary states of this energy-functional are defined by postulating
that if such a state is changed by an arbitrary but small amount 6, the corresponding

29
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change in E vanishes to first order:

SE =0. (3.2)
Defining
P = d
(IH|¥) an (33)
0= (yly),
we can write the change SE in the energy to first order in 8 as
_ W+ YHIY +68y)  (VIHIY)
(W + 8¢y +ov) (Ulr)
L BYIHIY) — (P/O)SYIY) n (VIH|8y) — (P/Q)WIW). (3.4)

Q Q
As this should vanish for an arbitrary but small change in v, we find, using
E=P/0:
Hy =EY, (3.5
together with the Hermitian conjugate of this equation, which is equivalent.

In variational calculus, stationary states of the energy-functional are found within
a subspace of the Hilbert space. An important example is linear variational calculus,

in which the subspace is spanned by a set of basis vectors |x,), p = 1,...,N. We
take these to be orthonormal at first, that is,
(XplXq) = dpgs (3.6)

where 6, is the Kronecker delta-function which is O unless p = g, and in that case,
itis 1.
For a state

W) =" Colxp)s 3.7)
p

the energy-functional is given by

N
1 C5CyH,
E = Zp,q—l p-49°Pq (38)

N
Zp,q:l C; C‘ISP‘I

with

Hpq = <Xp|H|Xq>- (3.9
The stationary states follow from the condition that the derivative of this functional
with respect to the C, vanishes, which leads to

N
Z(HM_E‘SW)Cq:O forp=1,...,N. (3.10)
qg=1
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Figure 3.1. The behaviour of the spectrum of Eq. (3.11) with increasing basis set
size in linear variational calculus. The upper index is the number of states in the
basis set, and the lower index labels the spectral levels.

Equation (3.10) is an eigenvalue problem which can be written in matrix notation:
HC = EC. (3.11)

This is the Schrodinger equation, formulated for a finite, orthonormal basis.

Although in principle it is possible to use nonlinear parametrisations of the wave
function, linear parametrisations are used in the large majority of cases because of
the simplicity of the resulting method, allowing for numerical matrix diagonalisa-
tion techniques, discussed in Appendix A7.2, to be used. The lowest eigenvalue
of (3.11) is always higher than or equal to the ground state energy of Eq. (3.5), as
the ground state is the minimal value assumed by the energy-functional in the full
Hilbert space. If we restrict ourselves to a part of this space, then the minimum
value of the energy-functional must always be higher than or equal to the ground
state of the full Hilbert space. Including more basis functions into our set, the sub-
space becomes larger, and consequently the minimum of the energy-functional will
decrease (or stay the same). For the specific case of linear variational calculus, this
result can be generalised to higher stationary states: they are always higher than
the equivalent solution to the full problem, but approximate the latter better with
increasing basis set size (see Problem 3.1). The behaviour of the spectrum found
by solving (3.11) with increasing basis size is depicted in Figure 3.1.

We note here that it is possible to formulate the standard discretisation methods
such as the finite difference method of Appendix A7.2 as linear variational methods
with an additional nonvariational approximation caused by the discretised repres-
entation of the kinetic energy operator. These methods are usually considered as
separate: the term variational calculus implies continuous (and often analytic) basis
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functions. Because the computer time needed for matrix diagonalisation scales with
the third power of the linear matrix size (it is called a O(N 3) process), the basis
should be kept as small as possible. Therefore, it must be chosen carefully: it should
be possible to approximate the solutions to the full problem with a small number
of basis states. The fact that the basis in (continuous) variational calculus can be
chosen to be so much smaller than the number of grid points in a finite differ-
ence approach implies that even though the latter can be solved using special O(N)
methods for sparse systems (see Appendix A8.2), they are still far less efficient than
variational methods with continuous basis functions in most cases. This is why, in
most electronic structure calculations, variational calculus with continuous basis
functions is used to solve the Schrodinger equation; see however Refs. [1] and [2].

An example of a variational calculation with orthonormal basis functions will be
considered in Problem 3.4. We now describe how to proceed when the basis consists
of nonorthonormal basis functions, as is often the case in practical calculations. In
that case, we must reformulate (3.11), taking care of the fact that the overlap matrix
S, whose elements S, are given by

Spq = <Xp|Xq> (3.12)

is not the unit matrix. This means that in Eq. (3.8) the matrix elements 6, of the
unit matrix, occurring in the denominator, have to be replaced by S,,, and we obtain

HC = ESC. (3.13)

This looks like an ordinary eigenvalue equation, the only difference being the matrix
S in the right hand side. It is called a generalised eigenvalue equation and there
exist computer programs for solving such a problem. The numerical method used
in such programs is described in Section 3.3.

3.2 Examples of variational calculations

In this section, we describe two quantum mechanical problems and the computer
programs that can solve these problems numerically by a variational calculation.
In both cases, we must solve a generalised matrix eigenvalue problem (3.13).

You can find a description of the method for diagonalising a symmetric matrix
in Appendix A8.2, and the method for solving the generalised eigenvalue problem
is considered in Section 3.3; see also problem 3.3. It is not advisable to program
the matrix diagonalisation routine yourself; numerous routines can be found on the
internet. Solving the generalised eigenvalue problem is not so difficult if you have
a matrix diagonalisation routine at your disposal. It is easy to find such a routine
on the network (it is part of the LAPACK library, which is part of the ATLAS
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numerical library; these can be found in the NETLIB repository). In the following
we shall assume that we have such programs available.

3.2.1 The infinitely deep potential well
The potential well with infinite barriers is given by:

oo for |x| > |a|

0 for |x| < |d] (3.14)

Vix) = {

and it forces the wave function to vanish at the boundaries of the well (x = +a). The
exact solution for this problem is known and treated in every textbook on quantum
mechanics [3, 4]. Here we discuss a linear variational approach to be compared
with the exact solution. We take @ = 1 and use natural units such that > /2m = 1.
As basis functions we take simple polynomials that vanish on the boundaries of

the well:
Y(x) =x"x—-1(x+1),n=0,1,2,... (3.15)

The reason for choosing this particular form of basis functions is that the relevant
matrix elements can easily be calculated analytically. We start with the matrix
elements of the overlap matrix, defined by

1
S = (Wl trm) = / o, (3.16)

Working out the integral gives
2 4 2
- +
n+m+5 n+m+3 n+m+1
for n + m even; otherwise S,,, = 0.

We can also calculate the Hamilton matrix elements, and you can check that they
are given by:

Smn =

(3.17)

1 d2
Hyn = (Ynlp*1¥m) = /_1 Yn(x) (_@> VYm (x)dx
[ 1—m—n—2mn :|
— 38 (3.18)
m4+n+3)ym+n+1)(m+n—1)

for m + n even, otherwise H,,,;, = 0.

PROGRAMMING EXERCISE

Write a computer program in which you fill the overlap and Hamilton matrix
for this problem. Use standard software to solve the generalised eigenvalue
problem.



34 The variational method for the Schrodinger equation

Table 3.1. Energy levels of the infinitely deep potential well.

N=5 N =28 N =12 N =16 Exact
2.4674 2.4674 2.4674 2.4674 2.4674
9.8754 9.8696 9.8696 9.8696 9.8696

22.2934 22.2074 22.2066 22.2066 22.2066

50.1246 39.4892 39.4784 39.4784 39.4784

87.7392 63.6045 61.6862 61.6850 61.6850

The first four columns show the variational energy levels for various
numbers of basis states N. The last column shows the exact values.
The exact levels are approached from above as in Figure 3.1.

Check Compare the results with the analytic solutions. These are given by

__Jcos(k,x) nodd
Yalx) = {sin(knx) n even and positive (3.19)
with k, = nm/2,n = 1,2, ..., and the corresponding energies are given by
2.2
E, =k = ”Z (3.20)

For each eigenvector C, the function Zgzl Cpxp(x) should approximate an
eigenfunction (3.19). They can be compared by displaying both graphically.
Carry out the comparison for various numbers of basis states. The variational
levels are shown in Table 3.1, together with the analytical results.

3.2.2 Variational calculation for the hydrogen atom

As we shall see in the next two chapters, one of the main problems of electronic

structure calculations is the treatment of the electron—electron interactions. Here

we develop a program for solving the Schrédinger equation for an electron in a
hydrogen atom for which the many-electron problem does not arise, so that a direct
variational treatment of the problem is possible which can be compared with the

analytical solution [3, 4].

The program described here is the first in a series leading to a program for
calculating the electronic structure of the hydrogen molecule. The extension to the
H; ion can be found in the next chapter in Problem 4.8 and a program for the

hydrogen molecule is considered in Problem 4.12.

The electronic Schrodinger equation for the hydrogen atom reads:
h_, 1
2m deg r

] Y (r) = Ey(r) (3.21)
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where the second term in the square brackets is the Coulomb attraction potential of
the nucleus. The mass m is the reduced mass of the proton—electron system which
is approximately equal to the electron mass. The ground state is found at energy

P 2 13.6058 eV (3.22)
= —— ~ —13. € .
2 \4meo
and the wave function is given by
2
Y(r) = e/ (3.23)
/2
o
in which qg is the Bohr radius,
47t egh? .
ap = O~ 052918 A. (3.24)
me

In computer programming, it is convenient to use units such that equations take
on a simple form, involving only coefficients of order 1. Standard units in electronic
structure physics are so-called atomic units:the unit of distance is the Bohr radius
ap, masses are expressed in the electron mass mi. and the charge is measured in unit
charges (e). The energy is finally given in ‘hartrees’ (Ey), given by mec?a® (« is
the fine-structure constant and m, is the electron mass) which is roughly equal to
27.212 eV. In these units, the Schrodinger equation for the hydrogen atom assumes
the following simple form:

]
—=V* — — | Y(r) = EY (). (3.25)
2 r

We try to approximate the ground state energy and wave function of the hydrogen
atom in a linear variational procedure. We use Gaussian basis functions which will
be discussed extensively in the next chapter (Section 4.6.2). For the ground state,
we only need angular momentum / = 0 functions (s-functions), which have the
form:

Xp(r) = e~ (3.26)
centred on the nucleus (which is thus placed at the origin). We have to specify the
values of the exponents «; these are kept fixed in our program. Optimal values for
these exponents have previously been found by solving the nonlinear variational
problem including the linear coefficients C,, and the exponents o [5]. We shall use
these values of the exponents in the program:

a1 = 13.00773
az = 1.962079

(3.27)
a3 = 0.444 529

a4 = 0.1219492.
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If the program works correctly, it should yield a value close to the exact ground
state energy —1/2 Ey (which is equal to —13.6058 eV).

It remains to determine the linear coefficients C,, in a computer program which
solves the generalised eigenvalue problem, just as in Section 3.2.1:

HC = ESC. (3.28)

It is not so difficult to show that the elements of the overlap matrix S, the kinetic
energy matrix T and the Coulomb matrix A are given by:

3/2
a2 —aar? T
Squ/d3re apr-a—agr _ :
op t+ oy

1 732
Ty = —= / dre v v2e—%r — 3% : (3.29)
2 (ap +ag) /
Apg = — / d’r e_"‘f”zle_"‘q’2 = — 27 )
r op +ag

See also Section 4.8. Using these expressions, you can fill the overlap and the
Hamilton matrix. Since both matrices are symmetric, it is clear that only the upper
(or the lower) triangular part (including the diagonal) has to be calculated; the other
elements follow from the symmetry.

PROGRAMMING EXERCISE

Write a program in which the relevant matrices are filled and which solves
the generalised eigenvalue problem for the variational calculation.

Check 1 Fortunately, we again have an exact answer for the ground state energy:
this should be equal to —0.5 hartree = 13.6058 eV, and, if your program contains
no errors, you should find —0.499 278 hartree, which is amazingly good if you
realise that only four functions have been taken into account.

Check 2 The solution of the eigenvalue problem not only yields the eigenvalues
(energies) but also the eigenvectors. Use these to draw the variational ground state
wave function and compare with the exact form (3.23). (See also Figure 4.3.)

*3.3 Solution of the generalised eigenvalue problem

Itis possible to transform (3.13) into an ordinary eigenvalue equation by performing
a basis transformation which brings S to unit form. Suppose we have found a matrix
V which transforms S to the unit matrix:

VISV =1 (3.30)
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Then we can rewrite (3.13) as

ViHVV-IC = EVisvv~IC (3.31)
and, defining
¢ =vlc (3.32)
and
H = V'HV, (3.33)
we obtain
H'C = EC. (3.34)

This is an ordinary eigenvalue problem which we can solve for C" and E, and then
we can find the eigenvector C of the original problem as VC'.

The problem remains of finding a matrix V which brings S to unit form accord-
ing to (3.30). This matrix can be found if we have a unitary matrix U which
diagonalises S:

U'SU =5 (3.35)

with s the diagonalised form of S. In fact, the matrix U is automatically gener-
ated when diagonalising S by a Givens—Householder QR procedure (see Appendix
A8.2). From the fact that S is an overlap matrix, defined by (3.12), it follows directly
that the eigenvalues of S are positive (see Problem 3.2). Therefore, it is possible
to define the inverse square root of s: it is the matrix containing the inverse of
the square root of the eigenvalues of S on the diagonal. Choosing the matrix V as
Us Y2, we obtain

Visv =s12ufsSus—1/2 =1 (3.36)

so the matrix V indeed has the desired property.

*3.4 Perturbation theory and variational calculus

In 1951, Lowdin [6] devised a method in which, in addition to a standard basis set
A, a number of extra basis states (B) is taken into account in a perturbative manner,
thus allowing for huge basis sets to be used without excessive demands on computer
time and memory. The size of the matrix to be diagonalised in this method is equal
to the number of basis states in the restricted set A; the remaining states are taken
into account in constructing this matrix. A disadvantage is that the latter depends
on the energy (which is obviously not known at the beginning), but, as we shall see,
this does not prevent the method from being useful in many cases.

We start with an orthonormal basis, which could be a set of plane waves. The
basis is partitioned into the two sets A and B, and for the plane wave example, A
will contain the slowly varying waves and B those with shorter wavelength. We
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shall use the following notation: n and m label the states in A, « and B label the
states in B, and p and ¢ label the states in both sets. Furthermore we define

H;,q = Hpg(1 — 8pg), (3.37)
that is, H' is H with the diagonal elements set to 0. Now we can write Eq. (3.11) as
(E = Hp)Cp=> H,,Co+ Y H,,Cy. (3.38)

neA aeB

If we define

Ry = Hy,/(E — Hpp), (3.39)

and similarly for h;a, then we can write Eq. (3.38) as
Co=) H,Cot > hyCo. (3.40)

neA aeB

Using this expression to rewrite C, in the second term of the right hand side, we
obtain

Co=> HCot D o | D hiyCo+ D HsCp

neA oeB neA BeB
=3 (h;,n + Zh;ah;n> Cot Y. I, hsCp. (3.41)
neA aeB aeB BeB

After using (3.40) again to re-express Cg and repeating this procedure over and
over, we arrive at

Cr=) (h;,n Y B+ Y B ghl, + )c,,. (3.42)

neA oeB o,feB

We now introduce the following notation:

= Hyy + Y P HpaHlan Z Hratlogfpn (3.43)
o . .
weB E — Hyy BeB (E Htxa)(E Hﬂ,B)
Then (3.42) transforms into
UA — Hp,8
c, =3 e (3.44)
E — Hy,

neA
Choosing p in A (and calling it m), (3.44) becomes

(E = Hyum)Cn = ) UnyCn = HymCin, (3.45)
neA
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SO
UC = EC. (3.46)

This equation is similar to (3.11), except that H is replaced by U. Notice that
U depends on the energy which remains to be calculated, which makes Eq. (3.46)
rather difficult to solve. In practice, a fixed value for E is chosen somewhere in the
region for which we want accurate results. For electrons in a solid, this might be
the region around the Fermi energy, since the states with these energies determine
many physical properties.

The convergence of the expansion for U, Eq. (3.44), depends on the matrix
elements h;,a and A, T which should be small. Cutting off after the first term yields

Upn = Hun + ) E’""‘ H"‘” (3.47)
[0707

oeB

Lowdin perturbation theory is used mostly in this form.

It is not a priori clear that the elements h;,a and A, p are small. However, keeping
in mind a plane wave basis set, if we have a potential that varies substantially slower
than the states in set B, these numbers will indeed be small as the H[’m are small, so
in that case the method will improve the efficiency of the diagonalisation process.
The Lowdin method is frequently used in pseudopotential methods for electrons in
solids which will be discussed in Chapter 6.

Exercises

3.1 MacDonald’s theorem states that, in linear variational calculus, not only the
variational ground state but also the higher variational eigenvectors have eigenvalues
that are higher than the corresponding eigenvalues of the full problem.

Consider an Hermitian operator H and its variational matrix representation H
defined by
Hpg = <Xp|H|Xq>-
Xp are the basis vectors of the linear variational calculus. They form a finite set.
We shall denote the eigenvectors of H by ¢y and the corresponding eigenvalues by
Me; Oy are the eigenvectors of H with eigenvalues Ay. They are all ordered, i.e. ¢

corresponds to the lowest eigenvalue and so on, and similarly for the ®y.
(a) Write @ as an expansion in the complete set ¢ in order to show that
Do |H|D
(Dol H|Po) _ 0> o
(@o|Po)

(b) Suppose @/ is a vector perpendicular to ¢p. Show that
O |H| D)
(P IHIPY) _

@ o) ="
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(Note that, in general, the lowest-but-one variational eigenstate @ is not
perpendicular to ¢g so this result does not guarantee A| > Ay.)

(c) Consider a vector &} = a®o + fP; which is perpendicular to ¢o. From (b) it is
clear that (@ |[H|®))/(®]|®]) > A1. Show that

(P IHIDY)  |al*Ag + |BI*A
(@) ]®)) |2 + | BI?

and that from this it follows that A1 > ;. This result can be generalised for
higher states.

3.2 The overlap matrix S is defined as

Spq = (Xp|Xq>-

Consider a vector v that can be expanded in the basis yx,, as:
v =2_Coxp-
p

(a) Suppose ¥ is normalised. Show that C then satisfies:

> CrSpyCy=1.
prq

(b) Show that the eigenvalues of S are positive.

3.3 [C] In this problem, it is assumed that a routine for diagonalising a real, symmetric

matrix is available.

(a) [C] Using a library routine for diagonalising a real, symmetric matrix, write a
routine which, given the overlap matrix S, generates a matrix V which brings S
to unit form:

VISV =1.

(b) [C] Write a routine which uses the matrix V to produce the solutions
(eigenvectors and eigenvalues) to the generalised eigenvalue problem:

HC = ESC.

The resulting routines can be used in the programs of Sections 3.2.1 and 3.2.2.

3.4 [C] The potential for a finite well is given by

0 for |x| > |a|
=Vo  for [x| < al

V(x) = {

In this problem, we determine the bound solutions to the Schrédinger equation using
plane waves on the interval (—L, +L) as basis functions:

Yn(x) = 1/3/2L et

with
nmw
kn=+—, n=0,1,...
L
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It is important to note that, apart from the approximation involved in having a finite
basis set, there is another one connected with the periodicity imposed by the specific
form of the basis functions on the finite interval (—L, L). In this problem, we use units
such that the factor /2 /2m assumes the value 1.

(a) Show that the relevant matrix elements are given by
Smn = Smn

(Unlp*[Vm) = —k28um and
Vo sin(ky, — kn)a

(UnlVIm) = _ZW for n *m
WalV i) = —La

The stationary states in an even potential (i.e. V(x) = V(—x)) have either
positive or negative parity [3]. From this it follows that if we use a basis
1/ /L cos kyx (and 1/ V2L forn = 0), we shall find the even stationary states, and
if we take the basis functions 1/ /Lsin kyx, only the odd states. It is of course less
time-consuming to diagonalise two N x N matrices than a single 2N x 2N,
knowing that matrix diagonalisation scales with N3.
(b) Show that the matrix elements with the cosine basis read

Smn = 8mn

(Ynlp?|¥m) = —k28,m and

Vo [ sin(k,, — ky)a  sin(k, + ky)a
Vi) = —-2
WalVigw) = =77 | 4 S }
for n #m
Vo [ sin(2k,a)
WalVig) = =32 |a+ T} for n 0

Vi
(Yol VIYo) = —foa for n =0

In the sine-basis, the last terms in the third and fourth expressions occur with a
minus sign.

(c) [C] Write a computer program for determining the spectrum. Compare the results
with those of the direct calculation (which, for Vy = 1 and a = 1, yields a ground
state energy E ~ —0.4538).

As you will note, for many values of A, Vy, L and N, the variational ground state
energy lies below the exact ground state energy number. Explain why this happens.
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4
The Hartree—Fock method

4.1 Introduction

Here and in the following chapter we treat two different approaches to the many-
electron problem: the Hartree—Fock theory and the density functional theory. Both
theories are simplifications of the full problem of many electrons moving in a poten-
tial field. In fact, the physical systems we want to study, such as atoms, molecules
and solids, consist not only of electrons but also of nuclei, and each of these particles
moves in the field generated by the others. A first approximation is to consider the
nuclei as being fixed, and to solve the Schrodinger equation for the electronic sys-
tem in the field of the static nuclei. This approach, called the Born—-Oppenheimer
approximation, is justified by the nuclei being much heavier than the electrons so
that they move at much slower speeds. It remains then to solve for the electronic
structure.

The Hartree—Fock methodcan be viewed as a variational method in which the
wave functions of the many-electron system have the form of an antisymmetri-
sed product of one-electron wave functions (the antisymmetrisation is necessary
because of the fermion character of the electrons). This restriction leads to an effect-
ive Schrodinger equation for the individual one-electron wave functions (called
orbitals) with a potential determined by the orbitals occupied by the other elec-
trons. This coupling between the orbitals via the potentials causes the resulting
equations to become nonlinear in the orbitals, and the solution must be found iter-
atively in a self-consistency procedure. The Hartree—Fock (HF)procedure is close
in spirit to the mean-field aproach in statistical mechanics.

We shall see that in this variational approach, correlations between the electrons
are neglected to some extent. In particular, the Coulomb repulsion between the
electrons is represented in an averaged way. However, the effective interaction
caused by the fact that the electrons are fermions, obeying Pauli’s principle, and
hence avoid each other if they have the same spin, is accurately included in the HF

43
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approach. There exist several methods that improve on the approximations made
in the HF method.

The Hartree—Fock approach is very popular among chemists, and it has also
been applied to solids. In this chapter, we give an introduction to the Hartree—
Fock method and apply it to simple two-electron systems: the helium atom and the
hydrogen molecule. We describe the Born—Oppenheimer approach and independent
particle approaches (of which HF is an example) in a bit more detail in the next
section. In Section 4.3 we then derive the Hartree method for a two-electron system
(the helium atom). In Section 4.3.2, a program for calculating the ground state of
the helium atom is described.

In Sections 4.4 and 4.5 the HF method for systems containing more than two
electrons is described in detail, and in Section 4.6 the basis functions used for
molecular systems are described. In sections 4.7 and 4.8 some details concerning
the implementation of the HF method are considered. In Section 4.9, results of the
HF method are presented, and in Section 4.10 the configuration interaction (CI)
method, which improves on the HF method is described.

4.2 The Born—Oppenheimer approximation and the independent-particle
method

The Hamiltonian of a system consisting of N electrons and K nuclei with charges
Z, reads

2

N
XI:Zm

K
+21:2

1 N
47r60§ 21: |r, T

ii Z,é? 11 i 2, Zy e @
47T€0n  — Iri — R, 4ﬂ€02nn/:1'n7&n’ IR, —R,| '

The index i refers to the electrons and n to the nuclei, m is the electron mass,
and M, are the masses of the different nuclei. The first two terms represent the
kinetic energies of the electrons and nuclei respectively; the third term represents
the Coulomb repulsion between the electrons and the fourth term the Coulomb
attraction between electrons and nuclei. Finally, the last term contains the Coulomb

repulsion between the nuclei. The wave function of this system depends on the
positions r; and R,, of the electrons and nuclei respectively. This Hamiltonian looks
quite complicated, and in fact it turns out that if the number of electrons and nuclei
is not extremely small (typically smaller than four), it is impossible to solve the
stationary Schrodinger equation for this Hamiltonian directly on even the largest
and fastest computer available.
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Therefore, important approximations must be made, and a first step consists of
separating the degrees of freedom connected with the motion of the nuclei from
those of the electrons. This procedure is known as the Born—-Oppenheimer approx-
imation [1] and its justification resides in the fact that the nuclei are much heavier
than the electrons (the mass of a proton or neutron is about 1835 times as large as the
electron mass) so it is intuitively clear that the nuclei move much more slowly than
the electrons. The latter will then be able to adapt themselves to the current config-
uration of nuclei. This approach results also from formal calculations (see Problem
4.9), and leads to a Hamiltonian for the electrons in the field generated by a static
configuration of nuclei, and a separate Schrodinger equation for the nuclei in which
the electronic energy enters as a potential. The Born—Oppenheimer Hamiltonian
for the electrons reads

2 N 2

F- S T B e 1 & Zne
Hpo =) -+ — T 42
P07 Lom T 24ne wg; It —1j]  4me ; ; n-®, &P

The total energy is the sum of the energy of the electrons and the energy resulting
from the Schrodinger equation satisfied by the nuclei. In a further approximation,
the motion of the nuclei is neglected and only the electrostatic energy of the nuclei
should be added to the energy of the electrons to arrive at the total energy. The pos-
itions of the nuclei can be varied in order to find the minimum of this energy, that
is, the ground state of the whole system (within the Born—Oppenheimer approx-
imation with static nuclei). In this procedure, the nuclei are treated on a classical
footing since their ground state is determined as the minimum of their potential
energy, neglecting quantum fluctuations.'

Even with the positions of the nuclei kept fixed, the problem of solving for the
electronic wave functions using the Hamiltonian (4.2) remains intractable, even on
a computer, since too many degrees of freedom are involved. It is the second term
containing the interactions between the electrons that makes the problem so difficult.
If this term were not present, we would be dealing with a sum of one-electron
Hamiltonians which can be solved relatively easily. There exist several ways of
approximating the eigenfunctions of the Hamiltonian (4.2). In these approaches, the
many-electron problem is reduced to an uncoupled problem in which the interaction
of one electron with the remaining ones is incorporated in an averaged way into a
potential felt by the electron.

! Vibrational modes of the nuclei can, however, be treated after expanding the total energy in deviations of
the nuclear degrees of freedom from the ground state configuration. A transformation to normal modes then
gives us a system consisting of independent harmonic oscillators.
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The resulting uncoupled or independent-particle (IP) Hamiltonian has the form

. 2m
i=1

N 2
Hp=Y [”—f + v<r,-)} . 43)

V(r) is a potential depending on the positions R; of the nuclei. As we shall see, its
form can be quite complicated; in particular, V depends on the wave function ¥ on
which the IP Hamiltonian is acting. Moreover, V is often a nonlocal operator which
means that the value of V', evaluated at position r, is determined by the values of i
at other positions r’ # r, and V depends on the energy in some approaches. These
complications are the price we have to pay for an independent electron picture.

In the remaining sections of this chapter we shall study the Hartree—Fock approx-
imation and in the next chapter we shall discuss the density functional theory. We
start by considering the the helium atom to illustrate the general techniques which
will be developed in later sections.

4.3 The helium atom
4.3.1 Self-consistency

In this section, we find an approximate independent-particle Hamiltonian (4.3) for
the helium atom within the Born—Oppenheimer approximation by restricting the
electronic wave function to a simple form. The coordinates of the wave function
are x| and Xy, which are combined position and spin coordinates: x; = (rj, 5;).
As electrons are fermions, the wave function must be antisymmetric in the two
coordinates x| and x; (more details concerning antisymmetry and fermions will be
given in Section 4.4). We use the following antisymmetric trial wave function for
the ground state:

1
W(ry, s1512,52) = ¢(l‘1)¢>(r2)ﬁ[a(S1),3(S2) —a(s2)B(s1)], (4.4)
where a(s) denotes the spin-up and S(s) the spin-down wave function and ¢ is an
orbital — a function depending on a single spatial coordinate — which is shared by
the two electrons.
The Born—Oppenheimer Hamiltonian (4.2) for the helium atom reads
Hgo= —ov? — iy24 1 22 (4.5)
BT T2 e Tl on '

where we have used atomic units introduced in Section 3.2.2. We now let this
Hamiltonian act on the wave function (4.4). Since the Hamiltonian does not act on
the spin, the spin-dependent part drops out on the left and right hand side of the
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Schrodinger equation and we are left with:”

1, 1_, 2 2 1
[——Vl --V2 ————+—}¢(r1)¢(r2)=E¢(r1)¢(r2)- (4.6)

2 2 re rz  [rp—r|
In order to arrive at a simpler equation we remove the ry-dependence by multiplying
both sides from the left by ¢*(r7) and by integrating over r,. We then arrive at

1 2
[—§V12 _2 / &ry b))
I

where several integrals yielding a constant (i.e. not dependent on rj) are absorbed
in E’. The third term on the left hand side is recognised as the Coulomb energy
of particle 1 in the electric field generated by the charge density of particle 2. To
obtain this equation we have used the fact that ¢ is normalised to unity and this
normalisation is from now on implicitly assumed for ¢ as occurring in the integral
on the left hand side of (4.7). The effective Hamiltonian acting on the orbital of
particle 1 has the independent particle form of Eq. (4.3). A remarkable feature is
the dependence of the potential on the wave function we are searching for.

Equation (4.7) has the form of a self-consistency problem: ¢ is the solution to the
Schrodinger equation but the latter is determined by ¢ itself. To solve an equation
of this type, one starts with some trial ground state solution ¢® which is used in
constructing the potential. Solving the Schrodinger equation with this potential,
we obtain a new ground state ¢! which is used in turn to build a new potential.
This procedure is repeated until the ground state ¢” and the corresponding energy
E® of the Schrédinger equation at step i do not deviate appreciably from those in
the previous step (if convergence does not occur, we must use some tricks to be
discussed in Section 4.7).

The wave function we have used is called uncorrelated because of the fact that
the probability P(ry,r2) for finding an electron at r; and another one at r» is
uncorrelated, i.e. it can be written as a product of two one-electron probabilities:

P(ry, 1) = p(rpp(ra). (4.8)

This does not mean that the electrons do not feel each other: in the determination of
the spatial function ¢, the interaction term 1/|r; — r| has been taken into account.
But this interaction has been taken into account in an averaged way: it is not the
actual position of rp that determines the wave function for electron 1, but the
average charge distribution of electron 2. This approach bears much relation to
the mean field theory approach in statistical mechanics.

] o) =E¢), @7

Ir; — 12|

% This equation cannot be satisfied exactly with the form of trial function chosen, as the left hand side
depends on r{ — rp whereas the right hand side does not. We are, however, after the optimal wave function
within the set of functions of the form (4.4) in a variational sense, along the lines of the previous chapter, but we
want to avoid the complications of carrying out the variational procedure formally. This will be done in
Section 4.5.2 for arbitrary numbers of electrons.
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The neglect of correlations sometimes leads to unphysical results. An example is
found in the dissociation of the hydrogen molecule. Suppose the nuclei are placed
at positions R4 and Rp and we approximate the one-electron orbitals by spherically
symmetric (1s) basis orbitals centred on the two nuclei: u(r — R4) and u(r — Rp).
Because of the symmetry of the hydrogen molecule, the ground state orbital solution
of the independent particle Hamiltonian is given by the symmetric combination of
these two basis orbitals:

¢(r) = u(r — Ry) +u(r —Rp). 4.9)

The total wave function, which contains the product ¢ (r{)¢ (rz) therefore contains
ionic terms in which both electrons sit on the same nucleus. This is not so disastrous
if the two nuclei are close, but if we separate them, these terms should not be
present: they contain the wrong physics and they result in a serious over-estimation
of the energy. Physically, this is caused by the fact that electron 1 in our present
approximation feels the potential resulting from the average charge distribution of
electron 2, which is symmetrically distributed over the two nuclei, and thus it ends
up on A or B with equal probability. If electron 1 was to feel the actual potential
caused by electron 2, it would end up on a different nucleus from electron 2. A
better description of the state would therefore be

Y (ri;r2) = 3lu(r; — Rou(rz — Rp) + u(r; — Ryu(r; —Rp)],  (4.10)

which must then be multiplied by an antisymmetric spin wave function. This wave
function is however not of the form (4.4).

The fact that the spatial part of the wave function is equal for the two electrons
is specific for the case of two electrons: the antisymmetry is taken care of by the
spin part of the wave function. If there are more than two electrons, the situation
becomes more complicated and requires much more bookkeeping; this case will be
treated in Section 4.5. Neglecting the antisymmetry requirement, one can, however,
generalise the results obtained for two electrons to systems with more electrons.
Writing the wave function as a product of spin-orbitals v (x) (spin-orbitals are func-
tions depending on the spatial and spin coordinates of one electron), the following
equation for these spin-orbitals is obtained:

1 2 Zn u / N2 1 — F/
[—Ev _Zm+§/dx|wz<x>| |r_r,|}wk(x>—wk<x>.

n
(4.11)
Here k and [ label the spin-orbitals; [ dx” denotes a sum over the spin s’ and an
integral over the spatial coordinate r': [dx’ = >, [d®/. As the Hamiltonian
does not act on the spin-dependent part of the spin-orbitals, ¥, can be written as a
product of a spatial orbital with a one-electron spin wave function. In the last term
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on the left hand side we recognise the potential resulting from a charge distribution
caused by all the electrons; it is called the Hartree potential. There is something
unphysical about this term: it contains a coupling between orbital k and itself, since
this orbital is included in the electron density, even though an electron clearly does
not interact with itself. This can be remedied by excluding k from the sum over
[ in the Hartree term, but then every orbital feels a different potential. In the next
subsection, we shall see that this problem is automatically solved in the Hartree—
Fock theory which takes the antisymmetry of the many-electron wave function
fully into account. Note that in our discussion of the helium case, we have already
taken the self-interaction into account because the electron—electron interaction
is half the size of that in (4.11) (after summation over the spin in this equation).
Equation (4.11) was derived in 1927 by Hartree [2]; it neglects exchange as well
as other correlations.

Before studying the problem of more electrons with an antisymmetric wave func-
tion, we shall now describe the construction of a program for actually calculating
the solution of Eq. (4.7).

4.3.2 A program for calculating the helium ground state

In this section we construct a program for calculating the ground state energy and
wave function for the helium atom. In the previous section we have restricted the
form of the wave function to be uncorrelated; here we restrict it even further by
writing it as a linear combination of four fixed, real basis functions in the same
way as in Section 3.2.2. Let us first consider the form assumed by the Schrodinger
equation for the independent particle formulation, Eq. (4.7). The parametrisation

4
) =Y Cpxp(r) (4.12)
p=1
leads directly to
1 2 <
—EVf — Z + Z CCy / d? rn Xr(rZ)Xs(rZ) ZCqu(rl)
r.s=1
4
=E')  Cyxq(ry). 4.13)
q=1

Note that the C,, are real as the functions x,(r) are real. From now on we implicitly
assume sums over indices p, g, ... to run from 1 to the number of basis functions N,
whichis 4 in our case. Multiplying Eq. (4.13) from the left by x,(r1) and integrating
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over r; leads to

> (o + 3 CrCpris ) Ca = E'Y 854 4.14)

Pq rs pPq

with
h lg2 2 (4.15a)
— _ — ; . a
pq Xp 5 . Xq

Qprqs = /d3r1d3r2Xp(rl)Xr(r2)qu(rl)Xs(rZ) and (415b)
Spq = (XplXq)- (4.15¢)

Unfortunately, (4.14) is not a generalised eigenvalue equation because of the pres-
ence of the variables C, and C; between the brackets on the left hand side. However,
if we carry out the self-consistency iteration process as indicated in the previous
section, the C;, and C; are kept fixed, and finding the C, in (4.14) reduces to solving
a generalised eigenvalue equation. We then replace C,, Cs by the solution found
and start the same procedure again.

The matrix elements from (4.15) remain to be found. We shall use Gaussian
[ = 0 basis functions (s-functions), just as in the case of the hydrogen atom (see
Section 3.2.2). Of course, the optimal exponents c, occurring in the Gaussian
s-basis functions y,

KXp(r) = e " (4.16)

are different from those of the hydrogen atom. Again, rather than solve the non-
linear variational problem, which involves not only the prefactors C, but also the
exponents «;, as parameters of the wave function, we shall take the optimal values
calculated from a different program which we do not go into here. They are

a; = 0.298073
ar = 1.242 567
ay = 5.782948,

aq = 38.474970.

The matrix elements of the kinetic and the Coulomb energy are similar to those
calculated for the hydrogen atom (see Eq. (3.29)), except for an extra factor of 2 in
the nuclear attraction (due to the nuclear charge). In Section 4.8, the matrix element
Oprgs Will be calculated; the result is given by

2715/2
(ap + og) (o + atg) Jop, Fag F oy + a5

Qprqs = (4-17)
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The program is constructed as follows.

o First, the 4 x 4 matrices Ay, Spq and the 4 x 4 x 4 x 4 array Qp,ys are calculated.

o Then initial values for C, are chosen; they can, for example, all be taken to be
equal (of course, you are free to choose other initial values — for this simple
system most initial values will converge to the correct answer).

e These C-values are used for constructing the matrix F),, given by

FP‘I = hpq + Z QprqurCs- (4.18)

rs
It should be kept in mind that the vector C should always be normalised to unity
via the overlap matrix before inserting it into Eq. (4.18):

4
> CpSpeCy =1 (4.19)
pg=l1
(see Problem 3.2).
o Now the generalised eigenvalue problem

FC = E'SC (4.20)

is solved. For the ground state, the vector C is the one corresponding to the
lowest eigenvalue.

o The energy for the state found is not simply given by E’ as follows from the
derivation of the self-consistent Schrodinger equation, Eq. (4.7). The ground
state energy can be found by evaluating the expectation value of the
Hamiltonian for the ground state just obtained:

EG =2 CyCahpg+ Y QprgsCpCyCrCs, (4.21)
pq pars
where the (normalised) eigenvector C results from the last diagonalisation of F.
o The solution C of the generalised eigenvalue problem (4.20) is then used to
build the matrix F again and so on.

PROGRAMMING EXERCISE

Write a program for calculating the ground state wave function of the helium
atom.

Check 1 If your program is correct, the resulting ground state energy should
be equal to —2.85516038 a.u. (remember that the atomic energy unit is the
Hartree, see Section 3.2.2). The effect of using a small basis set can be judged
by comparing with the value —2.8616 a.u. resulting from calculations using con-
tinuum integration techniques within the framework of the present calculation as
described in Chapter 5. The effect of neglecting correlations in our approach res-
ults in the deviation from the exact value —2.903 a.u. (very accurate calculations
can be performed for systems containing small numbers of electrons [3]).
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4.4 Many-electron systems and the Slater determinant

In the helium problem, we could make use of the fact that in the ground state the
required antisymmetry is taken care of by the spin part of the wave function, which
drops out of the Schrédinger equation. If it is not the ground state we are after, or if
more than two electrons are involved, antisymmetry requirements affect the orbital
part of the wave function, and in the next two sections we shall consider a more
general approach to an independent electron Hamiltonian, taking this antisymmetry
into account. In the present section we consider a particular class of antisymmetric
many-electron wave functions and in the next section we shall derive the equations
obeyed by them.

When considering a many-electron problem, it must be remembered that elec-
trons are identical particles. This is reflected in the form of the Hamiltonian: for
example in (4.2), interchanging electrons i and j does not change the Hamiltonian
and the same holds for the independent particle Hamiltonian (4.3). We say that the
Hamiltonian commutes with the particle-exchange operator, P;;. This operator acts
on a many-electron state and it has the effect of interchanging the coordinates of
particles i and j. For an N-particle state® ¥

P,'J'\IJ(Xl,Xz, e X X ,XN) = \IJ(Xl,Xz, e X, X, ,XN). (4.22)
In this equation, Xx; is again the combined spin and orbital coordinate:
X; = (rj,8). (4.23)

As Pj; is an Hermitian operator which commutes with the Hamiltonian, the eigen-
states of the Hamiltonian are simultaneous eigenstates of P;; with real eigenvalues.
Furthermore, as Pl.zj = 1 (interchanging a pair twice in a state brings the state back
to its original form), its eigenvalue is either +1 or —1. It is an experimental fact
that for particles with half-integer spin (fermions) the eigenvalue of the permutation
operator is always —1, and for particles with integer spin (bosons) itis always +1. In
the first case, the wave function is antisymmetric with respect to particle exchange
and in the second case it is symmetric with respect to this operation. As electrons
have spin-1/2, the wave function of a many-electron system is antisymmetric with
respect to particle exchange.

Let us forget about antisymmetry for a moment. For the case of an independent-
particle Hamiltonian, which is a sum of one-electron Hamiltonians as in (4.3), we
can write the solution of the Schrddinger equation as a product of one-electron

% In order to clarify the role of the coordinate s;, we note that for a single electron the wave function can be
written as a two-spinor, that is, a two-dimensional vector, and s, which is a two-valued coordinate, selects one
component of this spinor. When dealing with more particles (N), the two-spinors combine into a 2N _dimensional
one and the combined coordinates si, . . ., sy select a component of this large spinor (which depends on the
positions r;).
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states:

VX, .. Xy) = P1(X1) - Y (Xn). (4.24)
The one-electron states 1y are eigenstates of the one-particle Hamiltonian, so they
are orthogonal. The probability density for finding the particles with specific values
X1, ..., Xy of their coordinates is given by

P(X1, X2, ..o XN) = [Y1 (XD P [Pa(x2) [ - - - [¥w (xw) %, (4.25)

which is just the product of the one-electron probability densities. Such a probability
distribution is called uncorrelated, and therefore we will use the term ‘uncorrelated’
for the wave function in (4.24) too.

Of course, the same state as (4.24) but with the spin-orbitals permuted, is a
solution too, as are linear combinations of several such states. But we require
antisymmetric states, and an antisymmetric linear combination of a minimal number
of terms of the form (4.24) is given by

1
Vas@i, o) = D erPyi(x1) - Y (xN). (4.26)
P

P is a permutation operator which permutes the coordinates of the spin-orbitals
only, and not their labels (if P acted on the latter too, it would have no effect at
all!); alternatively, one could have P acting on the labels only, the choice is merely
a matter of convention. The above-mentioned exchange operator is an example of
this type of operator. In (4.26), all permutations are summed over and the states
are multiplied by the sign ep of the permutation (the sign is +1 or —1 according to
whether the permutation can be written as product of an even or an odd number of
pair interchanges respectively).
We can write (4.26) in the form of a Slater determinant:

Yi(x1)  Yo(xp) - Yn(xp)
1 |vi(x2) Yo(x2) -+ Yn(x2)

.y XN) = W (427)

Was(X1,..

Yvixy) vo(xy) - YUn(Xn)

It is important to note that after this antisymmetrisation procedure the electrons are
correlated. To see this, consider the probability density of finding one electron with
coordinates x; and another with x5:

p(X1,X2) = /dx3 oy [Was (X1, .. xy) [

= ;Zw )P [P (x2) 1 — i () Y (x2) ¥/ (x2) Y (x1)]
N(N_l)klkl 1(X2 XDV (X2) Y (X2)Wi(X1)].

(4.28)



54 The Hartree—Fock method

To find the probability of finding two electrons at positions r; and rp,we must sum
over the spin variables:

p(ri,r2) =Y p(xi,%2). (4.29)
51,82

For spin-orbitals that can be written as a product of a spatial orbital and a one-particle
spin wave function, it is seen that for ¥ and y; having opposite spin, the second
term vanishes and therefore opposite spin-orbitals are still uncorrelated (the first
term of (4.28) obviously describes uncorrelated probabilities) but for equal spins,
the two terms cancel when r; = rj, so we see that electron pairs with parallel spin
are kept apart. Every electron is surrounded by an ‘exchange hole’ [4] in which
other electrons having the same spin are hardly found. Comparing (4.28) with
the uncorrelated form (4.25), we see that exchange introduces correlation effects.
However, the term ‘correlation effects’ is usually reserved for all correlations apart
from exchange.

It is possible to construct Slater determinants from general spin-orbitals, i.e. not
necessarily eigenstates of the one-electron Hamiltonian. It is even possible to take
these spin-orbitals to be nonorthogonal. However, if there is overlap between two
such spin-orbitals, this drops out in constructing the Slater determinant. Therefore
we shall take the spin-orbitals from which the Slater determinant is constructed to
be orthonormal.

Single Slater determinants form a basis in the space of all antisymmetric wave
functions. In Section 4.10, we shall describe a method in which this fact is used to
take correlations into account.

4.5 Self-consistency and exchange: Hartree-Fock theory
4.5.1 The Hartree—Fock equations — physical picture

Fock extended the Hartree equation (4.11) by taking antisymmetry into account. We
first give the result which is known as the Hartree—Fock equation; the full derivation
is given in Section 4.5.2 [5, 6]:

Fik = P with (4.30)
Fp=|-Lv? “n 3 & [Yr () P—
n=| "R wk(x>+l§f 0 P )
al 1
- f &Y () VR OV, 4.31)
=1

The operator F is called the Fock operator. The first three terms on the right hand
side are the same as in those appearing in the Hartree equation. The fourth term is
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Figure 4.1. The Hartree—Fock spectrum. The figure shows how the levels are filled
for (a) the ground state of an even number of electrons, (b) the ground state of an
odd number of electrons and (c) an excited state in the spectrum of (a). Note that
the spectrum in (c) does not correspond to the ground state; see Section 4.5.3.
Instead it corresponds to the restricted approximation, in which the same set of
energy levels is available for electrons with both spins.

the same as the third, with two spin-orbital labels £ and / interchanged and a minus
sign in front resulting from the antisymmetry of the wave function — it is called the
exchange term. Note that this term is nonlocal: it is an operator acting on Y, but
its value at r is determined by the value assumed by v at all possible positions r’.

A subtlety is that the eigenvalues €; of the Fock operator are not the energies of
single electron orbitals, although they are related to the total energy by

1
E=> ;[ek + (Wil 1. (4.32)

In Section 4.5.3 we shall see that the individual levels €; can be related to excitation
energies within some approximation.

It is clear that (4.31) is a nonlinear equation, which must be solved by a self-
consistency iterative procedure analogously to the previous section. Sometimes the
name ‘self-consistent field theory’ (SCF) is used for this type of approach. The self-
consistency procedure is carried out as follows. Solving (4.31) yields an infinite
spectrum. To find the ground state, we must take the lowest N eigenstates of this
spectrum as the spin-orbitals of the electrons. These are the ; which are then used
to build the new Fock operator which is diagonalised again and the procedure is
repeated over and over until convergence is achieved. Figure 4.1(a) and (b) gives a
schematic representation of the Hartree—Fock spectrum and shows how the levels
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are filled. Of course, it is not clear a priori that the lowest energy of the system is
found by filling the lowest states of the Fock spectrum because the energy is not
simply a sum over the Fock eigenvalues. However, in practical applications this
turns out to be the case.

The Hartree—Fock theory is the cornerstone of electronic structure calculations
for atoms and molecules. There exists a method, configuration interaction, which
provides a systematic way of improving upon Hartree—Fock theory; it will be
described briefly in Section 4.10. In solid state physics, density functional theory
is used mostly instead of Hartree—Fock theory (see Chapter 5).

The exchange term in (4.31) is a direct consequence of the particle exchange-
antisymmetry of the wave function. It vanishes for orthogonal states k and [, so
pairs with opposite spin do not feel this term. The self-energy problem with the
Hartree potential mentioned at the end of Section 4.3.1 appears to be solved in the
Hartree—Fock equations: the self-energy term in the Hartree energy is cancelled by
the exchange contribution as a result of the antisymmetry.

The exchange contribution /owers the Coulomb interaction between the elec-
trons, which can be viewed as a consequence of the fact that exchange keeps
electrons with the same spin apart; see the discussion below Eq. (4.28). The depend-
ence of this change in Coulomb energy on the electron density can be estimated
using a simple classical argument. Suppose that in an electron gas with average
density n, each electron occupies a volume which is not accessible to other elec-
trons with like spin. This volume can be approximated by a sphere with radius
re o n~ /3. Comparing the Coulomb interaction per volume for such a system with
one in which the electrons are distributed homogeneously throughout space, we
obtain

o[ [ 2,1 * o1 2 [ o1 22 473
AEc ~n redr— — rdr—| = —n redr— o« —nr; o n’”.
Fe r 0 r 0 r
(4.33)

One of the two factors n in front of the integral comes from the average density
seen by one electron, and the second factor counts how many electrons per volume
experience this change in electrostatic energy. The n*/3 dependence of the exchange
contribution is also found in more sophisticated derivations [7] and we shall meet
it again when discussing the local density approximation in the next chapter.

*4.5.2 Derivation of the Hartree—Fock equations

The derivation of the Fock equation consists of performing a variational calcula-
tion for the Schrodinger equation, where the subspace to which we shall confine
ourselves is the space of all single Slater determinants like Eq. (4.27). We must



4.5 Self-consistency and exchange: Hartree—Fock theory 57

therefore calculate the expectation value of the energy for an arbitrary Slater determ-
inant using the Born—-Oppenheimer Hamiltonian and then minimise the result with
respect to the spin-orbitals in the determinant.

We write the Hamiltonian as follows:

1 .
H=Y"h(i)+ 3 > g(i.j) with
i iyi i

and (4.34)

g(i,)) =
Ir; — |

1 Z
Wiy = ——v2 _§
() =—Vi ;m—R

al

h(i) depends on r; only and g(i, ) on r; and r;. Writing the Slater determinant v as
a sum of products of spin-orbitals and using the orthonormality of the latter, it can
easily be verified that this determinant is normalised, and for the matrix element of
the one-electron part of the Hamiltonian, we find (see Problem 4.3)

<\DAS > " hG)

By [ dx we denote an integral over the spatial coordinates and a sum over the
spin-degrees of freedom as usual.

The matrix element of the two-electron term g(i,j) for a Slater determinant not
only gives a nonzero contribution when the spin-orbitals in the left and right hand
sides of the inner product occur in the same order, but also for k and / interchanged
on one side (the derivation is treated in Problem 4.3):

(N —

D!
o 2 Wiy

k

qus> =N-

= Yl = Y [ @ veononem.  @39)
k k

<wAs D 8li.)) wAs>=Z<mwz|g|mwz> = (Wnlglyivn).  (4.36)

) ) k.l

In this equation, the following notation is used:

1
(Uil gl¥mim) = fdmdml//k x)Y (X)) —— P Um(X)Vn(x2).  (4.37)

In summary, we obtain for the expectation value of the energy:

1
= Unvlglynyn) — (Wavlglvne)]. (4.38)

E=) (Wnlhlye) +
k kl
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We now define the operators

1

Je(X) ¥ (x) =/w,:‘<x’>awk<x’>w(x) dx’ and (4.39a)
1

K (x)¢ (x) = / Vi (x’)aw(x’wux) dx’ (4.39b)

J = ZJk; K = ZKk. (4.40)
k k

J is called the Coulomb operator and K the exchange operator as it can be obtained
from the Coulomb operator by interchanging the two rightmost spin-orbitals. In

and furthermore

terms of these operators, we can write the energy as

E = ;<Wk

This is the energy-functional for a Slater determinant. We determine the minimum
of this functional as a function of the spin-orbitals i, and the spin-orbitals for
which this minimum is assumed give us the many-electron ground state. Notice
however that the variation in the spin-orbitals ¥ is not completely arbitrary, but
should respect the orthonormality relation:

(Vilvn) = dn. (4.42)

This implies that we have a minimisation problem with constraints, which can be
solved using the Lagrange multiplier theorem. Note that there are only N(N + 1)/2
independent constraints as (Y |y;) = {(W|¥x)*. Using the Lagrange multipliers
Ay for the constraints (4.42), we have

SE =Y Aul(8vnlyn) — (Yalsyn)] =0 (4.43)

kl

h+ %(J - K)‘ ¢k>. (4.41)

with

SE =) "(8yx|hly) + complex conj.
k

1
t3 Z (SVvilglicvn) + (Yid vl glviv)
i

— (SYvilglviv) — (Vidvilglvin)) + complex conj.

Z Sy |h| i) + complex conj.
k

+ ) (SYrlglvnyn) — (SYavalglyiv)) + complex conj.  (4.44)

ki
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where in the second step the following symmetry property of the two-electron
matrix elements is used:

(Uil glVm¥m) = ViVl gl¥mm). (4.45)

Note furthermore that because of the symmetry of the constraint equations, we must
have Ay = A?‘k. Eq. (4.44) can be rewritten as

SE =) (Yl FI¥n) + (il Floyn) (4.46)
k

with

F=h+J—-K. (4.47)
The Hermitian operator JF is the Fock operator, now formulated in terms of the
operators J and K. It is important to note that in this equation, J and K occur with
the same prefactor as £, in contrast to Eq. (4.41) in which both J and K have a factor
1/2 compared with /. This extra factor is caused by the presence of two spin-orbitals
in the expressions for J and K which yield extra terms in the derivative of the energy.
The matrix elements of the Fock operator with respect to the spin-orbitals i are

(Wl F 1Y) = b+ ) TWWw |glvivne) — (Uwr gl vy (4.48)
k/

We finally arrive at the equation

OVl Flve) + (Wl Fl8vk) + Z A (8Ylyn) — (ildyi)) =0 (4.49)
]

and since 8y is small but arbitrary, this, with Ay = Aj;, leads to

Fe=Y_ Aur. (4.50)
1

The Lagrange parameters Ay in this equation cannot be chosen freely: they must
be such that the solutions v, form an orthonormal set. An obvious solution of the
above equation is found by taking the v as the eigenvectors of the Fock operators
with eigenvalues €, and Ay = €;6y:

Fik = €. 4.5

This equation is the same as (4.31), presented at the beginning of the previous
subsection. We can find other solutions to the general Fock equation (4.50) by
transforming the set of eigenstates {y} according to a unitary transformation,
defined by a (unitary) matrix U:

V=Y Uat. (4.52)
1
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The resulting states 1/, then form an orthonormal set, satisfying (4.50) with

A=Y UmenU,. (4.53)
im

In fact, a unitary transformation of the set {y;} leaves the Slater determinant
unchanged (see Problem 4.7).

Equation (4.51) has the form of an ordinary Schrédinger equation although the
eigenvalues €, are identified as Lagrange multipliers rather than as energies; nev-
ertheless they are often called ‘orbital energies’. From (4.51) and (4.38) it can be
seen that the energy is related to the parameters €; by

B = Vet v = 3 |- 00 -k @59
k k
The second form shows how the Coulomb and exchange contribution must be
subtracted from the sum of the Fock levels to avoid counting the two-electron
integrals twice.
In the previous section we have already seen how the self-consistency procedure
for solving the resulting equations is carried out.

4.5.3 Koopman’s theorem

If we were to calculate an excited state, we would have to take the lowest N — 1
spin-orbitals from the Fock spectrum and one excited spin-orbital for example (see
Fig. 4.1c), and carry out the self-consistency procedure for this configuration. The
resulting eigenstates will differ from the corresponding eigenstates in the ground
state. If we assume that the states do not vary appreciably when constructing the
Slater determinant from excited spin-orbitals instead of the ground state ones, we
can predict excitation energies from a ground state calculation. It turns out that —
within the approximation that the spin-orbitals are those of the ground state —
the difference between the sums of the eigenvalues, ¢, of the ground state and
excited state configuration, is equal to the real energy difference; see Problem 4.6.
This is known as Koopman’s theorem. This is not really a theorem but a way of
approximating excitation energies which turns out to work well for many systems.
For further reading, see Refs. [5, 6, 8].

4.6 Basis functions

In the derivation leading to (4.51) (or (4.31)), the possible solutions of the
Schrodinger equation were restricted to the space of single Slater determinants. To
solve the resulting eigenvalue equation, another variational principle in the same
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spirit as in the previous chapter and in Section 4.3.2 can be used, that is, expanding
the spin-orbitals v as linear combinations of a finite number of basis states x:

M
Ve (X) =Y Corxp(X). (4.55)

p=1

Then (4.51) assumes a matrix form
FC, = ¢SCy (4.56)

where S is the overlap matrix for the basis used.

In the next subsection we shall consider how spin and orbital parts are combined
in the basis sets and in Section 4.6.2 we shall discuss the form of the orbital basis
functions.

4.6.1 Closed- and open-shell systems

In a closed-shell system, the levels are occupied by two electrons with opposite spin
whereas in an open-shell system there are partially filled levels containing only one
electron. If the number of electrons is even, the system does not necessarily have to
be closed-shell since there may be degenerate levels (apart from spin-degeneracy)
each containing one electron — or we might be considering an excited state in which
an electron is pushed up to a higher level. If the number of electrons is odd, the
system will always be open-shell.

Consider the addition of an electron to a closed-shell system. The new electron
will interact differently with the spin-up and -down electrons present in the system,
as exchange is felt by parallel spin pairs only. Therefore, if the levels of the system
without the extra electron are spin-up and -down degenerate, they will now split
into two sublevels with different orbital dependence, the lower sublevel having the
same spin as the new electron.” We see that the spin-up and -down degeneracy of
the levels of a closed-shell system is lifted in the open-shell case.

It is important to note that even when the number of electrons is even, the unres-
tricted solution may be different from the restricted one. To see this, consider again
the discussion of the hydrogen molecule in Section 4.3.1. A possible description of
the state within the unrestricted scheme is
%[u(l‘l — Ra)a(spu(ry — Rp)B(s2)

—u(r2 — Ry)a(s2)u(ry — Rp)B(s1)]. (4.57)

V(X1,X2) =

4 An exception to this rule occurs when the Coulomb interaction between the degenerate levels and the new
electron vanishes as a result of symmetry.
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This describes two electrons located at different nuclei, which is correct for large
nuclear separation, but this is not an eigenstate of the total spin operator. When the
nuclei are separated, the state crosses over from a restricted to an unrestricted one.
The distance at which this happens is the Coulson—Fisher point [9].

In a closed-shell system the 2N orbitals can be grouped in pairs with the same
orbital dependence but with opposite spin, thus reflecting the spin-degeneracy:

{Vok—1(%), Yo (X))} = {pe (D) (s), e (X)B(s)}, k=1,...,N. (4.58)

The ¢y (r) are the spatial orbitals and «(s), B(s) are the up and down spin-states
respectively. For an open-shell system, such pairing does not occur for all levels, and
to obtain accurate results, it is necessary to allow for a different orbital dependence
for each spin-orbital in most cases. Even for an open-shell system it is possible
to impose the restriction (4.58) on the spin-orbitals, neglecting the splitting of the
latter, but the results will be less accurate in that case. Calculations with the spin-
orbitals paired as in (4.58) are called restricted Hartree—Fock (RHF) and those
in which all spin-orbitals are allowed to have a different spatial dependence are
called unrestricted Hartree—Fock (UHF). UHF eigenstates are usually inconvenient
because they are not eigenstates of the total spin-operator, as can easily be verified
by combining two different orbitals with a spin-up and -down function respectively.
On the other hand, the energy is more accurate.

We shall now rewrite the Hartree—Fock equations for RHF using the special
structure of the set of spin-orbitals given in (4.58). As we have seen in the previous
section, the general form of the Fock operator is

F=h+J—-K (4.59)

with

/ * / / 1
100w = Y [ ¥ w7 i)
: (4.60)
/ * / / 1
Kx)y(x) = Z/dx Vi Y )i x).
l

The sum over / is over all occupied Fock levels. As the Fock operator depends
explicitly on the spatial coordinate only (there is an implicit spin-dependence via
the spin-orbitals occurring in the Coulomb and exchange operators), it is possible to
eliminate the spin degrees of freedom by summing over them and find an operator
acting only on the spatial orbitals ¢ (r). The uncoupled single-particle Hamiltonian
h remains the same since it contains neither explicit nor implicit spin-dependence,
and from (4.60) it is seen that the Coulomb and exchange operators, written in terms
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of the orbital parts only, read

1
r’ —r|

J()¢(r) = 22 / d&r'or () u(r) ¢(r) and
l

| (4.61)

Ir’ —r|

Kmgmr =) / d>r'gf () (') ¢1(r).
l
In contrast with Eq. (4.60), the sums over [ run over half the number of electrons
because the spin degrees of freedom have been summed over. The Fock operator
now becomes
F(r) = h(r) +2J(r) — K(r). (4.62)

From now on, we shall only use this spatial form of the Fock operator and drop the
tilde from the operators in (4.61) and (4.62). The corresponding expression for the
energy is found analogously and is given by

Eg =2 (¢ulhlgn) + Y (2deld1dn) — (x| K i) (4.63)
k k

It is possible to solve the Fock equation using a finite basis set, in the same spirit
as the helium calculation of Section 4.3.2. The spin part of the basis functions is
simply a(s) or B(s) (spin-up and -down respectively) and the orbital part x,(r)
needs to be specified — this will be done in the next section. For a given basis x, (r),
we obtain the following matrix equation, which is known as the Roothaan equation:

FC; = €SCy, (4.64)

similar to (4.51), but now S is the overlap matrix for the orbital basis x,(r) and the
matrix F is given by

Fpg =hpg+ Y Y CrCo(2ipriglgs) — (priglsq)) (4.65)
k rs
where
hpq = |h|>—/d3 ‘)| —2v? - Z (r) (4.66)
pa = WD = [ ) =5 anan—u Xq(0: '
and
(priglas) = / N g X ). (467)

k labels the orbitals ¢y and p, ¢, r and s label the basis functions. Generally, sums
over labels k and [/ run over the occupied orbitals, and sums over p, g, r, s run over
the functions in the basis set.
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It is convenient to introduce the density matrix which (for RHF) is defined as

Ppy =2 CpCiy. (4.68)
k

This is the matrix representation of the operator

pP=2I¢x) (el (4.69)
k

which is recognised as the usual definition of the density matrix in quantum theory
(the factor 2 is due to the spin). Using (4.68), the Fock matrix can be written as

1
Fpg = hpg + 5 _ Psr[2(priglas) — (priglsq)] (4.70)
rs
and the energy is given by
1 1
E = Zquhpq + 3 ZPMPS, [(pr|g|qs) — E(pr|g|sq)i| . “4.71)
pq pars

For the UHF case, it is convenient to define an orbital basis x,(r) and the spin-
up orbitals are now represented by the vector C* and the spin-down ones by C™.
Using these vectors to reformulate the Hartree—Fock equations, the so-called Pople—
Nesbet equations are obtained:

FTCt = ¢TSCT
(4.72)
FC =¢SC
with
Fl=hpg+ Y > CECE [priglgs) — (priglsq)]
k. rs
- 4.73)

+ 202 CRICT, priglas).
ch rs

In practice, real orbital basis functions are used, so that complex conjugates can be
removed from the Cpy in Egs. (4.65), (4.68) and (4.73). In the following, we shall
restrict ourselves to RHE.

4.6.2 Basis functions: STO and GTO

In this subsection, we discuss the basis functions used in the atomic and molecular
Hartree—Fock programs. As already noted in Chapter 3, the basis must be chosen
carefully: the matrix diagonalisation we must perform scales with the third power
of the number of basis functions, so a small basis set is desirable which is able to
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model the exact solutions to the Fock equations accurately. A molecule consists
of atoms which, in isolation, have a number of atomic orbitals occupied by the
electrons. If we put the atoms together in a molecule, the orbitals with low energies
will be slightly perturbed by the new environment and the valence electrons will
now orbit around more than one nucleus, thus binding the molecule together. In
the molecule, the electrons now occupy molecular orbitals (MO). In constructing a
basis, it turns out to be efficient to start from the atomic orbitals. The one-electron
wave functions that can be constructed from these orbitals are linear combinations
of atomic orbitals (LCAO). The solutions to the HF equations, which have the form

$r(r) = Cprxp(r), (4.74)
p

are the molecular orbitals, written in LCAO form.

Analytic forms of the atomic orbitals are only known for the hydrogen atom but
they can be used for more general systems. The orbitals of the hydrogen atom have
the following form:

X (@) = far1 (N Py(x, y, 2", (4.75)

where [ is the angular momentum quantum number, P; is a polynomial in x, y and
z of degree [/ containing the angular dependence; f;,_(r) is a polynomial in r of
degree n — 1; n is an integer (r is expressed in atomic units ag). This leads to the
following general form of atomic orbital basis functions:

xe (1) = r"Py(x,y, z)e ¢ IFRal (4.76)

which is centred around a nucleus located at R4. Functions of this form are called
Slater type orbitals (STO). The parameter ¢, defining the range of the orbital,
remains to be determined; P; is taken the same as for the hydrogen atom. For atomic
Hartree—Fock calculations, this basis yields accurate results with a restricted basis
set size. However, in molecular calculations, integrals involving products of two
and four basis functions centred at different nuclei are needed, and these are hard
to calculate since the product of the two exponentials,

e 4l II‘—RAle—Czll‘—RBl’ (4.77)

is a complicated expression in r. A solution might be to evaluate these integrals
numerically, but for a large basis set this is impractical.

Another basis set which avoids this problem, was proposed in 1950 by Boys [10],
who replaced the simple exponential in (4.76) by a Gaussian function:

X (F) = Py (x,y, 2)e R, (4.78)
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Figure 4.2. Positions in the Gaussian product theorem (4.79).

These functions are called primitive basis functions for reasons which will be
explained below. These Gaussian type orbitals (GTO) have the nice property that
the product of two such functions centred on different nuclei again has a Gaussian
form as in (4.78):

Py (x,, Z)C_W(T_RA)ZQN(X’ v, Z)e—/ﬁ(r—Rs)z — Rysm(x, y, Z)e—(a+ﬂ>(r—Rp)2.
(4.79)
Here, Rp is the ‘centre of mass’ of the two points R4 and Rp with masses « and 8:

. aRy + ,BRB

Ny (4.80)

P
(see also Figure 4.2), and Rys+ y is a polynomial of degree M +N. Equation (4.79) is
easy to prove; it is known as the ‘Gaussian product theorem’. This theorem makes
it possible for the integrals involved in the Hartree—Fock equations to be either
calculated analytically or reduced to an expression suitable for fast evaluation on a
computer. In Section 4.8 we shall derive some of these integrals.

The polynomials Py in Eq. (4.78) contain the angular-dependent part of the
orbitals, which is given by the spherical harmonics Y/ (6, ¢). For [ = 0, these
functions are spherically symmetric (no angular dependence) — hence a 1s-orbital
(having no nodes) is given as

xO(r) = e @R, 4.81)

Note that we need not normalise our basis functions: the overlap matrix will ensure
proper normalisation of the final molecular orbitals. For [ = 1, the L;-quantum
number m can take on the three different values 1, 0 and —1, so there are three
p-orbitals, and an explicit GTO representation is

& (1) = xe ¥R, (4.82)

and similarly for p, and p,. Proceeding in the same fashion for / = 2, we find six
quadratic factors x2, y?, z2, xy, yz and xz before the Gaussian exponential, but there
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are only five d-states! This paradox is solved by noticing that the linear combination
(2 43?4 e TR’ (4.83)

has the symmetry of an s-orbital, and therefore, instead of x%, y* and z2, only the
orbitals x> — y? and 3z> — r? are used (any independent combination is allowed),
thus arriving at five d-states.

GTOs are widely used for molecular calculations, and from now on we shall
restrict ourselves to basis functions of this form. The simplest basis consists of
one GTO per atomic orbital; it is called a minimal basis. The parameter « in the
exponent must somehow be chosen such that the GTO fits the atomic orbital in an
optimal way. However, since there is only one parameter to be fitted in the minimal
basis, this will give poor results, and in general more GTOs per atomic orbital are
used. This means that a 1s basis orbital is now given as a linear combination of
Gaussian functions:

> Dpe . (4.84)
p

As the parameters o, occur in the exponent, determination of the best combination
(Dp, ap) is a nonlinear optimisation problem. We shall not go into details of solving
such a problem (see Ref. [11]), but discuss the criterion according to which the best
values for (D, ;) are selected. A first approach is to take Hartree—Fock orbitals
resulting from an afomic calculation, perhaps determined using Slater type orbitals,
and to fit the form (4.84) to these orbitals. A second way is to perform the atomic
Hartree—Fock calculation using Gaussian primitive basis functions and determine
the optimal set as a solution to the nonlinear variational problem in the space given
by (4.84).

Suppose we have determined the optimal set (D), «p,), then there are in principle
two options for constructing the basis set. The first option is to incorporate for each
exponential parameter o, the Gaussian function

e~ —Ry)’ (4.85)

into the basis, that s, the values of the D),-parameters are relaxed since the prefactors
of the Gaussian primitive functions can vary at will with this basis. A second
approach is to take the linear combination (4.84) with the optimal set of (D, a),) as
a single basis function and add it to the basis set, i.e. keeping the D), fixed as well as
the . If we have optimised the solution (4.84) using four primitive functions, the
second option yields a basis four times smaller than the first but, because of its lack
of flexibility (remember the D, are kept fixed), it will result in lower accuracy. The
procedure of taking fixed linear combinations of Gaussian primitive functions as a
single basis function is called contraction; the basis set is called a contracted set.
The difference between the GTOs from which the basis functions are constructed
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Figure 4.3. Approximation of a 1s Slater orbital (STO) by STO-2G up to STO-4G
basis functions.

and the basis functions themselves is the reason why the GTOs were called primitive
basis functions above: they are used to build contracted basis functions. If all N
primitive basis functions are contracted into one normal basis function, the basis set
is called a STO-NG basis, denoting that N GTOs have been used to fit a Slater type
orbital. Figure 4.3 shows how a Slater orbital is approximated by STO-NG basis
functions for N = 2, 3, 4. Note that deviations from the exact Slater orbital are only
noticeable for small », and these are usually suppressed, as in volume integrals the
integrands are weighted with a factor r2.

In most basis sets, an intermediate approach is taken, in which the set of primitive
Gaussians is split into two (or more) parts. The primitive Gaussian functions in
each such part are contracted into one basis function. A common example is the
STO-31 basis set, in which the three basis functions with shortest range (i.e. highest
ap) are contracted (using the corresponding D)s) into one basis function and the
remaining one (with the longest range) is taken as a second basis function. The
reason for splitting the basis in this way is that the perturbation of the orbitals by
the environment will affect primarily the long-range tails, and leave the short-range
part essentially unchanged.

There exist many other basis sets, like split-basis sets, in which from every
primitive Gaussian two new ones are constructed, one with a range slightly shorter
than in the original function (« slightly larger) and another with a slightly longer
range (o slightly smaller), so that it is possible for an orbital in a molecule to assume
a slightly contracted or expanded form with respect to the atomic orbital. For more
details concerning the various basis sets, see Ref. [12].

An important consideration is the symmetry of the orbitals which should be
taken into account. As an example, consider a HF calculation for Hy. The starting
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point for this calculation is the atomic orbitals of the ground state of the isolated
H-atom. In the latter, only the (spherically symmetric) 1s orbitals are filled, and in
the H, molecule, these orbitals will merge into a single molecular orbital which is
given by the sum of the two atomic orbitals plus a correction containing a substantial
contribution from the atomic p_-orbitals (the axis connecting the two nuclei is taken
to be the z-axis). This shows that it is sensible to include these p,-orbitals in the
basis, even though they are not occupied in the ground state of the isolated atom.
Such basis states, which are included in the basis set to make it possible for the
basis to represent the polarisation of the atom by its anisotropic environment, are
called polarisation orbitals. When calculating (dipole, quadrupole, ...) moments by
switching on an electric or magnetic field and studying the response of the orbitals
to this field, it is essential to include such states into the basis.

4.7 The structure of a Hartree—Fock computer program

In this section we describe the structure of a typical computer program for solv-
ing the Roothaan equations. The program for the helium atom as described in
Section 4.3.2 contained most of the features present in Hartree—Fock programs
already — the treatment given here is a generalisation for arbitrary molecules.

As the most time-consuming steps in this program involve the two-electron integ-
rals, we consider these in some detail in the next subsection. The general scheme
of the HF program is then given in Section 4.7.2.

4.7.1 The two-electron integrals

The two-electron integrals are the quantities

1
priglas) = [ 0@ s OBE. @80
(Do not confuse the label r with the orbital coordinate r!) The two-electron matrix
elements obey the following symmetry relations:

p<q r<S p,g<r,s. (4.87)

This implies that, starting with K basis functions, there are roughly K*/8 two-
electron matrix elements, since each of the symmetries in (4.87) allows the reduction
of the number of different matrix elements to be stored by a factor of about 2.
The subset of two-electron matrix elements to be calculated can be selected in
the following way. Because p and ¢ can be interchanged, we can take p > ¢q. As the
pair p, g can be interchanged with the pair r, s, we may also take p > r. The range
of s depends on whether p = r or not. If p # r, we have s < r, but for p = r, the
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fact that p, g can be interchanged with r, s means that the range of s can be restricted
tos < g. Allin all, a loop over the different two-electron matrix elements, using K
basis vectors and taking into account all symmetries, reads:

FOR p =1TO K DO
FOR ¢ = 1TO p DO
FORr=1TOp—-1DO
FOR s =1 TO r DO

END FOR
END FOR
r=p
FOR s = 1 TO ¢ DO

END FOR
END FOR
END FOR

Suppose we are dealing with a molecule consisting of 6 atoms, each having 12
basis functions, then K*/8 is about 3.4 million. It is not always possible to keep all
these numbers in core-memory, in which case they must be stored on disk. In earlier
days (before about 1975) this was done by storing them in a prescribed order in a
one-dimensional array whose index could be converted into the numbers p, ¢, r and
s. This was inefficient, however, since because of symmetry, many matrix elements
may vanish or be equal, or matrix elements may vanish because they involve basis
orbitals lying far apart, i.e. having negligible overlap, so nowadays only the non-
negligible matrix elements are stored together with the values of the corresponding
indices p, g, r and s.

4.7.2 General scheme of the HF program

First, we give an outline and then fill in the details [6, 13].

o Input data;

¢ Determine matrices;

¢ Bring overlap matrix to unit form;

e Make a first guess for the density matrix;
o REPEAT

— Calculate Coulomb and exchange contributions to the Fock matrix;
— Add these terms to the uncoupled one-electron Hamiltonian /,,;
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— Diagonalise the Fock matrix;
— Construct a new density matrix P from the eigenvectors found;

e UNTIL converged;
« Output.

Input data: The user provides the coordinates of the positions of the nuclei R,
the atomic numbers Z,,, the total number of electrons N and a basis set to be used
(most programs have several basis sets built into them).

Determine matrices: All matrices that do not depend on the eigenvectors Cy can
be determined here: the overlap matrix ), the uncoupled one-electron Hamiltonian
hypq, and the two-electron integrals (pr|g|gs).

Bring overlap matrix to unit form: This is the procedure described in
Section 3.3. It results in a matrix V defining the basis transformation which brings
S to unit form.

Make a first guess for the density matrix: It is possible to take Pp, = 0 as a
first guess: this implies that the electrons feel the nuclei but not each other. It is then
expected that the HF self-consistency procedure will converge with this choice.
More elaborate guesses for P can be used in order to increase the probability of
convergence, but we shall not go into this here.

Calculate Coulomb and exchange contributions to the Fock matrix: This is
the most time-consuming step in the program!

The exchange and Coulomb contributions are stored in a matrix G according to the
following formula (see also (4.70)):

1
Gpg = ZPrs [(prlglcm - 5(pr|g|sq>] . (4.88)

rs

This is done in a loop of the type displayed in the previous subsection. For each
combination of the indices p, ¢, r and s occuring in this loop it must be checked to
which elements of G the corresponding two-electron matrix element contributes.
This, however, depends on which of the indices coincide. When all four indices are
different for example, one obtains the following contributions to the matrix G:

qu = qu + 2(prlglgs)Pys

Grs = Grs + 2(priglgs) Ppq

Gps - Gps - 1/2(pr|g|qs)Pq,

qu - qu - 1/2(pr|g|qs)Pps (489)

GPV = GPV - 1/2(pr|g|qS>qu

Gqs = Gqs - 1/2(pr|g|qs)Ppr.
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Counting all different configurations of the indices, like p = r # ¢,s and g # s,
and so on, 14 different cases are found, and for each of these, the analogue of (4.89)
has to be worked out. We shall not do this here but leave it as an exercise to the
reader.

Add G and h: The Fock matrix is simply the sum of the matrix G which was
discussed above, and the uncoupled one-electron matrix h:

Fpg = hpg + Gpy. (4.90)

Diagonalise the Fock matrix: To diagonalise F, we transform the Roothaan
equation (4.64) with the help of the matrix V to an ordinary eigenvalue as in
Section 3.3:

F = V'FV, 4.91)
and then we must solve

FC =eC (4.92)
and transform the eigenvectors C’ back to the original ones:

c=VvcC. (4.93)

For diagonalising the Fock matrix, we may use the Givens—Householder QR method
discussed in Section 7.2.1 of Appendix A, which can be found in the Lapack/Atlas
library.

Construct a new density matrix P: From the eigenvectors C found in diag-
onalising the Fock matrix, a new density matrix can be constructed which is
the ingredient of the Fock matrix in the next iteration. It is important to realise
that the vectors Cy used in constructing the density matrix should be normalised
according to

L= (Yxln) = ) Cor{plg) Ca = CiSCx. (4.94)
pq

Converged: The criterion for convergence of the iterative process is the amount
by which the Fock levels and/or the basis functions change from one iteration to
the next. A typical criterion is that the Fock levels have converged to within a small
margin, such as 10~ % a.u. Sometimes, however, the process does not converge but
ends up oscillating between two or more configurations, or it diverges. This is often
because that the initial guess for P was too far off the converged value. It might
then help to use mixing: if the changes in the density matrix from one iteration
to another are too large, one takes for the density matrix in the next iteration a

weighted average of the last and the previous density matrix:

Pt = aPpt + (1 — PR 0 <o < 1. (4.95)
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The convergence can finally be enhanced by extrapolating the values of the density
matrix. Various extrapolation schemes are used, one of the most popular being
Pulay’s DIIS scheme (see Section 9.4) [14].

Output: Output of the program are the Fock levels and corresponding eigen-
states. From these data, the total energy can be determined:

1
E = 5 [; hrsPrs + Xk: ek} + Enucl- (496)

€ are the Fock levels and Ey, represents the electrostatic nuclear repulsion
energy which is determined by the nuclear charges Z, and positions R,. Invoking
Koopman’s theorem (see Section 4.5.3), the Fock levels may be interpreted as
electron removal or addition energies.

In Problem 4.12, the hydrogen molecule is treated again in Hartree—Fock rather
than in Hartree theory, as is done in Problem 4.9.

*4.8 Integrals involving Gaussian functions

In this section, we describe some simple calculations of integrals involving two or
four GTOs. We restrict ourselves to 1s-functions; for matrix elements involving
higher [-values, see Refs. [15, 16]. As noticed already in Section 4.6.2, the central
result which is used in these calculations is the Gaussian product theorem: denoting
the Gaussian function exp(—o|r — RA|2) by g1s,«(r — Ry4), we have:

81sa(r —Ry)gis5(r — Rp) = Kgi5,, (r — Rp), 4.97)
with
af 2
K=exp| —|R4 — R
p [ .y IRA B }
y=a+p
R R
P=O[ A+ B B' (4.98)
a+p
From now on, we shall use the Dirac notation:
8150 (r —Ry) = [Is,a, A). (4.99)

The overlap integral: The overlap matrix for two 1s-functions can be calculated
directly using (4.97):

(Is,ct,Alls, B, B) =4n/dr P2Ke V"

(=" %P R, Ry 4.100
—(a+ﬂ> eXp[_a+ﬂ|A_ B|:|- (4.100)
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The kinetic integral: This is given by
(1s,a,A| — V2|1s, B,B) = /d3r Ve @r—Ry)? go—Br—Rp)? (4.101)

where we have used Green’s theorem. Working out the gradients and using the
Gaussian product theorem, we arrive at

(1s,a,A| — V?|1s, 8, B) = 4af / Br(r — Ry)(r — Rp)Ke 7R (4.102)

with y, K and Rp given above. Substituting u = r — Rp and using the fact that
integrals antisymmetric in u vanish, we arrive at:

(Is,a,A| — V?|1s, B, B)
0 o0
= 16aBKm [/ duue™ + Rp —Ry) - (Rp — RB)/ du uze_y"i|
0 0

L PO

3/2
x (L) exp[—afB/(a + B)IRs — Rp|*]. (4.103)
o+ p

The nuclear attraction integral: This integral is more difficult than the previous
ones, because after applying the Gaussian product theorem we are still left with the
1/r Coulomb term of the nucleus (whose position does in general not coincide with
the centre of the orbital). To reduce the integral to a simpler form, we use Fourier
transforms:

fk) = / d3r fryeikr, (4.104)
The inverse transformation is given by
fr)= Q)3 / &k f kel (4.105)
The Dirac delta-function can be written as
s(r) = (2m)3 / 3k ek, (4.106)
The Coulomb integral is given by

(Is,a,A| — Z/r¢|1s, B, B) = —Z/d3rKe_Vr_Rf’Izlr—Rcl_l. (4.107)

The Fourier transform of 1/r is 47 /k?, as can be seen for example by Fourier
transforming the Poisson equation

1
—V2Z =478(r). (4.108)
r
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Furthermore, the Fourier transform of exp(—yr?) is (/y)>/* exp(—k?/4y), so
substituting these transforms into (4.107), we obtain

<1S7(X’A| - Z/rC|1S7 ﬂ’B>
7\ 32
=—ZQm)"° (—) f a3r a3k, Bk Ke K1/@7)giki-(r—Rp)
Y

x 4k, Zelke r—Re), (4.109)

In this equation, the expression (4.106) for the delta-function for k; + kj is
recognised, and this transforms the integral into

(1S,Ol,A| _Z/rC|IS’ﬂ’B>

3/2
= —ZKQ27x%)~! (£> / a3k e K/ @V —2e=ik Rp—Rc) (4.110)
14
Integrating over the angular variables leads to

o0
(1s,a,A| — Z/rc|1s, B, B) = N/ dk e /41 i sin(k|Rp — Re));
0

N = =2ZK(|Rp — Re) "L /y)* 2. (4.111)
The integral (without \/) can be rewritten as
L g [0 dreren
Ix)y=- [ dy dk e Y cos(ky) (4.112)
2 Jo —00
with x = |[Rp — R¢|. The integral over £ is easy, and the result is
] X
I(x) = 5,/;1/;// dy e 7. (4.113)
0

So, finally, we have

(IS,O[,A| _Z/rCIIS’ﬁ’B>

v'?IRp—Rc| )
— 27KZy~'('*IRp — Re])! / dye™,
0

and, using the definition
172

Fo(t) = 1~ 1/2 / dye™, (4.114)
the final result can be rewritten as "
(Is,a,A| — Z/r¢|1s, B, B)
= —2nZ(a + )" expl—aB/(a + B)|Ra — Rp’]
x Fol(e + B)IRp — R¢ 1. (4.115)
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The function Fy(¢) can be evaluated using the error function erf, which is avail-
able in most high-level programming languages as an intrinsic funtion. The error
function is defined by

2 X ’ _X/Z
erf(x) = ﬁ A dx'e™ . (4.116)

If your compiler does not have the error function as an intrinsic, you can calculate
it using a recursive procedure. The function Fy(¢) is then considered as one in a
series of functions defined as

1
Fnu(t) = f exp(—ts2)s>"ds. (4.117)
0

The following recursion relation for F,,(t) can easily be derived via partial
integration:
e + 2xFy11(x)
F, = . 4.118
m(X) Gy ( )

This recursion is stable only if performed downward (see Appendix A2).
The two-electron integral: This has the form:

(Is,a,A; 1s, B, B|g|1s,y,C; 1s,8, D)
_ /d3r1d3r2e—a|r1—RA|Ze—ﬁ|r2—RB|2Le—yr1 “RePe-0n-Rol | (4119)
r12

Using the Gaussian product theorem, we can write the Gaussian functions depend-
ing on r; and r, as new ls-functions with exponential parameters p and o and
centres Rp (of R4 and R¢) and Rg (of Rp and Rp):

(Is,a,A; 1s, B8, B|g|1s,y,C; 1s,8, D)

= exp[—ay/(a + y)IRa — Rc|* — B8/(B + 8)Rp — Rp|*]
X / Eriddrpe o Rel L e-oinRol” (4.120)
ri2

Calling M the factor in front of the integral, and replacing the Gaussian exponentials
in the integrand by their Fourier transforms, and similarly for the 1/r2 term, we
obtain

(1s,,A;1s, B, Blg|1s,y,C; 1s, 8, D)
= MQm)~° / &3 3 By &k ks (1) p)3 e ki /4P iki-(r1-Rp)

x drky 262 1) (7 /) 3267k /40 ok (12 -Rg), (4.121)
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Table 4.1. Bond lengths in atomic units for three
different molecules. Hartree—Fock (HF) and

experimental results are shown.

Molecule HF Expt.
H; 1.385 1.401
N» 2.013 2.074
CO 1.914 1.943

Data taken from Ref. [6].
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The integrals over r; and r; yield two delta-functions ink; and k, and Eq. (4.121)

transforms into

(1s,a,A;1s, B, Blg|1s,y,C; 18,8, D)

=4r MQ27) 3 (7% po)’/? / A3k k27K (p+0)/(400) o k(Rp—R0) (4 122)

We have already encountered this integral in the previous subsection. The final

result is now

(1s,a,A; 1s, B, B|g|1s,y,C; 1s,8, D)
27 5/2)

T @+ nNBrOat Bty +0)2

x exp[—ay /(@ + y)Ra — Re|* — B8/(B + 8)|Rg — Rp|*]

IRp — RQF].

F |:(06+V)(,3+5)
0
(a+B8+y+9)

4.9 Applications and results

(4.123)

After having considered the implementation of the Hartree—Fock in a computer
program, we now present some results of HF calculations for simple molecules
[6, 17]. As the HF calculations yield an energy for a static configuration of nuclei,
itis possible to find the stable configuration by varying the positions of the nuclei and
calculating the corresponding energies — the lowest energy corresponds to the stable
configuration. In this way, the equilibrium bond lengths of diatomic molecules can
be determined. In Table 4.1, HF results are shown for these bond lengths, together
with experimental results. The table shows good agreement between the two. The
same holds for bond angles, given in Table 4.2. It is also possible to calculate the
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Table 4.2. Bond angles in degrees for HyO and NHs.
The angles are those of the H-O-H and H-N-H
chains respectively. Hartree—Fock (HF) and
experimental results are shown.

Molecule HF Expt.
H;O 107.1 104.5
NH3 108.9 106.7

Data taken from Ref. [17].

Table 4.3. Dissociation energies in atomic units for
LiF and NaBr. Hartree—Fock (HF) and experimental
results are shown.

Molecule HF Expt
LiF 0.2938 0.2934
NaBr 0.1978 0.2069

Data taken from Ref. [17].

energies needed to dissociate diatomic molecules (see Table 4.3) and again good
agreement is found with experiment.

Koopman’s theorem can be used to calculate ionisation potentials, that is, the
minimum energy needed to remove an electron from the molecule. Comparing the
results in Table 4.4 for the ionisation potentials calculated via Koopman’s theorem
with those of the previous tables, it is seen that the approximations involved in
this ‘theorem’ are more severe than those of the Hartree—Fock theory, although
agreement with experiment is still reasonable.

*4,10 Improving upon the Hartree—Fock approximation

The Hartree—Fock approximation sometimes yields unsatisfactory results. This is
of course due to Coulomb correlations not taken into account in the Hartree—Fock
formalism. There exists a systematic way to improve on Hartree—Fock by construct-
ing a many-electron state as a linear combination of Slater determinants (remember
the Slater determinants span the N-electron Hilbert space of many-electron wave



4.10 Improving upon the Hartree—Fock approximation 79

Table 4.4. Ionisation potentials in atomic units for
various molecules. Results obtained via Koopman’s
theorem and experimental results are shown.

Molecule Koopman Expt

H> 0.595 0.584
CO 0.550 0.510
H,0 0.507 0.463

Data taken from Ref. [6].

functions as mentioned at the end of Section 4.4). These determinants are construc-
ted from the ground state by excitation: the first determinant is the Hartree—Fock
ground state and the second one is the first excited state (within the spectrum
determined self-consistently for the ground state) and so on. The matrix elements of
the Hamiltonian between these Slater determinants are calculated and the resulting
Hamilton matrix (which has a dimension equal to the number of Slater determinants
taken into account) is diagonalised. The resulting state is then a linear combination
of Slater determinants

W(Xp,...x0) = Y o WRg (X1, ... Xy) (4.124)
n

and its energy will be lower than the Hartree—Fock ground state energy. This is a
time-consuming procedure so that for systems containing many electrons, only a
limited number of determinants can be taken into account. This is the configuration
interaction (CI) method. In simple systems, for which this method allows very
high accuracy to be achieved, excellent agreement with experimental results can
be obtained. The CI method is in principle exact (within the Born—Oppenheimer
approximation), but since for a finite basis set the Fock spectrum is finite, only a
finite (though large) number of Slater determinants is possible within that basis
set. A CI procedure in which all possible Slater determinants possible within a
chosen basis set are taken into account is called ‘full CI’. For most systems, full
Cl is impossible because of the large number of Slater determinants needed, but it
is sometimes possible to obtain an estimate for the full CI result by extrapolating
results for larger and larger numbers of Slater determinants.

As an illustration, we show bond lengths and correlation energies for Hy and H,O
in Tables 4.5 and 4.6. The correlation energy is defined as the difference between
the Hartree—Fock and the exact energy. For small systems such as H», the electronic
structure can be calculated taking the electron correlation fully into account (but
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Table 4.5. Correlation energies in atomic
units for Hy and H>O.

Molecule CI Exact
H —0.039 69 —0.0409
H,O —0.298 —0.37

Data taken from Ref. [6].

Table 4.6. Bond lengths in atomic units for
H, and H>O.

Molecule HF CI Exact Experiment

H, 1.385 1.396 1.401
H,O 1.776  1.800 1.809

Data taken from Ref. [6]. Exact results were
obtained by variational calculus [18]. Experi-
mental results are from Ref. [19].

within the Born—Oppenheimer approximation) by a variational method using basis
functions depending on the positions of both electrons [18]. The CI results are
excellent for both cases.

In CI, the spin-orbitals from which the Slater determinants are built are the
eigenstates of the Fock operator as determined self-consistently for the ground state.
Asonly arestricted number of determinants can be taken into account, the dimension
of the subspace spanned by the Slater determinants is quite limited. If, within these
Slater determinants, the orbitals are allowed to vary by relaxing the ground state
coefficients of the basis functions, this subspace can be increased considerably. In
the so-called multi-configuration self-consistent field theory (MCSCEF), this process
is carried out, but because of the large amount of variation possible this leads to
a huge numerical problem. Finally, perturbative analysis allows correlation effects
to be taken into account [5, 6].

Exercises

4.1 In this problem we show that the large masses of the nuclei compared with those of
the electrons lead to the Born—Oppenheimer approximation.
The wave function W of a collection of electrons and nuclei depends on the
positions R, of the nuclei and r; of the electrons (we neglect the spin-degrees of
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freedom). For this function we make the following Ansarz:
V(R 1) = x (Ry) P (1)

with @ (r;) an eigenstate with eigenvalue E.| of the N-electron ‘Born—Oppenheimer
Hamiltonian’ Eq. (4.2), which in atomic units reads:

N 1 1 N K N
[r— R—— 2 —
Hoo=) —3Vi+5 2. oo v oR
v Wy | i — 1l |I', nl
= J=Li#] n=1 i=1

It is clear that @ and E] depend on the nuclear positions R,,, since the
Born—Oppenheimer Hamiltonian does.
Show that substitution of this Ansatz into the full Hamiltonian, Eq. (4.1), leads to:

(r) Z——v T A

n'=1nstn! |Rn_Rn’|
Ko Ko
— x(Ry) ; 2—MV,%<I><r,-> — ; a1 VX Re) - Vu® () = Ex (Ry) @ (),

so that neglecting the last two terms on the left hand side of this equation, we arrive
at a Schrodinger equation for the nuclei which contains the electronic degrees of
freedom via the electronic energy E.| only:

Ko X ZZw
Do mpVatEt ) TR | AR = Enex (R,

n=1 n,n’:l;n#n" no n’|

The fact that the term (1/ 2Mn)V,%<D(rl-) can be neglected can be understood by
realising that it is 1/M,, times the variation of the kinetic energy of the electrons with
the positions of the nuclei. Of course, the core electrons have large kinetic energy,
but they feel almost exclusively their own nucleus, hence their kinetic energy is
insensitive to variations in the relative nuclear positions. The valence electrons have
smaller kinetic energies, so the variation of this energy with nuclear positions will be
small too. In a solid, deleting the term (1/M,)V,x (R;) - V,®(r;) means that
electron—phonon couplings are neglected, so that some physical phenomena cannot
be treated in calculations involving the Born—Oppenheimer approach, although these
effects can often be studied perturbatively.

For a two-electron system, the wave function can be written as

W(x1,%x2) = ®(ry,r2) - x(51,52).

Because the wave function W is antisymmetric under particle exchange, we may
take @ symmetric in 1 and 2 and y antisymmetric, or vice versa.
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We construct the functions ® and yx from the orthonormal spatial orbitals ¢ (r),
¢2(r) and the spin-up and -down functions o (s) and B(s) respectively.

(a) Write down the antisymmetric wave functions that can be constructed in this
way (there are six of them).

(b) Write down all possible Slater determinants that can be built from the
one-electron spin-orbitals consisting of a product of one of the orbitals ¢; and
¢> and a spin-up or -down spinor (you will find six of these determinants too).

(c) Express the wave functions of part (a) of this problem in those of (b).

4.3 Consider a Slater determinant

Yi(x) Yo (xp) - Yn(x1)

1 |[vni(x2) Ya(x2) - Yn(x2)
II‘,AS(XIV"aXN):W : :

Yvixy) Yo (xy) - Yn(Xw)

1
- W ZEPpl/f] (X1) ... YN (XN).
P

The spin-orbitals ¥ (x) are orthonormal.

(a) Show that the Slater determinant is normalised, by considering the inner product
of two arbitrary terms occurring in the sum of the Slater determinant and then
summing over all possible pairs of such terms.

(b) Show in the same way that the density of electrons with coordinates x, given by:

00 =N [ da il
can be written in terms of the vy, as:

n(x) =Y Y.
k

Suppose all spin-orbitals can be written as the product of a normalised orbital
and a normalised one-particle spinor, what is then the spatial charge density of
the electrons (i.e. regardless of the spin)?

(c) Derive Eqgs. (4.35) and (4.36) using the methods employed in (a) and (b).

4.4 Consider the helium atom with two electrons having the same spin, represented by
the spinor a(s).

(a) Give the form of the two-electron wave function, expressed in orthonormal
spatial orbitals ¢; and ¢,.

(b) Write down the Schrodinger equation for this system.

(c) Give an expression for the expectation value of the energy in the orbitals ¢;.

4.5 The Hartree—Fock analysis can be performed not only for fermions, but also for
bosons. Consider a system consisting of N spin-0 particles in one dimension having
spin-orbital coordinates x; (for spin-0 particles, only the orbital coordinate matters).
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The bosons interact via a §-function potential:

N 82 N
H:—Z—z—i—g 3(x; — x5).
— Ox; —
i=1 ! i>j
This means that the particles feel each other only if they are at the same position: they
experience an infinitely large attraction with an infinitely short range. Although this
problem can be solved exactly, we consider the Hartree—Fock approximation here.
A boson wave function W is symmetric under particle exchange. This means that

all the particles are in the same orbital ¢.

(a) Show that the kinetic term of the Hamiltonian has the form:

(o322l

(b) Show that the expectation value of the interaction potential is given by

<\1/ 6350 —x) q,> = v =) [ axgeor

i<j

N

2
g2
i=1 4

(c) Show, by minimisation of the energy-functional
(WIH|W)
(W)

with respect to ¢, that the Hartree—Fock equation reads

(E) =

32
|:—— — 8N — 1)|¢>(x)|2] P (x) = €p(x).

9x2
(d) The solution to this last equation is found as

[/ —D]'?
cosh [(1/4)g(N — Dx]’

¢x) =

1 2 2
= —g¢*(N — 1)~
€ 16g( )

Show that this function indeed satisfies the Hartree—Fock equation.

Consider the Fock spectrum of a many-electron system. In the ground state, the N
electrons fill the lowest N levels of this spectrum. Consider the same spectrum, but
now with one electron removed from it. This means that the system has been
ionised. Show from the expressions for the Fock operator and the energy in terms of
the spin-orbitals, Eqgs. (4.41) and (4.48), that the ionisation energy is equal to the
difference between the sum over the occupied Fock levels € in the ground state and
the same sum for the ionised state.

It is then clear that the same holds for adding an electron to the ground state, and
therefore for moving an electron from level a to level b (by first removing the
electron from level a and then adding one in level b).
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4.9
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Consider a Slater determinant constructed from spin-orbitals ¢, k = 1,...,N. A
unitary transformation transforms the spin-orbitals ¥ into new ones, which we
denote by v;:

N
vy = Z Un.
=1

Uy are the elements of the unitary matrix U.

(a) Show that the new basis is orthonormal.
(b) Show that the Slater determinant constructed from the new spin-orbitals can be
written as the determinant of the product of the matrix

Yi(x)  Yox) - Yn(xy)

1 Yi(x2)  Yo(x2) - Yn(x2)
VN! : : :

Yi(xy)  Yo(xy) - Yn(Xy)

and the matrix U.
(c) Show that the Slater determinant built from 1 and that built from wli are equal
up to a complex constant of absolute value unity.

[C] In this problem, the program for calculating the electronic structure of the
hydrogen atom (see Section 3.2.2), is extended to the H;’ ion. The H;r ion contains
only one electron and the problem is therefore essentially the same as that of
Section 3.2.2, the difference being a second nucleus at a distance R from the first
one. The global structure of the program is therefore the same, the main difference
being that the basis now consists of eight functions: four functions centred around
each nucleus. Therefore, all matrices now have dimension 8.

It is important to note that for basis functions centred around one of the two
nuclei, the Coulomb attraction of the other nucleus is still important, as is
immediately clear from the expression of the Coulomb matrix A:

1 1
Ay = | &r (r)( + ) (r)
P / K r—Ral T IRyl )

where R4 and Rp denote the positions of the two nuclei. The integrals for
calculating the matrix elements of the various operators can be found in Section 4.8.
Write a program to determine the ground state of the H;‘ ion.

For a distance 1ap between the nuclei, the program should yield an energy
(without the Coulomb repulsion between the nuclei) equal to —1.442 455 a.u.
[C] In this problem, the program developed in the previous problem is extended
along the lines of the helium ground state calculation of Section 4.3.2 in order to
calculate the electronic structure of the hydrogen molecule. This means that a
second electron is added to the ionic hydrogen system and we must solve the Hartree
equation for a finite basis, Eq. (4.14), self-consistently analogous to the helium
calculation.
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The matrix to be diagonalised is given by

Fpq = hpg + Z CrCsQprgs
with |
Oprgs = (priglgs) = /d3rl d3”2 ¢p(rl)¢r(r2)E¢q(r])¢s(r2)~

As we are dealing with two electrons only, we do not have to sum over the different
orbitals k.

In Problem 4.8 you have already programmed the expressions for the matrix
elements £, so these pose no problems. The two-electron matrix elements O, are
rather complicated; they are given in Section 4.8. The resulting expressions can be
written in the form:

| AB
(Xpxrlglxgxs) =2 mqussrfb(t).

Here, t is defined as

P (ap + ag)(ar + ay)
(ap + g + oy + ay)
2R, + a4R,
op t+ oy
o R, + R,

RB = —7
o + oy

IR — Rp|%;

A =

and A and B as
A=ap+ay
B = o, + «5.

Spq is the overlap matrix.

You can now use these matrix elements in a program which has the same structure
as that of the helium atom.

Check: for a distance 1 a.u. between the atoms, one finds for the ground state
vector C:

(0.0925615486,0.165180 118, 0.120 122 665, 0.021 154 5657,

0.0925615486,0.165 180 118, 0.120 122 665, 0.021 154 565 7)

and an energy —1.078 547 61 (nuclear repulsion +1 included!).
In a restricted Hartree—Fock (RHF) calculation using a finite basis x,(r), the kinetic
and Coulomb integrals must be calculated. We can gain speed by using the
symmetry of these matrices, for example

(XpIV21Xq) = (Xgl V21 Xp)-

We do not assume other symmetries to be present in the system.
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(a) Suppose the basis contains M basis functions, at least how many of these matrix
elements must be calculated?
(b) How many two-electron matrix elements

(priglgs)

must be calculated?

Now suppose that the molecule for which we are performing the calculation
consists of three identical atoms, located on an equilateral triangle:

On every atom, we have M basis functions which we denote by Xl‘;‘ (r) etc.,
p=1,...,M. The basis functions on the different atoms have the same form:

X)(X) = xp(r — Ry),
Xp(r) = xp(r — Rp)

and similarly for C.

A C

(c) How many different kinetic and Coulomb matrix elements must be calculated in
this case?

(d) How many different two-electron matrix elements must be calculated?

(e) Suppose now that M is very large. What is then the gain in speed when using all
symmetries of the matrix elements instead of using no symmetry at all?

4.11 Suppose a Hartree—Fock calculation is carried out for a linear chain of K identical
atoms and N electrons, where K is a large number. The distance between two
successive atoms is a. For each atom, the same set of M basis functions is used. We
assume that the overlap between two wave functions centred around two atoms at a
distance larger than pa (p is some integer) vanishes.

(a) How many elements of the Hamilton matrix are nonzero (for large K)?
(b) How many nonzero two-electron matrix elements (pr|g|gs) do we have (for
large K)?
4.12 [C] In this problem, we modify the hydrogen calculation as carried out in
Problem 4.9 to a Hartree—Fock calculation — remember that in the previous version
we solved the Hartree equation and not the Hartree—Fock equation. Furthermore, we
consider exploiting the symmetry in order to speed up the calculation. As we have
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mentioned in Section 4.3.1, the Hartree approach is good enough for the ground
state of a two-electron system because the two electrons are described by the same
orbital: antisymmetry is taken into account via the spins which are opposite. The
present program should therefore yield the same result as the previous one but have
the structure of the programs dealing with more electrons or excited states.

The main difference from the previous version is that the array Q is replaced by O
in this program, defined in terms of the Qs as follows:

qurs = 2Qprqs - Qprsq~

(a) [C] First of all, you can exploit the symmetry in the calculation of Sy, and Ap,:
both matrices are symmetric, so you only need to calculate the upper or lower
triangular elements. Implement this in your program.

(b) [C] In order to calculate the matrix O, fast, you can restrict the indices to
p>gq,q>randif p=r, g > s, otherwise r > s, see Section 4.7. For each set
of p, g, r,s in these ranges, seven other Q-matrix elements having the same
values can then be found because of symmetry. These are: Qyps, Opsgrs Qgsprs
Qrpsq, Qsprq, qusp and qurp- .

(c) [C] Now use the matrix elements Q) instead of Q5 and check that you
obtain the same results as in the previous program.

(d) The fact that using Q instead of Q leads to the same results is quite surprising,
since it is a different Fock matrix we are diagonalising (you can check this by
printing out the Fock matrices of the old and the present program). Show that if
the vector C has converged, the results are equivalent (hint: by inspection of the
energy, rather than the Fock matrix).

(e) Exploit the full symmetry of the two-electron matrix elements by distinguishing
all possible cases for p, g, r, s being different or equal. Formulate the equations
analogous to Eq. (4.89) for all these cases (there are 14 of them).

() [C] Implement these equations into your program.
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5

Density functional theory

5.1 Introduction

In the previous chapter we saw how the many-electron problem can be treated in
the Hartree—Fock formalism in which the solution of the many-body Schrédinger
equation is written in the form of a Slater determinant. The resulting HF equations
depend on the occupied electron orbitals, which enter these equations in a nonlocal
way. The nonlocal potential of Hartree—Fock is difficult to apply in extended sys-
tems, and for this reason there have been relatively few applications to solids; see
however Ref. [1].

Most electronic structure calculations for solids are based on density functional
theory (DFT), which results from the work of Hohenberg, Kohn and Sham [2, 3].
This approach has also become popular for atoms and molecules. In the density
functional theory, the electronic orbitals are solutions to a Schrodinger equation
which depends on the electron density rather than on the individual electron orbitals.
However, the dependence of the one-particle Hamiltonian on this density is in
principle nonlocal. Often, this Hamiltonian is taken to depend on the local value
of the density only — this is the local density approximation (LDA). In the vast
majority of DFT electronic structure calculations for solids, this approximation is
adopted. It is, however, also applied to atomic and molecular systems [4].

In this chapter we describe the density functional method for electronic struc-
ture calculations. In the present section, the physical interpretation of the density
functional equations is first described and the formal derivations are given. In the
next section the local density approximation is considered. An application to the
ground state of the helium atom will be described in some detail in Section 5.5.
Finally, some results obtained using density functional theory will be discussed in
Section 5.5.3. For further reading, there are many reviews and books available; see
for example Refs. [4-7].

89
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5.1.1 Density functional theory: physical picture

In density functional theory, an effective independent-particle Hamiltonian is
arrived at, leading to the following Schrodinger equation for one-electron spin-
orbitals:

1 Zy N
|:—§V2 — ; |l’——Rn| + / d37‘ n(l‘ ) |l‘ _ r,l + ch (l‘):| 1ﬁk(r) = ngk(r)

(5.1)
The first three terms in the left hand side of this equation are exactly the same
as those of Hartree—Fock, Eq. (4.31), namely the kinetic energy, the electrostatic
interaction between the electrons and the nuclei, and the electrostatic energy of
the electron in the field generated by the total electron density n(r). The fourth
term contains the many-body effects, lumped together in an exchange-correlation
potential. The main result of density functional theory is that there exists a form
of this potential, depending only on the electron density n(r), that yields the exact
ground state energy and density. Unfortunately, this exact form is not known, but
there exist several approximations to it, as we shall see in Sections 5.2 and 5.3.
The dependence of the independent-particle Hamiltonian on the density only is in
striking contrast with Hartree—Fock theory, where the Hamiltonian depends on the
individual orbitals. The solutions of Eq. (5.1) must be self-consistent in the density,
which is given by

N
n(r) =Y [y, (5.2)
k=1

where the sum is over the N spin-orbitals ¥ having the lowest eigenvalues & in
(5.1), and N is the number of electrons in the system.
The total energy of the many-electron system is given by

N
E=) &- ! / & & n(r)—— n(t) + Exeln] — /d3r Vye[nl(r)n(r)
P 2 Ir —r/|

(5.3)
where the parameters ¢ are the eigenvalues occurring in Eq. (5.1) and Exc is
the exchange correlation energy. The exchange correlation potential Vxc[n] which
occurs in (5.1) is the functional derivative of this energy with respect to the density:

8
Vieln ]()_3 ()E clnl. (54)

Although the energy parameters g are not, strictly speaking, one-electron ener-
gies they are often treated as such for comparison with spectroscopy experiments
according to an extended version of Koopman’s theorem (see Problem 5.4). The
wave functions 1 also have no individual meaning but are used to construct the total
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charge density. This again contrasts with Hartree—Fock where the one-electron spin-
orbitals have a definite interpretation: they are the constituents of the many-electron
wave function.

Equations (5.1) and (5.2) are solved in an iterative self-consistency loop,
which is started by choosing an initial density n(r), constructing the Schrodinger
equation (5.1) from it, solving the latter and calculating the resulting density from
(5.2). Then a new Schrodinger equation is constructed and so on, until the density
does not change appreciably any more.

In both DFT and Hartree—Fock theory, the electrons move in a background com-
posed of the Hartree and external potentials. In addition to this, the exchange term
in Hartree—Fock accounts for the fact that electrons with parallel spin avoid each
other as a result of the exclusion principle (exchange hole). Opposite spin pairs do
not feel this interaction. In DFT, the exchange-correlation potential includes not
only exchange effects but also correlation effects due to the Coulomb repulsion
between the electrons (dynamic correlation effects). In HF, the exchange interac-
tion is treated exactly, but dynamic correlations are neglected. DFT is in principle
exact, but we do not know the exact form of the exchange correlation potential — both
exchange and dynamic correlation effects are in practice treated approximately.

It is essential that the exchange correlation energy is given in terms of the elec-
tron density only and contains no explicit dependence on the external potential (in
our case the potential due to the atomic nuclei). As we shall see in Section 5.2,
a local approximation for the exchange correlation energy occuring in the DFT
equation (5.1) is usually made, thereby simplifying the implementation significantly
with respect to Hartree—Fock with its complicated nonlocal exchange term.

*5.1.2 Density functional formalism and derivation of the Kohn—-Sham
equations

For a many-electron system, the Hamiltonian is given by

H = Z [_%Vl? + Vext(ri):| + % Z rlrjl (5.5)
’ 2
Vext 1s an external potential which, in the systems of interest to us, is the Coulomb
attraction by the static nuclei.

In Chapter 3 we have seen how the ground state can be found by varying the
energy-functional with respect to the wave function. Now consider carrying out this
variational procedure in two stages: first — for a given electron density — minimise
with respect to the wave functions consistent with this density, and then minimise
with respect to the density. Denoting by miny |, a minimisation with respect to the
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wave functions W which are consistent with the density n(r), we can write

E[n] = r\rpl}n(\lllHNJ) (5.6)

and it will be clear that the ground state of the many-electron Hamiltonian can be
found by minimising the functional E[n] with respect to the density, subject to the
constraint

f Arar) =N (5.7)

where N is the total number of electrons.

Now consider a separation of the Hamiltonian into the Hamiltonian Hp of the
homogeneous electron gas (with external potential Ve = 0), and the external
potential:

H = Hy + Vext(r)- (5-8)

In this case we can write E[n] as
Eln] = nq}}ﬂ [(WIHOI‘I’) + / &*r Vext(r)n(r)j| . (5.9)
n

If we minimise the term in square brackets for a given density n(r), the second term
is a constant so that we do not have to include it in the minimisation:

EMkngmmwmwn+/&r%mnmm (5.10)

Writing
Fln] = min [{¥|Ho[¥)] (5.11)

|n

we see that E[n] can be written as
E[n] = Fln] + / d*r Ve (r)n(r) (5.12)

and F[n] obviously does not depend on the external potential. We shall now use
these general statements to treat our problem of interacting electrons in an external
potential. Summarising the results obtained so far, we see that:

e The ground state density can be obtained by minimising the
energy-functional (5.6).

« If we split the Hamiltonian H into a homogeneous one, Hy, and the external
potential, the energy-functional can be split into a part F[n], which is defined in
(5.11) and which is independent of the external potential, and the functional
J @r Ve (0)n(r).

The problem with treating the many-electron system lies in the electron—electron
interaction. In fact, for both interacting and noninteracting electron systems the form
of the functional E[n] is unknown, but the ground state energy for noninteracting
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electrons can be solved for trivially, and we can use this to tackle the problem of
interacting electrons. In the noninteracting case, E[n] has a kinetic contribution and
a contribution from the external potential Vex:

E[n] = T[n] + f d3r n(r) Ve (). (5.13)

Variation of E with respect to the density leads to the following equation:
8T[n]
én(r)

+ Vex(r) = An(r), (5.14)

where X is the Lagrange parameter associated with the restriction of the density to
yield the correct total number of electrons, N. The form of T'[n] is unknown, but
we know that the ground state of the system can be written as a Slater determinant
with spin-orbitals satisfying the single-particle Schrodinger equation:

[3V2 4 Ve | 9 (0) = o). (5.15)

The ground state density is then given by

N
n(r) =Y [yi()? (5.16)
k=1

where the spin-orbitals 1 are supposed to be normalised so that the density satisfies
the correct normalisation to the number of particles N. Using the above analysis,
and taking T'[n] for the functional F[n], we immediately see that the kinetic energy-
functional T is independent of the potential Vex;. Summarising, we have:

o The energy-functional of a noninteracting electron gas can be split into a kinetic
functional T'[n], and a functional representing the interaction with the external
potential, f d3r Vexe(r)n(r). The kinetic functional does not depend on the
external potential.

o The exact solution of the noninteracting electron gas is given in terms of the
eigenfunction solutions of the independent-particle Hamiltonian; see Eq. (5.15).

The energy-functional for a many-electron system with electronic interactions
included can be written in the form

Eln] = T{n] + / &1 1) Vex (1)

1 3 3./ / 1
+§/d r /d ¥ n(r) n(r) + Exc[n], (5.17)

Ir —r’|

where the last term, the exchange correlation energy, contains, by definition, all
the contributions not taken into account by the first three terms which represent the
kinetic energy-functional of the noninteracting electron gas, the external and the
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Hartree energy respectively. It is important to note that we have made no approx-
imations so far but moved all the unknown correlations into Ex., which depends on
the density n rather than on the explicit form of the wave function because all the
other terms in (5.17) depend on the density. For the interacting electron gas it is not
clear that the kinetic energy and the electron—electron interaction can be written as
a sum of two terms depending on the density only; therefore the kinetic functional
for noninteracting electrons, which depends only on the density, has been split off
and the remaining part of the kinetic energy has been moved into Ex.. Varying this
equation with respect to the density, we obtain

STl SE[n] s
snr) T on(r) +/d ron(r)

This equation has the same form as (5.14), the only difference being the potential
replaced by a more complicated one, the ‘effective potential’:

F Vet (1) = An(r). (5.18)
r — 1|

CSEXC[n] 37 /
Vegr(r) = V(r) + +/d r n(') . (5.19)
én(r) r —1r/|
The analogue of Eq. (5.15) now becomes
1
[—EVZ + Veff(r)] Y (r) = ey (r). (5.20)

Comparing Egs. (5.20) and (5.17), we see that adding the eigenvalues & of the
occupied states does not lead to the total energy as the Hartree energy is overestim-
ated by a factor of 2, and there is a further difference in the exchange correlation
term, so that we have altogether:

E=) &- %/d% &’ n(r) . _1 rlln(r/) + Exe[n] — / &*r Vie[n(@)In(r).

(5.21)
where Vi, is defined in (5.4). The density functional procedure is now given by
Egs. (5.16), (5.19), (5.20) and (5.21). These equations were first derived by Kohn
and Sham [3].

We have already mentioned that the exact form of the exchange correlation
potential is not known. This energy is a functional of the density, but there may
be an additional explicit dependence on the external potential. Such a dependence
would imply that each physical system has its own particular exchange correlation
energy-functional. That the exchange correlation potential does not have such a
dependence follows immediately from the argument given at the beginning of this
section (Eqs. (5.8-5.12)) by separating the external potential off the Hamiltonian
and taking the remaining contributions to the energy-functional for F'[x]. This shows
that the exact exchange correlation potential, which should work for all materials,
is simply a functional of the density. In practice we have to use approximations
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for Ey., as the exact form of this functional is unknown, and our approximation
might be better for some materials than for others. The final conclusion can then
be formulated as follows:

o If we split the energy-functional according to (5.17), the term Ex.[n] into which
we have moved all the terms we do not have under control, is independent of the
external potential.

o The minimisation problem of the energy-functional can be carried out using the
Kohn-Sham equations (5.20) together with the constraint (5.16).

5.2 The local density approximation

The difference between the Hartree—Fock and density functional approximation
is the replacement of the HF exchange term by the exchange correlation energy
E,. which is a functional of the density. The exchange correlation potential is a
functional derivative of the exchange correlation energy with respect to the local
density and for a homogeneous electron gas this will depend on the value of the
electron density. For a nonhomogeneous system, the value of the exchange correl-
ation potential at the point r depends not only on the value of the density at r but
also on its variation close to r, and it can therefore be written as an expansion in
the gradients to arbitrary order of the density:

Vielnl(r) = Vieln(r), Va(r), V(Vn(r)),...]. (5.22)

Apart from the fact that the exact form of the energy-functional is unknown, inclu-
sion of density gradients makes the solution of the DFT equations rather difficult,
and usually the Ansarz is made that the exchange correlation energy leads to an
exchange correlation potential depending on the value of the density in r only and
not on its gradients — this is the local density approximation (LDA):

Exc = f 3 exe[n(r)]n(r) (5.23)

where ex.[n] is the exchange correlation energy per particle of an homogeneous
electron gas at density n. The local density approximation is exact for an homo-
geneous electron gas, so it works well for systems in which the electron density
does not vary too rapidly. We shall briefly discuss the various forms used for the
exchange correlation energy density in the local density approximation, exc[n(r)],
and refer to the literature for more details [4, 8, 9].

The exchange effects (denoted by the subscript ‘x’) are usually included in a term
based on calculations for the homogeneous electron gas [10] giving the following
form for the exchange energy in density functional theory:

ex[n(r)] = Const. x n'/3(r) (5.24)



96 Density functional theory

which we have already encountered at the end of Section 4.5.1. The value for the
constant is found as —(3/4)(3/m)!/3.

For open-shell systems the spin-up and -down densities n4 and n_ are usu-
ally taken into account as two independent densities in the exchange correlation
energy according to a natural extension of the DFT formalism [4]. In local dens-
ity approximation (now called local spin density approximation), the exchange is
given as

Exlns,n_] = —Const. f &Er @) +n* @), (5.25)
with Const. = (3/2)(3 /471)1/ 3 in accordance with the closed-shell prefactor in
(5.24), as can be checked by putting ny = n_ = n/2. As is to be expected for
an exchange coupling, this expression contains interactions between parallel spin
pairs only.

In addition to exchange, there is a contribution from the dynamic correlation
effects (due to the Coulomb interaction between the electrons) present in the
exchange correlation potential, and several local density parametrisations of this
interaction have been proposed. A successful one is a parametrised version of the
correlation energy obtained in quantum Monte Carlo simulations of the homogen-
eous electron gas at different densities [11, 9]. Other parametrisations have been
presented by von Barth and Hedin [12], and Gunnarson and Lundqvist [13]. These
dynamic correlations represent couplings between both parallel and opposite spin
pairs.

In calculations of the electronic structure, the DFT-LDA approach has turned
out very successfully. In some systems, however, it leads to noticeable deviations
or even failures — for examples some stable negative ions such as H™, O™ and
F~ are predicted to be unstable. Many improvements on LDA have therefore been
proposed. One of these consists of including gradients of the density in the exchange
correlation functional (we will come back to this in the second part of the next
section), whose form is motivated by calculations taking many-electron effects into
account [8].

Another approach focuses on the self-interaction present in the Hartree energy
which contains Coulomb couplings between an electron and its own charge distribu-
tion. This overestimation of the electron—electron interaction should be cancelled by
the exchange correlation term, which — in LDA — succeeds only partially (although
in the hydrogen atom for example, 95% of the self-interaction is cancelled by
the exchange correlation). It is possible to add these corrections afterward to the
exchange correlation potential [9], but this introduces a dependence of the exchange
correlation on the individual orbitals, v, instead of a dependence on the density
only. Both the gradient-correction and self-interaction methods lead to important
improvements in calculations of physical properties [4].



5.3 Exchange and correlation: a closer look 97

5.3 Exchange and correlation: a closer look
5.3.1 The adiabatic theorem and the normalisation conditions

In this section we consider exchange and correlation in more detail. We shall take
into account the spin as well as the spatial coordinates. All spin-space coordinates
(r1,s1;...rN,sy) are denoted by X. Let us first consider the exact energy-functional
(of the spin-orbitals):

* 1 2
Eexact = \IJAS (X) _5 Z V,‘ + Vext + Vee \I’AS (X)dx- (526)

Here, Was(X) is a wave function which is antisymmetric in the x; = (r;, s;), but
not necessarily a Slater determinant. We compare the exact energy with the Kohn—
Sham functional (which should also be exact for the correct exchange-correlation
functional):

1
Egs=—Y_ f YE0Z ViV + ) f n(r) Vext (r)dx
k

1 1 N A3, 13,7
+ > n(r)|r —r’|n(r)d rd’r’ + Exc[n]. (5.27)

The terms related to Ve (r) are the same in both cases: the exchange and correlation
term Eyx. makes up for the difference in the kinetic energies and the difference
between the exact Coulomb interaction and the Hartree approximation in the Kohn—
Sham scheme.

We now try to connect the exact form to the Kohn—Sham picture in order to
pinpoint this difference better. This is done in the adiabatic connection procedure,
which works as follows. We first introduce a tunable electron—electron interaction

A
Vea = Z - = AV, (5.28)
Ir; — I‘j|

where the subscript C stands for Coulomb and where V. is identified with V¢ 3—1.
Just as we did in Section 5.1.2, we split the many-body Hamiltonian into that of
an homogeneous electron gas with interaction V; and the external potential:

Hy = Hop+ Y Veu(r) = (T + Ves) + Y Vext(ri), (5.29)

l 1

and note that for fixed densities n(r), the last term will always give the same con-
tribution to the energy. Indeed, we minimise this Hamiltonian for such a fixed
density:
Ey[n] = min(¥|Ho¥) + f Vex (0n(r)d*r = Fy[n] + / Vex (0n(0)d’r,
(5.30)
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where we have used the definition

Fyln] = %H(‘I’IHO,AI‘P) (5.31)

The minimisation is carried out on the set of wave functions compatible with the
given densities n(r).

We now need a theorem that plays an important role in the quantum molecular
dynamics method (see Chapter 9): the Hellmann—Feynman theorem. Here we shall
prove this theorem for the simple case in which we have a Hamiltonian depending
on a single parameter A. The theorem tells us how the energy eigenvalues of a
Hamiltonian H,, depending on a parameter A, vary with A. Differentiating the
Schrodinger equation

Hy |¥.) = Exln) (5.32)
with respect to A we obtain (the prime indicates derivative with respect to A):
H 1¥0) + Hull¥3) = E3 1Y) + Ealvr). (5.33)

Taking the inner product from the left with (i, | and using the Hermitian conjugate

of (5.32), we see that
dE,  (YaldH, /A |s)

da (Wil

We can write the derivative of F, from the Hellmann—Feynman theorem, by

realising that, since |1, ) is the variational ground state of F, it must be the lowest
eigenstate of Hy . We then obtain

dF;

dr

From this, and from the fact that for A = 0 we have trivial, noninteracting electron

gas, we have

(5.34)

= (WrlVe[Wh). (5.35)

1
Fr1ln] = Tisln] + /0 (W | Ve W3 ). (5.36)

We now find the exchange correlation potential as the difference between the
interacting and noninteracting electron gas including the Hartree energy Ey:
1

n(') &rd*r’
v —r|

1
Exe = Frzilnl — Tgsln] = > / n(r)

1
:/o (Ve Wr)dA — ER. (5.37)

The main point of the derivation is that in (5.36), which holds for the interacting gas,
the kinetic energy is that of the noninteracting gas; therefore, we find the exchange
correlation correction only in terms of the Coulomb interaction. For A = 0, the XC
correction term is nonzero as the Hartree energy does not take the antisymmetry of
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the full many-body wave function into account: it is the exchange-only part of the
correction.

There is another fruitful way of looking at the exchange correlation term, which
is related to the discussion in Section 5.1.2. There we considered the probability
density for finding the particles 1 and 2 with coordinates x and x’ respectively:

P(x,x') = f |W(x,x',x3, ..., xn) [ 2dxs . . . dxy. (5.38)

We now use this definition for a general wave function (not necessarily a Slater
determinant).
The single-particle density is given as

n(x) :N/ W (x,x2, . ..,x5)|7dxs . .. dxy. (5.39)
Integrating the single-particle density gives the number of particles:
/n(x)dx = N. (5.40)
From the definition of n(x) we immediately see that
N/P(x,x/)dx/ = n(x). (5.41)

The reason for introducing these quantities is that they give insight in the exchange
and correlation energies. To see this, consider the Coulomb energy:

NN —1) ,
E. = T/P(x,x)

(the prefactor counts the number of particle pairs). We now define the exchange
correlation hole, nyc(x,x’), through

dx dx’ (5.42)

Ir —r'|

NN — DP(x,x') = n(x)n(x') + n(x)ne(x, x). (5.43)

The exchange correlation hole indicates how the actual distribution of a second
electron, given a first electron at x, deviates from the average density. Then we can
write

> dxdx’. (5.44)

Note that the second term can be identified with the exchange correlation energy.
The most important consequence of this is that we can derive some properties

1
E.=Eg+ = / n(x)nxe(x, x/)
Ir —r/|

of the exchange correlation hole, which any exchange correlation energy should
satisfy. The first of these properties follows from the normalisation of P:

/P(x,x’) dedx’ =1 (5.45)
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which follows directly from the normalisation of the wave function. Furthermore,
/n(x)dx =N (5.46)

for the same reason. Integrating Eq. (5.43) now over dx’ (this actually denotes an
integration over r’ and a sum over s’), we obtain the result

(N — Dn(x) = Nn(x) + n(x) / nxe (x, x7) dx’; (5.47)

in other words,
fnxc(x,x’)dx’ = —1. (5.48)

Realising that the second term in Eq. (5.44) is the exchange correlation correction to
the Coulomb energy, we see that this correction can be described in terms of a charge
distribution which carries a positive unit charge: this is the exchange correlation
hole nyc.

Now let us return to the Hartree—Fock approximation. There we considered a
Slater determinant containing all exchange effects. If we apply the above analysis
to a Slater determinant we obtain an exchange hole (Coulomb correlations are
absent in this case) which integrates up to a charge —1 (that is, a positive hole),
irrespective of the strength X of the Coulomb interaction. Therefore we conclude
that the exchange hole adds up to —1 and, supposing that the exchange correlation
hole is the sum of an exchange and a correlation contribution, the correlation hole
must add up to 0.

Let us summarise the results obtained so far. The first is that we can remove the
exchange and correlation contribution to the kinetic energy from the description
by applying the adiabatic connection formula. The price we have to pay is that
we have to integrate the Coulombic term due to exchange and correlation over the
interaction strength A. The second result is that this contribution can be described
in terms of an exchange and a correlation hole, the first of which integrates up to —1
and the second integrates to 0.

5.3.2 The generalised gradient approximation

We can now understand the success of LDA: the exchange and correlation holes are
taken from very accurate quantum Monte Carlo results for the homogeneous elec-
tron gas and therefore they satisfy the two normalisation conditions for exchange
and correlation just described.

We can now also describe how a gradient expansion can be constructed: we must
take into account isotropy conditions and then make sure that the exchange and the
correlation hole satisfy their respective normalisation conditions. This scheme has
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been carried out by several groups, and some well known functionals are those of
Perdew and Wang of 1986 [14, 15] and 1991 [16] (respectively PW86 and PW91),
and of Becke [17], Lee, Yang and Parr [ 18] (LYP) and Perdew, Burke and Enzerhof
[19, 20]. These exchange correlation functionals go by the name of generalised
gradient approximations (GGAs).

In general, GGA improves on LDA for the quantities which are already success-
fully treated in LDA: total energies and hence binding energies, bond lengths and
angles. Ionisation energies based on Kohn—Sham energy eigenvalues are approxim-
ately the same as for LDA. In general, LDA tends to over-estimate the correlation
energy and underestimates the exchange energy; these are remedied to some extent
in GGA, but as the two corrections are opposite, the net effect is not too spectacular.
That does not mean that the improvement is not important: the GGA gives a more
accurate description of the many-body electron system than LDA.

One major deficiency which is shared by GGA and LDA is the fact that the
exchange correlation correction does not cancel the self-interaction present in the
Hartree energy. This in particular affects the interpretation of the highest Kohn
Sham energy as the ionisation energy of the system (see also Section 5.4.1).

5.3.3 Exact exchange

The problem with the known exchange functionals which are given as explicit
functions of the density is the presence of self-interaction terms, a feature that was
absent in the Hartree—Fock theory. It is possible to include the HF exchange term
in the exchange correlation functional. This is justified in the so-called optimized
potential method [21,22] which leads to a Kohn—Sham picture where the exchange
correlation functional is allowed to depend explicitly on the orbitals rather than on
the density. The advantage of having no self-interaction left is counteracted by a
less favourable scaling behaviour: just as in the HF theory, we must calculate and
sum over two-electron integrals which makes this method rather time-consuming.

Finally, hybrid functionals combine exact exchange with traditional functionals.

5.4 Beyond DFT: one- and two-particle excitations
5.4.1 One-particle theories: ionisation and electron addition energies

The DFT is designed to yield correct ground state energies for a many-body system.
It is, however, not justifiable to interpret Kohn—Sham energies as energy levels
which can be detected in a spectroscopy experiment. An exception must be made
for the highest occupied level, which gives the correct ionisation potential in exact
DFT. To see that this is indeed the case, note that if one of the electrons (we take
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this to be electron number N) of a neutral system is moved very far away from all
the nuclei in the system, the exact ground state wave function for the N electrons
can be written as

YN, .. o) = Y1 (X, .. Iv_)e(Ty), (5.49)

where this form is justified by the notion that at the large distance between particle
N and its partners, any correlation between them has disappeared. Note that
YN—_1(r1,...,ry—1) is the normalised ground state wave function of the N — 1
particles close to the nuclei, as the perturbation due to particle N can be neglected.
The Hamiltonian for the N-particle system can be written as [23]

2 N—-1

HN) = HOV = 1) + 52 4 Ve (rn) + le

j=

_, (5.50)
lrj —ry]

where H(N — 1) is the (N — 1)-particle Hamiltonian. Writing up the Schrodinger
equation for the N electrons, using the wave function (5.49) and using the fact that
the first term on the right hand side of that equation represents the (N — 1)-particle
ground state, we obtain an equation for ¢:

2 N—1
p 1
Ey+ 50 +vext<rN)+<x/fN1 D e ¢N1> (ry) = EJ o(ry).
=t

(5.51)
The asymptotic (large r) behaviour of this equation is exactly the same as that of the
Kohn—Sham equation (which also describes an electron far away from a localised
charge distribution with net charge +1), and this can only be the case when the
‘energy’ eigenvalue of the Kohn—Sham equation is the same as EIE,}S — Egil [24].
This is a very interesting result when it is combined with Janak’s theorem [25]
which says that the highest occupied orbital energy gives the chemical potential (see
Problem 5.4). In DFT, we can fill the orbitals partially by calculating the density
with a fractional filling factor f;:

n(r) =Y filv @l (5.52)
J

This shows that we can really take an infinitesimal differential of the total energy
(by varying fy) with respect to the charge in the highest occupied orbital, which
is the proper definition of the chemical potential. From the fact that the chemical
potential and the ionisation energy are both given as the highest occupied Kohn—
Sham eigenvalue, we see that the discrete derivative of the total energy with respect
to the charge in the highest occupied level must be equal to the continuous derivative.

Perdew et al. [26] have argued that the derivative is constant for any fractional
occupation of the highest occupied level, but their reasoning can be criticised



5.4 Beyond DFT: one- and two-particle excitations 103

because they impose this property in their form of the energy-functional (based
on a density operator form), which need not describe the pure-state functional of
DFT [27].

The property we have just derived — the Kohn—Sham energy of the highest occu-
pied level gives us the ionisation energy —is satisfied very well for extended systems,
but poorly for molecules, where the highest occupied Kohn—Sham energy (called
the highest occupied molecular orbital, or HOMO) is generally found a few eV
above the experimental value. Hartree—Fock usually gives a much better value. The
reason why DFT fails so badly in practice lies in the poor asymptotic behaviour of
the available exchange-correlation potentials, which, among other imperfections,
do not cancel the self-interaction and hence give an incorrect asymptotic form of
the Kohn—Sham potential. In our derivation, this asymptotic behaviour played a
crucial role. The fact that we do not have the exact exchange correlation functional
at our disposal therefore is a serious handicap in describing the spectra of atoms
and molecules.

There is a way around this: given the fact that DFT is very good at calculating
ground state energies, we can perform two calculations: one for N electrons, and
one for N — 1 (for the electron addition energies, the second calculation would
be performed for N 4 1 electrons). The difference in the total energies then gives
the ionisation (or electron addition) energy. Instead of these two energies, it is also
possible to do one calculation at half filling of the highest occupied (or lowest
unoccupied) level. The Kohn—Sham energy of that level is the derivative of the total
energy with respect to the charge, so that we can predict the ionisation energy from

aEtot]
N Iny12

A similar procedure gives the electron addition energy. This method is known as
delta-SCF.

= eNS(N +1/2). (5.53)

ESSWN) —ESS(N—1) = [

5.4.2 General theories for excitation energies

Looking at what causes a system which is in the ground state to go to an excited
state, we conclude that there should always be some time-dependent perturbation
to the Hamiltonian which is responsible for this. Therefore, we should consider the
response of the system to an external, time-dependent perturbation. The standard
approach is to consider the response to a monochromatic perturbation with fre-
quence w. However, if the response of the system to a perturbation is faster than the
typical period of the perturbation, we may consider a time-independent approach.

An electron which has been excited to a higher energy level will return to its
ground state orbital after some time. This finite lifetime gives rise to a finite width of
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the energy spectrum, according to the time—energy uncertainty relation. Therefore,
we can no longer speak of a discrete energy level, but we can still find a fingerprint
of the spectrum in quantities such as the macroscopic dielectric function, which is
the long-wavelength limit of the microscopic function e(r, r, ). This will exhibit
peaks as a function of w whose centres can be viewed as energy levels, and the
widths as lifetimes.

Experimentally, excited states are studied by using spectroscopy techniques. In
direct photo-emission, an incident photon excites an electron to sufficiently high
energy that it can leave the system (ionisation). In inverse photo-emission we send
an electron into the material to occupy an unoccupied state, causing emission of a
photon whose energy is detected (electron addition). In absorption spectroscopy,
the electron or photon that is sent into the system is also detected when it leaves
the system. It may meanwhile have changed its energy by interaction with another
electron in the material which is excited to a higher state.

The first two processes, ionisation and electron addition, are called one-particle
processes; the third is a rwo-particle process. The two-particle character arises
because, when an electron is excited in a system, it leaves a (positive) hole behind. If
the electron remains in the system, it interacts with the hole, and in particular it may
form an exciton: a bound state of the particle—hole system. We shall briefly describe
the analysis for one-particle processes, and then review two-particle methods.

In the previous subsection, the problem of finding the ionisation energy was
addressed. In general, when performing spectroscopy experiments, levels other
than the highest one may be excited. Of course, one could try to use a generalised
delta-SCF procedure for these, but this is difficult because for a band structure
calculation, we would need many calculations as each k-vector in the Brillouin
zone has its own particular excitation. Another problem is that for a band state,
DFT differs essentially from Hartree—Fock, which allows for calculating excited
states: the HF orbital energies can be interpreted as excitation energies accord-
ing to Koopman’s theorem (which only holds for the highest band in DFT, see
above). This theorem is based on the assumption that the orbitals do not relax
when the configuration changes by emptying full, or filling empty levels. This
approximation fails miserably in solids, for example in diamond, where the band
gap is in HF predicted to be 15eV, more than twice the experimental gap of
about 7 eV.

What is missing from the description of a ground state system, is the fact that an
electron added to the system does not feel the pure Coulomb interaction from the
ground state charge distribution: the resident electrons will re-order in the presence
of the visiting electron, and tend to screen the effect of the Coulomb interaction. A
many-body theory for band structure takes these effects into account; HF and DFT
do not.
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Such a many-body theory was formulated by Hedin in 1965 [28], for reviews see
Refs. [29, 30]. We shall not go into the details of the many-body theory behind
this approach, but consider a particular, relatively simple form, the COHSEX
approximation in some detail (we shall explain the name COHSEX below). This
approximation can be understood quite well without going into the formal theory.

Suppose we put an extra unit charge into the system. This charge will occupy some
state with orbital wave function v (r). We could describe the interaction between
this electron and the resident electrons by Hartree—Fock terms, i.e. a Coulomb inter-
action and an exchange interaction. However, although exchange is treated correctly
(apart from neglecting screening effects, see below), the Coulomb interaction will
push the resident electrons away from the visitor and thereby lower the interaction
between visitor and residents.

Let us first neglect screening. The electrostatic energy is then given by

Egps(r) = / n(@ v, )y ) >d3rd3r, (5.54)

where the interaction v(r, r’) is the ‘bare” Coulomb interaction potential v(r,r’) =
1/|r — r’|. Screening can be viewed from two different standpoints. The first is
to consider the change An in charge distribution due to the presence of the new
electron. The second view is to take for the potential felt by this electron a screened
potential w(r) which falls off more rapidly than the bare potential. Obviously, the
two are connected.

For the correction to the energy due to the change An(r) in the charge distribution
we write:

AE = f An( (e, )|y () 2d3r d3r. (5.55)

However, this result is wrong, because the response An to the test charge is propor-
tional to that charge! Therefore, if we integrate the energy up over the extra charge
put into the system, we get a prefactor of 1/2:

AE = % f An(w(r, )|y () > drd’r. (5.56)

In order to get a handle on the screened potential w, we note that it is defined as
the potential measured at r’ given the fact that there is a test point charge at r. We
therefore may write:

w(r',r) = / s(r —r"ywa”, x)dr" + / An( [0y, r)d>r”
=v(r,r) + / An(" Ity vy &, (5.57)

Here, An(xr’|r) is the change in the charge density at r’ due to a unit test charge
placed at r. The induced charge density An(r) due to a charge distribution | (r)|?
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is given as the integral of the induced charge An(r”|r) over r, weighted by |y (r)|.
Putting these results back into Eq. (5.56) leads to the formal expression

AE = % / 3 —t)wir,r) — vy @Pdrdr.  (5.58)

If we take the functional derivative of this expression with respect to ¥ (r), we
obtain a term

Vi (r) = %/S(r — ) [w(r,r) — v(r, )] & ¥ (r) (5.59)

in the one-particle Schrodinger equation. Exchange is already treated correctly, so
in the exchange term, we can simply replace the bare Coulomb interaction by the
screened interaction. We see that the correction boils down to taking into account
the COulomb Hole and Screened EXchange — hence the name COHSEX.

Now there is still something missing: we do not know the screened interaction
potential w(r,r’). This can however be found in a so-called random phase approx-
imation (RPA) scheme, which is based on perturbation theory. It works as follows.
We place a test charge at position r. As we have seen above, this test charge gener-
ates a change An of the resident charge distribution, and the bare potential v(r, r’) is
replaced by the screened potential w(r, r’). The relation between the two is usually
formulated in terms of the dielectric constant. This is defined as:

v(r,r) = / e, x"yw(r,x’) d3r. (5.60)
We can therefore write for the screening correction
w(r,r') —v(r,r) = /[S(r/, r’) — e, r")w(r,v”)d>r’
= / An( v, ¥")dr, (5.61)

where An(r”|r) denotes a change of the density at r” due to a unit point charge
being placed at r.

Now we view the effect of this point charge at r as a perturbing potential w. The
lowest order correction to the occupied orbital j in stationary perturbation theory is
given by [31]

Ay = Y %ww’). (5.62)

k unocc.
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The total change in the density is therefore given by

An(r) =2 ) yr ) Ay

J occ.
oy / G EREGEE 56
m E; — Ex

where the prime with the sum indicates that the index j runs over occupied, and k
over unoccupied levels. Putting this back into the rightmost term of Eq. (5.61) and
using the equality between the second and third expression in this equation yields

s(t',r) — 5ty =2) / f ViV OV VD) 30 s 64
J.k

(Ej — E)|r — 1/

In this derivation we have assumed that the effects of the new electron on the resident
one can be completely described in terms of the Hartree term in the Hamiltonian.
This is known as the random phase approximation [32)].

Hybertsen and Louie have implemented the full GW approximation into an LDA
framework [33, 34], and obtained energy spectra with excellent agreement with
experiment. The static COHSEX approximation is only a first step in this procedure.
It is possible to replace the relation (5.60) by a local one:

v(r,r') = wr,r)e(r, 1), (5.65)

which is sometimes done for convenience. The detailed structure overlooked in this
approximation is denoted as local field effects. From the work of Hybertsen and
Louie it is clear that local field effects have a major impact on the energy spectra.

We see that a particle which is added to the system will influence the behaviour of
the other particles. If we could switch off the interaction between the particles, the
newly added particles would occupy sharp energy levels, and the new particle on its
own would completely determine the new level. Landau [35] analysed the many-
body behaviour of liquid helium-3 and argued that if we had a knob with which we
could tune the interactions, the spectrum would change in a continuous way. That
is, for no interaction, the spectrum consists of a series of delta-functions, which
start to broaden and shift when the interactions are switched on. The corresponding
excitations involve, as we have seen, the presence of a new particle (or, in the
case of two-particle problems, a particle occupying a new state), accompanied by a
slight change of the orbitals of the other particles. This excitation is called a quasi-
particle. Quasi-particle excitations can be analysed in terms of many-body Green’s
functions [36].
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5.4.3 Two-particle effects

A two-particle description within the many-body theory of Green’s functions can
be formulated: it is known as the Bethe—Salpeter theory. Implementation of this is
possible but generally demanding — for a review see Ref. [37]. Another approach
which potentially describes any type of excitation of a many-body system in the
presence of a time-dependent field is time-dependent density functional theory
(TDDFT) [38—40]. The formalism of this theory is analogous to that of plain DFT,
and the analogue of the DFT Hohenberg—Kohn theorem in TDDFT is the Runge—
Gross theorem. This reads:

Two densities p(r,t) and p’(r,7) evolving from a common initial state ¥ (R,t =

0) [R = (r1,r2,...,ry)] under the influence of two external potentials v(r, ¢) and

V/(r, 1) are always different provided these potentials differ by more than a purely

time-dependent function
V(r, 1) # v(r, 1) + c(). (5.66)

The presence of the uniform function c(#) in this last condition is related to the
‘gauge invariance’: multiplying v (r, ¢) by a factor exp[—iC(¢) /h] solves the time-
dependent Schrodinger equation with a potential shifted by c(r) = C(¢). This is
easily verified.

A time-dependent Kohn—Sham formulation can be derived from this theorem.
This formulation gives the time-evolution of single-particle orbitals which generate
the same density as the full many-body problem. These orbitals evolve according
to a time-dependent Schrédinger equation:

Y (r, 1) 1
i = —EV + Vext(r, 1) + Vu(r, 1) + Ve (r,t) | Y (x,Hfork = 1,...,N.
(5.67)
The density is now time-dependent: it is as usual given by
N
n(e,t) =Y [0l (5.68)

k=1
The Hartree and exchange-correlation potentials Vi and Vi, are defined in terms
of the time-dependent density using the same expressions as in static DFT. Note,
however, that an exchange-correlation potential that works in static DFT is not
guaranteed to work in TDDFT. In fact this is the greatest weakness of TDDFT
at this moment: it is as yet unclear which are the reliable approximations to this
potential.

Technically, the solution of the time-dependent Kohn—Sham equations can be
carried out in a Crank—Nicholson or in a split-operator scheme (see Appendix 7.2).
The application of these schemes is however slightly tricky [41]. The reason is that
in a proper Crank—Nicholson scheme, we use the Hamiltonian operator evaluated
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at t + h/2, where h is the time step in going from ¢ to ¢ + h. As the Hamiltonian
depends on the solutions ¥ (£4h/2) which are not yet known, we must first estimate
Y (¢t + h) using H evaluated at ¢ (h = 1; do not confuse with the time step h):

~ 1 +1ihH 2
Tty = LIHOZ, 4. (5.69)

1 —ihH(t)/2
Using the &k (t + h), we evaluate H(t + h). Then we again perform a Crank—
Nicholson step where we use the mean of H(¢) and H (t+ h).
In the split-operator scheme, the solution to the fact that the orbitals are unknown
at ¢t + h/2 can be solved in an elegant way [41]. The scheme brings us from ¢ to
t + h by applying the following operation:

Y (t + h) = exp(—iT/2) exp[—iV (¢t + h/2)] exp(—iT /2) Y (1), (5.70)

where T is the kinetic, and V the potential energy. In order to perform this step, we
need to Fourier-transform back and forth between the momentum and direct-space
representations where the operators occurring in the exponentials are diagonal:

x exp[—iT /2) x exp[—iV (t+h/2)]

YLD, 1) > Y (r.0)

ZEEE 1) S 90 = Y+ ).
(5.71)

Ye(r.1) 5 Y (p. 1)

Yl (1) —> 3" (p.0)

The nice property of applying the second operator (x exp[—iV (¢ + h/2)]) is that
it does not change the density, as it represents just a phase factor in real space.
Therefore we can just take the orbitals ¥, to evaluate the potential in this procedure.
This implies that we already have vy at the half-integer steps at our disposal.
Furthermore, we can glue the last stage of this procedure onto the first stage of the
next step, at the expense of not having the v at our disposal at the integer time
steps.

A particularly nice sample application of TDDFT is the description of higher
harmonic generation in helium [42], which describes the generation of higher
harmonics in the response to monochromatic light of high intensity [43]. Gen-
erally, TDDFT is a very useful tool for calculating dynamic response functions
(frequency-dependent polarisabilities) [44].

5.5 A density functional program for the helium atom

In this section we describe the construction of a program for the calculation of the
ground state of the helium atom within the local density approximation. As the
two electrons occupy the 1s-orbital, the density and hence the Hartree potential are
radially symmetric and we exploit this symmetry in spatial integrations. Instead
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of using basis functions, we solve the radial Schrodinger equation directly, just
as we have done in the first chapter for calculating scattering cross sections. The
program is set up in three steps. First, we use a simple integration algorithm and
combine this with an interpolation routine in order to find the stationary states of
hydrogen-like atoms. Second, a routine for obtaining the Hartree potential from the
(radial) electronic density is added. At this point the results should compare with
those obtained in the previous chapter using Gaussian basis functions. Finally, the
exchange correlation potential is added and we have a fully self-consistent local
density program.

5.5.1 Solving the radial equation

To solve the radial Schrédinger equation you can use the Numerov algorithm which
is discussed in Appendix 7.1 and which has been used for the scattering program in
Chapter 2. However, we also have to solve other differential equations and integ-
rals, and in order to avoid complications we shall not require the O (h°) accuracy
of Numerov’s algorithm — hence you can also use the simpler Verlet—Stoermer
algorithm of Appendix A7.1. It is of course possible and recommended to use
library routines throughout the program. For integrating the radial Schrodinger
equation, a nonuniform grid is often used which is dense near the nucleus where
the Coulomb potential diverges (see Problem 5.1). For the hydrogen atom, the radial
equation for [ = 0 reads (in atomic units)

7]
——=V* — —u(r) = Eu(r) (5.72)
2 r

where u(r) is given as rR(r), R(r) being the radial wave function. For the hydrogen
atom we know that the solution for the ground state is given by E = —0.5 a.u. and
u(r) o« re”", and this enables us to test our programs. The energy eigenvalues can
be found by integrating the radial Schrédinger equation from some large radius rmax
inward to r = 0 and checking whether the solution vanishes there. The procedure
is analogous to that described in Problem A4. You should first check whether for
E = —0.5a.u. the radial solution does indeed vanish at » = 0. Note that for the
regular solutions [#(0) = 0] we are looking for, the divergence of the potential near
the origin causes no problems in the integration routine as long as it is not evaluated
atr =0.

For the starting values at ryax you can substitute the exact values u(rmax) =
Fmax €Xp(—7max) and similarly for u(rmax — h), but it is also possible to take u(rmax)
equal to 0 and u(rmax — k) equal to a very small value. It is interesting to play around
varying the starting conditions and the value of ry,x in order to get a feeling for
how the accuracy is affected by these.
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To arrive at a program which determines the spectrum for you, you must couple
the integration routine to a root-finding scheme and apply it to the value of u at the
origin. Although it is in principle possible to solve for the energy derivative of u
alongside the determination of u itself, we assume here that the integration routine
does not provide energy derivatives. Therefore a library root-finding routine must
not use the derivative and the same holds for one you write yourself. In the latter
case, the secant method is appropriate; see Appendix A3. You will have to supply
the boundaries between which the root must lie when using the program.

PROGRAMMING EXERCISE

Combine the integration routine and the root-finding routine into a method
for finding the / = 0 states of a radial potential.

Check Test your program for the hydrogen atom.

5.5.2 Including the Hartree potential

We now describe an extension of the hydrogen program to the helium case, which
implies having a nuclear potential —2/r in the Hamiltonian and requires some
treatment of the electron—electron interaction. In this section we take the latter into
account in the same way as in Section 4.3.2, that is by a so-called Hartree potential
which is the electrostatic potential generated by the charge distribution following
from the wave function. This potential is given by

Viu(r) = / d3r ns(r’);. (5.73)

r —r'|
Here, ng stands for the density of a single orbital — the total charge density is twice
as large as a result of summation over the spin. The proper Hartree potential is
therefore twice as large, but half of it consists of the self-interaction which we have
subtracted off because this can easily be done for the helium case (see also the end
of Section 4.3.1). Rather than solving for this potential by calculating the integral
(5.73) directly, we shall find it by solving Poisson’s equation:

V2V (r) = —4mng(r). (5.74)

Using the radial symmetry of the density and defining U (r) = rVy(r), this equation

reduces to the form )

%U(r) = —4mrng(r). (5.75)

This is an ordinary second order differential equation which can be solved again
using Verlet’s algorithm (or a library routine). Note that it is necessary to normalise
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the radial wave function before integrating Poisson’s equation! If you take for the
normalisation

f dr u*(r) = / dr rPR%(r) = 1, (5.76)

you have already included a factor 4 into the density (arising from the angular
integrations) and the factor 47 in Poisson’s equation drops out:

2
U'r) = -2 r(r). (5.77)

We shall use the normalisation (5.76) throughout this section.

The solution of Eq. (5.77) contains two integration constants which have to be
fixed by the boundary conditions. We take U (0) = 0 as the first boundary condition.
Elementary electrostatics then leads to the second condition

Vii(rmax) = Imax ) (5.78)

2
max

where gmax 1s the electron charge contained in a sphere of radius rmyax:

max
Jmax = f dr u?(r). (5.79)
0

For large rmax, gmax 1S the total electron charge. In that case we see from the
asymptotic form of (5.78), using the fact that U (rn,x) 1S now constant as a function
of rmax), that U(rmax) = gmax. When carrying out the numerical integration, we
take for the first starting condition U(0) = 0. The second starting condition, for
U (h), is not known at the beginning — we take U (h) = h. As the solution U(r) = ar
solves the homogeneous differential equation, U” (r) = 0, we can add this solution
to the numerical solution found, with « taken such as to satisfy the end condition
U (Ymax) = gmax, Without violating the starting condition U (0) = 0.

PROGRAMMING EXERCISE
Add an extra integration to your program which solves Eq. (5.77).

It is useful to check for correctness by using the hydrogen atom as an example.
The normalised ground state density (in the sense of (5.76)), foundat E = —0.5 a.u.,
is 4e" and we must solve

U"(r) = —4re™ %, (5.80)
with the boundary conditions U(0) = 0, U(oc0) = 1, so
Ur)=—(r+De 2 +1. (5.81)

Check Check whether your program produces these results
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The next step is to make the program self-consistent. This is done by adding the
Hartree potential to the nuclear potential and solving for the eigenstate again. You
repeat this process until the energy does not change appreciably between subsequent
steps. The total energy is given by

E=2¢— / dr Va(ru?(r). (5.82)

The Hartree correction arises because the Hartree energy is quadratic in the density.

Check Try to reproduce the results for the helium Hartree—Fock calculation in
Section 4.3.2. In fact, the present method is more accurate as the wave functions
are not restricted to linear combinations of four Gaussians. For an integration
step i = 0.01 (in the Verlet algorithm) you will find for the eigenvalue of the
radial Schrodinger equation the value —0.923 a.u. and for the Hartree correction
1.0155 a.u., so that the total energy amounts to £ = —2.861 a.u., in good agree-
ment with the result obtained in the previous chapter. The experimental value
is —2.903 a.u.

5.5.3 The local density exchange potential

The aim of the exercise has not yet been achieved: we must calculate the energy and
eigenvalues in the density functional formalism within the local density approxim-
ation. Remember that in density functional theory, the density that gives rise to the
Hartree potential is the full density n(r), i.e. the density of the two electrons, and in
the previous section we have subtracted off the self-interaction contribution, lead-
ing to a reduction by a factor of 2 of the Hartree potential. Multiplying the Hartree
potential by a factor of 2 in the previous program yields very poor results and there-
fore we hope that the exchange potential will correct for the self-interaction. As we
have noted above, a popular form of the local density exchange potential is the one
based on a treatment of the exchange hole in a homogeneous electron gas and is
given by

Vi (r) = Const. x n'/3(r) (5.83)

where the constant is given as

3\ 1/3
Const. = — (—) . (5.84)
b4

Here, again, the full density is to be taken in the right hand side of (5.83) and this
is twice the single electron density arising from the radial Schrédinger equation,
since we have two electrons. Therefore, in terms of the radial eigenfunctions u
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normalised as in (5.76), our exchange potential reads

3u2(r) } 173

02,2 (5.85)

Vx (l‘) = - |:
which, for the s-states under consideration, depends only on the radial coordinate
r. The total energy is given by

E=2¢— /dr Va(ru*(r) + % f dr u? (r) Vi (r). (5.86)

The extension of your program to a local density version is now straightforward:
instead of adding only the Hartree potential to the nuclear attraction, you take twice
this potential and add the exchange potential to it. The self-consistency loop remains
unaltered.

PROGRAMMING EXERCISE

Extend your Hartree—Fock program to include the exchange potential.

Check 1f your program is correct, it should give the following values for the
energies: ¢ = —0.52 and £ = —2.72 a.u.

Obviously the result is inferior to Hartree—Fock as the exchange potential is
included only in an approximate way. Improvement is possible by considering
an exchange correlation potential based on an interpolation of quantum Monte
Carlo results by Ceperley and Alder [45], and it yields a ground state energy of
E = —2.83a.u. [9] which is an important improvement with respect to —2.72,
although it is still worse than the HF result of —2.86 a.u. Implementation of this is
straightforward and will be done in Problem 5.6.

5.6 Applications and results

In numerous calculations for atoms, molecules and solids the DFT-LDA approach
has been very successful. In this section we quote some results which have been
taken from the review by Jones and Gunnarson [4].

The original applications were to the ground state properties of solids, and some
typical results are shown in Table 5.1. Binding energies for atoms and molecules
are often better than HF (Table 5.3); total energies are close to but a bit worse than
HF (Table 5.2). Interpretation of the Kohn—Sham eigenvalues as excitation ener-
gies works surprisingly well in many solids, where the energy bands frequently
agree with those measured in photo-emission for example (see Problem 5.4 and
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Table 5.1. Lattice constants and cohesive energies for
diamond, Si and Ge. Atomic units are used.

Lattice constant Cohesion energy

DFT Expt DFT Expt
Diamond 6.807 6.740 7.58 7.37
Si 10.30 10.26 4.84 4.64
Ge 10.69 10.68 4.02 3.85

Data taken from Ref. [4].

Table 5.2. Energies in a.u. for various atoms.

Atom HF DFT Expt.

Li —7.433 —7.353 —7.479
C —37.702 —37.479 —37.858
o —74.858 —74.532 —75.113

Data taken from Ref. [4]

Table 5.3. Binding energies in a.u. for diatomic

molecules.

Atom HF DFT Expt.
H, 3.64 491 4.75
C, 0.79 7.19 6.32
(o)) 1.28 7.54 5.22

Data taken from Ref. [4].

Section 5.3). But we should be cautious about interpreting ¥ and &; as any-
thing other than auxiliary quantities for constructing the ground state energy and
density as explained extensively in that section. There are several examples where
interpretation of ¢ as excitation energies goes drastically wrong: band gaps in semi-
conductors and insulators are almost invariably too small, and ionisation energies for
atoms and molecules are usually way too small. The inclusion of self-interaction
corrections, mentioned in the previous subsection, gives better results for these
gaps, but remember that these corrections introduce dependence of the Hamiltonian
on individual orbitals instead of the density only and are therefore incompatible



116 Density functional theory

with DFT. The best approach is to use many-body theories for calculating actual
excitation energies.

Exercises

5.1 [C] Instead of the regular grid which was used in the helium program of Section 5.5,
it is better to use a grid with a step size which grows from a very small value near the
nucleus to larger values in the valence region, because the wave function will oscillate
more rapidly near the nucleus as a result of the deep Coulomb potential. Consider a
grid with grid points given by the following formula:

ri =rplexp(id) — 1], j=0,1,...,jmax-

The grid point with j = 0 coincides with the nucleus and the grid runs up to a radius
"max Which fixes the value of the prefactor 7, to

p = Fmax/[€Xp(jmax8) — 11.

The grid is defined by the number of grid points jnax, by the outermost point rp,x and
by the parameter § which determines how much the grid constant near the nucleus
differs from that near ry,x. All these three values must be specified and then the
prefactor r,, can be determined.

(a) Show that, in terms of j, the radial Schrodinger equation

d2
mu(r) = [V(r) — Elu(r)

transforms into
. d . 262 2i8v/ (s .
a2 u@j) — 5d—ju(l) = ry67e°[V(j) — Elu(j),

where u(j) = u(ry).

(b) Write a general integral [, f(r)dr as an integral over ;.

(c) [C] Transform all integrals and differential equation methods in the density
functional program to the nonhomogeneous grid defined above. Compare the
accuracies of the two versions.

(d) Show that the first derivative occurring in the radial Schrodinger equation in
terms of j above can be transformed away by writing u(j) = v(j) exp(j5/2). Show
that the resulting equation for v reads

d2 . 52 o202 2)8 . .
7" = 30 =RV G) — EnG).

(e) [C] Numerov’s algorithm (see Appendix A7.1) can be used for solving this
differential equation. Try this out for the ground state of the hydrogen atom and
show that the numerical error scales as 1/N* as is expected (see Problem A3).
Note that when the number of points is doubled, § should be decreased by a
factor of 2.
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5.2 [C] The Hartree energy

53

Ey = ! / drd*r —n(r/)n(r)
2 r — 1|

overestimates the classical electrostatic energy of the electrons because it includes
interactions of the electrons with themselves — these are the so-called
self-interactions. In Hartree—Fock theory, this spurious effect is cancelled by the
exchange energy. In density functional theory, the exchange correlation energy does
not ensure this cancellation a priori and we can only hope that it cancels the
self-interaction as much as possible. To see to what extent the exchange correlation
potential succeeds in doing so, we consider the hydrogen atom in DFT (of course,
DFT was designed for many-electron systems, but its use is not a priori restricted to
systems containing more than one electron). In the hydrogen atom, we find a
nonvanishing Hartree and exchange correlation energy, which can easily be evaluated
with our DFT program for helium.

Change the nuclear charge back to Z = 1 and make sure that the density used in
the Hartree and exchange correlation energies is evaluated for the single electron (i.e.
not multiplied by 2 as in the helium case). Evaluate both energies for the exact
solution of the hydrogen atom.

You should find that the exchange correlation energy compensates about 80% of
the self-interaction. For better exchange correlation energies, a value of 96% can be
found — see the following problem and Ref. [9]. See also Ref. [46] for more examples.
[C] The Slater exchange potential

3\1/3
vx(r>=—(;) n'3(r)

is based on the exchange energy in a homogeneous electron gas [47]. It is quite a crude
approximation, and a refinement can be made using quantum Monte Carlo results
obtained by Ceperley and Alder [9, 11, 45]. This leads to a parametrised correlation
energy which should be added to the Slater term given above. The parametrisation is
given in terms of the parameter r; which is related to the density n according to

3
n= )
47y}

The parametrisation is split into two parts: ¢ > 1 and ry < 1. We need an expression
for the correlation energy parameter &. defined by

E. = / d&*r n(r)ec(m)n(r).

(a) Show that from this an expression for the correlation potential V. can be derived
according to
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Table 5.4. Parameters for correlation energy

Unpolarised Polarised
A 0.0311 0.01555
B —0.048 —0.0269
C 0.0020 0.0014
D —0.0116 —0.0108
4 —0.1423 —0.0843
B 1.0529 1.3981
B2 0.3334 0.2611

(b) [C] A parametrised form of & is given by the following expressions. For rg > 1
we have

gc =y /(1 + B1/rs + Pars)
and forry > 1

g =Alnry+ B+ Crglnrg + Dry.

From this, we obtain the following expressions for the correlation potential:

1+ 7/6B14/1s + Bars

V.(ry) = &
(1) = e 1+ B1/7s + Bars

for rg > 1 and
2
Ve(rs) =Alnrg+B—A/3 + gCrS Inrg

+ (2D — O)ry/3.

The values of the parameters A, B etc. depend on whether we are dealing with the
polarised (all spins same z component) or unpolarised case. For both cases, the
values are given in Table 5.4.

Use this parametrisation in your helium density functional theory program
(unpolarised). You should find an energy E = —2.83 atomic units,to be compared
with —2.72 without this correction.

(c) [C] Use the polarised parametrisation for the hydrogen program of the previous
problem. You should find an energy E = —0.478 a.u.

(d) [C] Itis also possible to combine the self-energy correction with the correlation
energy. You should consult the paper by Perdew and Zunger [9], if you intend to
do this. This results in an energy E = —2.918 a.u., which is only 0.015 a.u. off the
experimental value.

5.4 In this problem, we consider a generalisation of Koopman’s theorem (see
Section 4.5.3) to the density functional formalism. To this end, we consider the
spectrum {¢;} and the corresponding eigenstates of the Kohn—Sham Hamiltonian.
We consider the chemical potential, which is found by removing a small amount of
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charge from the system. In practice this means that the highest level (which is level
N) is not fully occupied. We usually calculate the density according to

N
() =Y filyn @,

i=1

The change in the density is realised by reducing the value fy slightly:
N = fv — N
This induces a change in the density
8n(r) = fwl Y ().

The total energy is calculated according to:

N /
EN)=_fii— / Ly g3y MONE) / d3r n(r) Ve (r) + Excln).
P 2 [r —1’|
The levels ¢; arise from taking the matrix elements (y;|H (N)|v;). As a result of the
change in density, both the Hamiltonian occurring in these matrix elements and the
remaining terms in the energy expression change.

We therefore have three contributions to the change in the total energy. First, the
factor fyy in the sum over the energy levels changes; second, the potential for which
the levels are calculated changes slightly; and third, the correction terms in the
expression for the energy change.

Show that, to linear order in §n(r), the combined effect of the change in the
Hamiltonian matrix elements is precisely compensated by the change in the
remaining terms in the energy expression so that we obtain

EN) — E(N = éfn) = endfn

Hint: the change in the exchange correlation energy Ex.[n] is given by the expression

SF
SExc[n] = f d*r 5n(r)L[”] = / d3r Vie[n](r)sn(r).
én(r)
This proves Janak’s theorem [25].
References

[1] C. Pisany, R. Dovea, and C. Roetti, Hartree—Fock Ab-initio Treatment of Crystalline Systems.

Berlin, Springer, 1988.

[2] P. Hohenberg and W. Kohn, ‘Inhomogeneous electron gas,” Phys. Rev., 136 (1964), B864-71.
[3] W.Kohn and L. J. Sham, ‘Self-consistent equations including exchange and correlation effects,’

Phys. Rev., 140 (1965), A1133.

[4] R. O. Jones and O. Gunnarsson, ‘The density functional formalism, its applications and

prospects,” Rev. Mod. Phys., 61 (1989), 689-746.

[5] S. Lundqvist and N. March, Theory of the Inhomogeneous Electron Gas. New York, Plenum,

1983.



120 Density functional theory

[6] P.Phariseau and W. M. Temmerman, The Electronic Structure of Complex Systems, NATO ASI
series B. New York, Plenum, 1984.

[7]1 R. M. Martin, Electronic Structure. Cambridge, Cambridge University Press, 2004.

[8] D. C. Langreth and M. J. Mehl, ‘Easily implementable nonlocal exchange-correlation energy-
functional,” Phys. Rev. Lett. 47 (1981), 446-50.

[9] J. P. Perdew and A. Zunger, ‘Self-interaction correction to density-functional approximations
for many-electron systems,” Phys. Rev. B, 23 (1981), 5048-79.

[10] J. C. Slater, Quantum Theory of Molecules and Solids, vol. IV. New York, McGraw-Hill, 1982.

[11] D. M. Ceperley, ‘Ground state of the fermion one-component plasma — a Monte Carlo study in
two and three dimensions,” Phys. Rev. B, 18 (1978), 3126-38.

[12] U. von Barth and L. Hedin, ‘A local exchange-correlation potential for the spin-polarized case:
1) J. Phys. C,5 (1972), 1629-42.

[13] O. Gunnarson and B. I. Lundqvist, ‘Exchange and correlation in atoms, molecules and solids
by the spin-density-functional formalism,” Phys. Rev. B, 13 (1976), 4274-98.

[14] J. P. Perdew and Y. Wang, ‘Accurate and simple density functional for the electronic exchange
energy: Generalized gradient approximation,” Phys. Rev. B, 33 (1986), 8800-2.

[15] J.P. Perdew, ‘Density-functional approximation for the correlation energy of the inhomogeneous
electron gas,” Phys. Rev. B, 33 (1986), 8822—4.

[16] Y. Wang and J. P. Perdew, ‘Correlation hole of the spin-polarized electron gas, with exact
small-wave-vector and high-density scaling,” Phys. Rev. B, 44 (1991), 13298-307.

[17] A. D. Becke, ‘Density functional exchange energy approximation with correct asymptotic
behaviour,” Phys. Rev. A, 38 (1988), 3098-100.

[18] C.Lee, W. Yang, and R. G. Parr, ‘Development of the Colle—Salvetti correlation-energy formula
into a functional of the electron density,” Phys. Rev. B, 37 (1988), 785-9.

[19] J. P. Perdew, K. Burke, and M. Enzerhof, ‘Generalized gradient approximation made simple,’
Phys. Rev. Lett., 77 (1996), 3865-86.

[20] J. P. Perdew, K. Burke, and M. Enzerhof, ‘Generalized gradient approximation made simple
(Erratum),” Phys. Rev. Lett., 78 (1997), 1396.

[21] R.T.Sharpand G. K. Horton, ‘A variational approach to the unipotential many-electron problem,’
Phys. Rev., 90 (1953), 317.

[22] J. D. Talman and W. F. Shadwick, ‘Optimized effective atomic central potential,” Phys. Rev. A,
14 (1976), 36-40.

[23] J.D. Talman and W. F. Shadwick, ‘Asymptotic behavior of atomic and molecular wave functions,’
Proc. Natl. Acad. Sci, 77 (1980), 4403-6.

[24] M. Levy, J. P. Perdew, and V. Shani, ‘Exact differential equation for the density and ionization
energy of a many-particle system,” Phys. Rev. A, 30 (1984), 2745-8.

[25] J. FE. Janak, ‘Proof that 0E/dn; = ¢ in density-functional theory,” Phys. Rev. B, 18 (1978),
7165-8.

[26] J. P. Perdew, R. G. Par, M. Levy, and J. L. Balduz, ‘Density-functional theory for frac-
tional particle number: derivative discontinuities of the energy,” Phys. Rev. Lett., 49 (1982),
1691-4.

[27] J. E. Janak, ‘Significance of the highest occupied Kohn—Sham eigenvalue,” Phys. Rev. B, 56
(1997), 12042-5.

[28] L. Hedin, ‘New method for calculating the one-particle Green’s function with application to the
electron-gas problem,” Phys. Rev., 139 (1965), A796-A823.

[29] F. Aryasetiawan and O. Gunnarsson, ‘The GW method,” Rep. Prog. Phys., 61 (1998),
237-312.

[30] W. G. Aulbur, L. Jonsson, and J. W. Wilkins, ‘Quasiparticle calculations in solids,” in Solid
State Physics, vol. 54 (H. Ehrenreich and F. Spaepen, eds.). San Diego, Academic Press, 2000,
pp. 1-218.



References 121

[31] C. Cohen-Tannoudji, B. Diu, and F. Lalog, Quantum Mechanics, vols. 1 and 2. New York/Paris,
John Wiley/Hermann, 1977.

[32] D. Pines, Elementary Excitations in Solids. New York, Wiley, 1964.

[33] M. S. Hybertsen and S. G. Louie, ‘First-principles theory of quasiparticles: calculation of band
gaps in semiconductors and insulators,” Phys. Rev. Lett., 55 (1985), 1418-21.

[34] M. S. Hybertsen and S. G. Louie, ‘Electron correlation in semiconductors and insulators: Band
gaps and quasiparticle energies,” Phys. Rev. B, 34 (1986), 5390.

[35] L. D. Landau, ‘Theory of the Fermi liquid,” Soviet Physics JETP, 3 (1957), 920-5.

[36] G. D. Mahan, Many-Particle Physics, 3rd edn. New York, Kluwer Academic/Plenum Press,
2000.

[37] G.Onida,L.Reining, and A. Rubio, ‘Electronic excitations: density functional versus many-body
Green'’s function approaches,” Rev. Mod. Phys., 74 (2002), 601-59.

[38] E. Runge and E. K. U. Gross, ‘Density-functional theory for time-dependent systems,” Phys.
Rev. Lett., 52 (1984), 997-1000.

[39] E. K. U. Gross, J. F. Dobson, and M. Petersilka, ‘Density functional theory of time-independent
phenomena,’ in Topics in Current Chemistry: Density Functional Theory (R. F. Nalewajski, ed.),
Heidelberg, Springer, 1996, pp. 81-172.

[40] R.van Leeuwen, ‘Key concepts in time-dependent density-functional theory,” Int. J. Mod. Phys.
B, 15 (2001), 1969-2023.

[41] H. Appel and E. K. U. Gross, ‘Static and time-dependent many-body effects via density-
functional theory,” in Quantum Simulations of Complex Many-Body Systems: From Theory to
Algorithms; Kerkrade, The Netherlands (J. Grotendorst, D. Marx, and A. Muramatsu, eds.),
Jiilich, John von Neumann Institute for Computing, 2002, pp. 255-68.

[42] J. F. Ward and G. H. C. New, ‘Optical third-harmonic generation in gases by a focused laser
beam, Phys. Rev., 185 (1969), 57-72.

[43] S.Erhardand E. K. U. Gross, ‘High harmonic generation in hydrogen and helium atoms subject to
one- and twocolor laser pulses,” in Multiphoton Processes 1996 (P. Lambropoulus and H. Walther,
eds.). Bristol, Institute of Physics, 1997, pp. 37—46.

[44] S.J. A.van Gisbergen, J. M. Pacheco, and E. J. Baerends, ‘Influence of the exchange-correlation
potential in density-functional calculations on polarizabilities and absorption spectra of alkali-
metal clusters,” Phys. Rev. A, 63 (2001), 063201.

[45] D. M. Ceperley and B. J. Alder, ‘Ground state of the electron gas by a stochastic method,” Phys.
Rev. Lett., 45 (1980), 566-9.

[46] C.-O. Almbladh and A. C. Pedroza, ‘Density-functional exchange-correlation potentials and
orbital eigenvalues for light atoms,” Phys. Rev. A, 29 (1984), 2322-30.

[47] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York, Holt, Reinhart and Winston,
1976.



6

Solving the Schrodinger equation in periodic solids

In the previous chapter we encountered density functional theory (DFT) which is
extensively used for calculating the electronic structure of periodic solids. Aside
from DFT, carefully designed potentials often allow accurate electronic structures to
be obtained by simply solving the Schrddinger equation without going through
the self-consistency machinery of DFT. In both approaches it is necessary to solve
the Schrodinger equation and the present chapter focuses on this problem, although
some comments on implementing a DFT self-consistency loop will be made.

The large number of electrons contained in a macroscopic crystal prohibits a
direct solution of the Schrodinger equation for such a system. Fortunately, the solid
has periodic symmetry in the bulk, and this can be exploited to reduce the size
of the problem significantly, using Bloch’s theorem, which enables us to replace
the problem of solving the Schrodinger equation for an infinite periodic solid by
that of solving the Schrodinger equation in a unit cell with a series of different
boundary conditions — the so-called Bloch boundary conditions. Having done this,
there remains the problem that close to the nuclei the potential diverges, whereasitis
weak when we are not too close to any of the nuclei (interstitial region). We can take
advantage of the fact that the potential is approximately spherically symmetric close
to the nuclei, but further away the periodicity of the crystal becomes noticeable.
These two different symmetries render the solution of the Schrodinger equation in
periodic solids difficult. In this chapter we consider an example of an electronic
structure method, the augmented plane wave (APW) method, which uses a spatial
decomposition of the wave functions: close to the nuclei they are solutions to a
spherical potential, and in the interstitial region they are plane waves satisfying the
appropriate Bloch boundary conditions.

It is possible to avoid the problem of the deep potential altogether by replacing
it by a weaker one, which leaves the interesting physical properties unchanged.
This is done in the pseudopotential method which we shall also discuss in this
chapter.
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Figure 6.1. Lattice structure of the simple cubic (left), body-centred cubic (middle)
and face-centred cubic (left) lattices with basis vectors.

Before going into these methods, we start with a brief review of the theory of
electronic structure of solids. For further reading concerning the material in the first
three sections of this chapter, we refer to general books on solid state physics [1, 2].

An excellent reference for computational band structures is the book by
R. M. Martin [3].

6.1 Introduction: definitions
6.1.1 Crystal lattices

We consider crystals in which the atomic nuclei are perfectly ordered in a periodic
lattice. Such a lattice, a so-called Bravais lattice, is defined by three basis vec-
tors. The lattice sites R are given by the integer linear combinations of the basis
vectors:

3

R = Zniai, n; integer. (6.1
i=1
Each cell may contain one or more nuclei — in the latter case we speak of a lat-
tice with a basis. The periodicity implies that the arrangement of these nuclei
must be the same within each cell of the lattice. Of course, in reality solids will
only be approximately periodic: thermal vibrations and imperfections will destroy
perfect periodicity and moreover, periodicity is destroyed at the crystal surface.
Nevertheless, the infinite, perfectly periodic lattice is usually used for calculat-
ing electronic structure because periodicity facilitates calculations and a crystal
usually contains large regions in which the structure is periodic to an excellent
approximation.
Three common crystal structures, the simple cubic (sc), body-centred cubic (bcc)
and face-centred cubic (fcc) structures, are shown in Figure 6.1.
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6.1.2 Reciprocal lattice

A function which is periodic on a Bravais lattice can be expanded as a Fourier series
with wave vectors K whose dot product with every lattice vector of the original
lattice yields an integer times 27:

R - K = 27mn, integer n. (6.2)

The vectors K form another Bravais lattice — the reciprocal lattice. The basis vectors
b; of the reciprocal lattice are defined by

a; - bj = 27‘[517 (63)
and an explicit expression for the b; is

ar X aj

b; =2mejy (6.4)

aj - (a2 x a3)’
&jk is the Lévi—Civita tensor, which is +1 for jkl an even permutation of (1,2, 3),
and —1 for odd permutations.

In the reciprocal lattice, the first Brillouin zone is defined as the volume in
reciprocal space consisting of the points that are closer to the origin than to any
other reciprocal lattice point. A general wave vector q is usually decomposed into
a vector k of the first Brillouin zone and a vector K of the reciprocal lattice:

q=k+K. (6.5)

For a finite rectangular lattice of size Ly x Ly x L., the allowed wave vectors q to
be used for expanding functions defined on the lattice are restricted by the boundary
conditions. A convenient choice is periodic boundary conditions in which functions
are taken periodic within the volume of L, X Ly x L,. In that case, vectors in reciprocal
space run over the following values:

q=brfi5%2 (6.6)
L L)L,

with integer ny, n, and n;.

6.2 Band structures and Bloch’s theorem

We know that the energy spectra of electrons in atoms are discrete. If we place two
identical atoms at a very large distance from each other, their atomic energy levels
will remain unchanged. Electrons can occupy the atomic levels on either of both
atoms and this results in a double degeneracy. On moving the atoms closer together,
this degeneracy will be lifted and each level splits into two; the closer we move the
atoms together, the stronger this splitting. Suppose we play the same game with
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three instead of two atoms: then the atomic levels split into three different ones,
and so on. A solid consists of an infinite number of atoms moved close together
and therefore each atomic level splits into an infinite number, forming a band. It is
our aim to calculate these bands.

We shall now prove the famous Bloch theorem which says that the eigenstates of
the Hamiltonian with a periodic potential are the same in the lattice cells located at
R; and R; up to a phase factor exp[iq - (R; — R;)] for some reciprocal vector q. We
shall see that a consequence of this theorem is that the energy spectra are indeed
composed of bands.

We write the Schrodinger equation in reciprocal space. The potential V is periodic
and it can therefore be expanded as a Fourier sum over reciprocal lattice vectors K:

vy =Y KTk 6.7)
K

An arbitrary wave function ¥ can expanded as a Fourier series with wave vectors
q allowed by the periodic boundary conditions (6.6):'

VU (r) = Z 4T Cy. (6.8)
q
Writing q = k + K, the Schrodinger equation reads (in atomic units)
1 2
[E(k +K)? — s} Cxik + ; Vk-k Ceix’ = O. (6.9)

This equation holds for each vector Kk in the first Brillouin zone: in the equation,
wave vectors k + K and k + K’ are coupled by the term with the sum over K, but
no coupling occurs between k + K and K’ + K’ for different k and k’. Therefore,
for each k we can, in principle, solve the eigenvalue equation (6.9) and obtain the
energy eigenvalues ¢ and eigenvectors Ck with components Ck 4k, leading to wave
functions of the form (see (6.8))

Yi(r) = e** (Z Ck+KeiK"> . (6.10)
K

The eigenvalues form a discrete spectrum for each k. The levels vary with k and
therefore give rise to energy bands. Equation (6.9) yields an infinite spectrum for
each k. We might attach a label n, running over the spectral levels, alongside the
label Kk, to the energy level ¢: ¢ = g;k.

We can rewrite (6.10) in a more transparent form. To this end we note that the
expression in brackets in this equation is a periodic function in r. Denoting this
periodic function by u(r), we obtain

Yi(r) = e* T (r). (6.11)

! For an infinite solid, the sum over q becomes an integral.
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The eigenstates of the Hamiltonian can thus be written in the form of a plane wave
times a periodic function. Equivalently, evaluating such a wave function at two
positions, separated by a lattice vector R, yields a difference of a phase factor 'R,
according to our previous formulation of Bloch’s theorem.

Electronic structure methods for periodic crystals are usually formulated in recip-
rocal space, by solving an equation like (6.9) in which the basis functions are plane
waves labelled by reciprocal space vectors. In fact, Bloch’s theorem allows us to
solve for the full electronic structure in real space by considering only one cell
of the lattice for each k and applying boundary conditions to the cell as dictated
by the Bloch condition (6.11). In particular, each facet of the unit cell boundary
has a ‘partner’ facet which is found by translating the facet over a lattice vector
R. The solutions to the Schrédinger equation should on both facets be equal up to
factor exp(ik - R). These boundary conditions determine the solutions inside the
cell completely. We see that we can try to solve the Schrodinger equation either
in reciprocal space or in real space. For nonperiodic systems, real-space methods
enjoy an increasing popularity [4-7].

6.3 Approximations

The Schrodinger equation for an electron in a crystal can be solved in two limiting
cases: the nearly free electron approximation, in which the potential is considered
to be weak everywhere, and the tight-binding approximation in which it is assumed
that the states are tightly bound to the nuclei. Both methods aim to reduce the
difficulty of the band structure problem and to increase the understanding of band
structures by relating them to those of two different systems which we can easily
describe and understand: free electrons and electrons in single-atom orbitals. The
tight-binding method has led to many computational applications. We shall apply
it to graphene and carbon nanotubes.

6.3.1 The nearly free electron approximation

It is possible to solve Eq. (6.9) if the potential is small, by using perturbative
methods. This is called the nearly free electron (NFE) approximation. You might
consider this to be inappropriate as the Coulomb potential is certainly not small
near the nuclei. Surprisingly, the NFE bands closely resemble those of aluminium,
for example! We shall see later on that the pseudopotential formalism provides an
explanation for this.

The main results of the NFE are that the bands are perturbed by an amount
which is quadratic in the size of the weak potential V except close to Bragg planes
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Energy

Figure 6.2. Nearly free electron spectrum for a periodic potential in one dimension.

consisting of reciprocal points q which satisfy
lq| = K —q], (6.12)

where K is a reciprocal lattice vector. At a Bragg plane, a band gap of size 2|V
opens up. Figure (6.2) gives the resulting bands for the one-dimensional case.
Figure (6.3) shows how well the bands in aluminium resemble the free electron
bands.

6.3.2 The tight-binding approximation

The tight-binding (TB) approximation will be discussed in more detail as it is an
important way for performing electronic structure calculations with many atoms
in the unit cell. It naturally comes about when considering states which are tightly
bound to the nuclei. The method is essentially a linear combination of atomic
orbitals (LCAO) type of approach, in which the atomic states are used as basis
orbitals. Let us denote these states, which are assumed to be available from some
atomic electronic structure calculation, by u,(r —R), in which the index p labels the
levels of an atom located at R. From these states, we build Bloch basis functions as

1 .
o) = 5 ; e Ru,(r — R), 6.13)

and a general Bloch state is a linear combination of these:

Pk (r) = Z Cr(K)pk (T). (6.14)
p
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Figure 6.3. Band structure of aluminium. Also shown (open squares) is the free
electron result. X, W etc. are special points in the Brillouin zone (see Section 6.5).

The coefficients C,(K) can be found from the variational principle. Applying the
techniques of Chapter 3, we see that we must solve the generalised eigenvalue
problem

HC(k) = ESC(k) (6.15)

for the vector C(k) with components C,, (k). The matrix elements of the Hamiltonian
H and of the overlap matrix S (which depend on k) are given by

Hpy = (¢px|H|dgk) and (6.16a)
Spg = (Bpk|dqk)- (6.16b)

Writing out the matrix elements using (6.13) and the lattice periodicity, we obtain
the following expressions:

Hyy =Y ¥ / d*r up(r — R)Huy,(r) (6.17a)
R

Spg =Y "R f d*r u, (r — R)Suy(r). (6.17b)
R

As the states u,(r) are rather strongly localised near the nuclei, they will have
virtually no overlap when centred on atoms lying far apart. This restricts the sums
in (6.17) to only the first few shells of neighbouring atoms, sometimes only nearest



6.3 Approximations 129

neighbours. The numerical solution of the generalised eigenvalue problem HC =
ESC is treated in Chapter 3.

Of course, we may relax the condition that we consider atomic orbitals as basis
functions, and extend the method to allow for arbitrary, but still localised, basis
functions. This even works for the valence orbitals in metals, although in that case
relatively many neighbours have to be coupled, so that the approach pays off only
for large unit cells. We may use the tight-binding approach for fixed interatomic
distances — for a tight-binding method in which the atoms are allowed to move,
thereby requiring varying distances, see Chapter 9.

The tight-binding method comes in two flavours. The first is the semi-empirical
TB method, in which only a few valence orbital basis functions are used. Their
couplings are restricted to nearest neighbour atoms and the value of the couplings
are fitted to either experimental data such as band gaps and band widths, or to similar
data obtained using more sophisticated band structure calculations. Once satisfact-
ory values have been obtained for the TB couplings, more complicated structures
may be considered which are beyond reach of self-consistent DFT calculations.

We may also be more ambitious and use more TB parameters which are fitted
to DFT Hamiltonians. This is particulary useful when the TB Hamiltonians were
obtained using localised basis functions, such as Gaussian or Slater orbitals (see
Chapter 4 for a dicussion of these basis sets). For DFT calculations, Slater type
orbitals are becoming increasingly popular, as the reason for choosing Gaussians
in Hartree—Fock calculations, i.e. the fact that integrals can be evaluated analytically,
ceases to berelevantin DFT with its highly nonlinear exchange correlation potential.
Therefore, the Hamiltonian naturally has a tight-binding form, and this means that
itis sparse, that is, a small minority of the elements of the Hamiltonian are nonzero.
Such a Hamiltonian allows for iterative methods to be used.

In the next subsection we consider an appealing application of the tight-binding
method: graphene and carbon nanotubes.

6.3.3 Tight-binding calculation for graphene and carbon nanotubes

In this subsection, we calculate the band structure of a carbon nanotube within
the tight-binding approximation. It is a very instructive exercise which is strongly
recommended as an introduction to band structure calculations. Here we follow the
discussion in Refs. [3, 8].

We assume that only elements of the Hamiltonian and overlap matrix coupling
two atomic orbitals are relevant, and that three-point terms do not occur. This is the
so-called Slater—Koster approximation [9]. We shall first apply this to graphene,
which is a sheet consisting of carbon atoms ordered within a hexagonal lattice. This
is not a Bravais lattice, but it can be described as a triangular Bravais lattice with a
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Figure 6.4. Hexagonal lattice of the graphene sheet with basis vectors a; and a;
indicated. The zigzag nanotube is also indicated.

basis consisting of two atoms, A and B (see Figure 6.4). The two basis vectors are

1 1 1 1
=al =+3.-): =al=+3,—=]. 6.18
aj a(zf,z), a a(zf, 2) (6.18)
where the lattice constant ¢ = 2.461 A. We only include nearest neighbour

interactions.

The most relevant part of the band structure is the valence band — it turns out that
this is formed by the m-orbitals which are built from the p,-atomic orbitals. This
leads us to taking only a single orbital per atom into account. Furthermore we keep
only nearest neighbour matrix elements in the tight-binding matrices. We see from
Figure 6.4 that an A-atom has nearest neighbours of the type B only.

The essential idea of using Bloch’s theorem in calculating the band structure
is to reduce the entire problem to that of the unit cell, which contains only two
orbitals: the p, orbitals of A and B. We must therefore calculate Hqs (k) = Hpp(k),
Saa(k) = Spp(K), Hap(k) = Hg, (k) and Sap(k) = S;, (K) for each Bloch vector
k. The spectrum is then given by the equation:

Haa(K) Hap(K)\ (Ya(k)) Saa(K)  Sap(K)\ [va(k)
(HBA(k) HBB(k)) (‘//B(k)) = E(Kk) <SBA(k) SBB(k)) <‘/fB(k))' (6.19)
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It follows that the energies E (k) are given as

—(—=2Ey + E1) £/ (=2Eo + E)? — 4E>E;

EL(k) = 6.20
+(K) 2E (6.20)
where
Eo = HsaSaA; Ey = SapHjp + HaS) s
Ey = Hi, — HapHYp:  Ez = S%, — SapSip.

The matrix element Hy4 (k) must be a real constant which does not depend on k
and the same holds for Ss4 (k). We take the first to be O (with a suitable shift of the
energy scale) and the second is 1 because of the normalisation of the orbitals.

You may verify that the off-diagonal elements have the form

Hap = yolexp(k - Ry) 4+ exp(ik - Ry) + exp(ik - R3)] (6.21)

with yg a real constant independent of k. The vectors R; connect A to its three
neighbours. For S45 we find the same form but we call the constant sj.
After some calculation, the energies are found as

&2p F Yo/ f (K)

Er(k) = , (6.22)
1 F s0/f (K)
where
f(K) =34 2cos(ky) + 2cos(ky) + 2cos(k; — k2); (6.23)
ki =k-a;, ky=Kk-apetc. (6.24)

In the Brillouin zone, the point I' is identified with k = (0, 0), and the point K
is a vector of length 277 /a in the direction of ay; M is the point 27/+/3(1,0). We
can now plot the bands (i.e. the values E+ (k) between M, I" and K. The result is
shown in Figure 6.5. Note that we find two energy values per atom. As we know
that there should only be a single electron per p, orbital, the Fermi energy must be
the highest negative energy. We see that graphene is a metal: the bands touch each
other precisely at the Fermi energy, so infinitesimal excitations are possible which
yield nonzero momentum.

Now we turn to carbon nanotubes. These are graphene sheets rolled into a cyl-
indrical form. There are many ways in which the two long ends can be glued
together. These ways correspond to different strips which can be drawn on this
sheet such that the two sides of the strip can be connected together smoothly. This
is possible when the vector running perpendicularly across the sheet is an integer
linear combination of the basis vectors a; and a,. This is also indicated in Figure 6.4.
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Figure 6.5. Tight-binding band structure of graphene. The points of the Brillouin
zone are shown on the right hand side.

We speak now of an (n, m) nanotube where n and m are the integer coefficients. We
restrict ourselves here to the case where m = 0. Such tubes are called ‘zigzag’ tubes
because a circle running around the tube consists of a zigzag structure of nearest
neighbour bonds.

A carbon nanotube is a one-dimensional object — therefore the states are labelled
by a Bloch vector along the tube. We neglect effects due to the curvature of the
sheet, which alter the interactions. For large tubes (i.e. tubes with a large diameter)
this is a good approximation. Across the tube, the wave function must be periodic.
The difference from a periodic cell in a periodic crystal must be emphasised here.
In a crystal, the potential and the density are periodic, but the wave function (in
general) is not. In the present case the wave function must match onto itself across
the tube — hence it is really periodic. This implies that the transverse component of
the wave vector must be 257j/L for a tube circumference L and integer j. For each
n we find an energy value, that is, for each fixed longitudinal k-vector we find a
discrete energy spectrum.

For this case, the period along the tube is a+/3. This means that the longitudinal
Brillouin zone runs up to k = 7/(a~+/3). This point is denoted as X. The transverse
period is given as L = na. In order to calculate the band structure, we perform a
loop over the longitudinal k-vector. For each such vector we run over the possible
transverse k-vectors (values 27j/L where j lies between 0 and n). We calculate the
two energies in (6.20), and plot these as a function of the longitudinal k. The result
is shown in Figure 6.6 for a tube with an odd and an even number of orbitals. Note
the difference between the two: one is a metal, the other an insulator. In reality, the
even tube has a small gap due to the curvature with respect to the graphene case.
Tubes of another type, the so-called arm-chair tubes, characterised by m = n, are
always metallic. The reader is invited to investigate that case.
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Figure 6.6. Energy bands for a (12,0) and a (13, 0) tube. In reality, both have an
energy gap. That of the even tube is very small. It is absent in the present analysis
owing to the neglect of tube curvature.

6.4 Band structure methods and basis functions

Many band structure methods exist and they all have their own particular features.
A distinction can be made between ab initio methods, which use no experimental
input, and semi-empirical methods, which do. The latter should not be considered
as mere fitting procedures: by fitting a few numbers to a few experimental data,
many new results may be predicted, such as full band structures. Moreover, the
power of ab initio methods should not be exaggerated: there are always approx-
imations inherent to them, in particular the reliance on the Born—Oppenheimer
approximation separating the electronic and nuclear motion, and often the local
density approximation for exchange and correlation.

In ab initio methods, the potential is usually determined self-consistently with
the electron density according to the DFT scheme. Some methods, however, solve
the Schrédinger equation for a given, cleverly determined potential designed to give
reliable results. The latter approach is particularly useful for nonperiodic systems
where many atoms must be treated in the calculation.

In a general electronic structure calculation scheme we must give the basis func-
tions a good deal of attention since we know that by cleverly choosing the basis
states we can reduce their number, which has a huge impact on the computer time
needed as the latter is dominated by the O(N?) matrix diagonalisation.

Two remarks concerning the potential in a periodic solid are important in this
respect. First, the potential grows very large near the nuclei whereas it is (relatively)
small in the interstitial region. There is no sharp boundary between the two regions,
but it is related to the distance from the nucleus where the atomic wave function
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Figure 6.7. Valence state and Coulomb potential in a crystal.

becomes small. Second, the potential is approximately spherically symmetric near
the nuclei, whereas at larger distances the crystal symmetry dominates.

Consider the valence state shown in Figure 6.7, together with the potential. Close
to the nucleus, the valence state feels the strong spherically symmetric Coulomb
potential and it will oscillate rapidly in this region. In between two nuclei, the
potential is relatively weak and the orbital will oscillate slowly. The shape of this
valence function can also be explained in a different way. Suppose that close to
the nucleus, where the potential is essentially spherically symmetric, the valence
wave function has s-symmetry (angular momentum quantum number [ = 0), i.e.
no angular dependence. There might also be core states with the same symmetry.
As the states must be mutually orthogonal, the valence states must oscillate rapidly
in order to be orthogonal to the lower states. A good basis set must be able to
approximate such a shape using a limited number of basis functions.

For each Bloch wave vector, we need a basis set satisfying the appropriate Bloch
condition. The most convenient Bloch basis set consists of plane waves:

Yk (@) = explik + K) - r]. (6.25)

For a fixed Bloch vector k in the first Brillouin zone, each reciprocal lattice vector
K defines a Bloch basis function for k. If we take a sufficient number of such basis
functions into account, we can match any Bloch function for a Bloch vector k.
However, Figure 6.7 suggests that we would need a huge number of plane waves
to match our Bloch states because of the rapid oscillations near the nuclei. This is
indeed the case: the classic example is aluminium for which it is estimated that 106
plane waves are necessary to describe the valence states properly [10]. Although
plane waves allow efficient numerical techniques to be used, this number is very high
compared with other basis sets, which yield satisfactory results with of the order of
only 100 functions. Plane waves can only be used after cleverly transforming away
the rapid oscillations near the nuclei, as in pseudopotential methods (Section 6.7).
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Figure 6.8. The muffin tin approximation.

In the next sections, we consider the augmented plane wave (APW) method and
its linearised version, and construct a program for calculating the band structure of
copper. In Section 6.7, the pseudopotential method will be considered with a few
applications.

6.5 Augmented plane wave methods
6.5.1 Plane waves and augmentation

As we have just indicated, the problem in constructing basis sets starting from plane
waves lies in the core region. Close to the nucleus, the potential is approximately
spherically symmetric and this symmetry should be exploited in constructing the
basis functions. In the augmented plane wave (APW) [11, 12] method, the nuclei
are surrounded by spheres in which the potential is considered to be spherically
symmetric and outside which the potential is constant, and usually taken to be zero.
From a two-dimensional picture (Figure 6.8) it is clear why this approximation is
known as the ‘muffin tin’ approximation.

Outside the muffin tin spheres, the basis functions are simple plane waves ¢'d¥.
Inside the spheres, they are linear combinations of the solutions to the Schrodinger
equation, evaluated at a predefined energy E. These linear combinations can be
written as

00 1

Y2 AnRi(Y,0.9) (6.26)

1=0 m=—1
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where the functions R;(r) are the solutions of the radial Schrédinger equation with
energy E:

1d |:r2d721(r)i| N [l(l—i— 1)

2r2 dr dr 2r2 T V(r)] Ri(r) = ER(r) (6.27)

which can be solved with high accuracy, and the Y,ﬁl (0, @) are the spherical har-
monics. The expansion coefficients Ay, are found by matching the solution inside
the muffin tin to the plane wave outside.

The Bloch wave exp(iq - X) in the interstitial region is an exact solution to the
Schrodinger equation at energy ¢®/2 (in atomic units). The muffin tin solutions
are numerically exact solutions of the Schrodinger equation at the energy E for
which the radial Schrédinger equation has been solved. However, if we take this
energy equal to ¢>/2, the two solutions do not match perfectly. The reason is that
the general solution in the interstitial region for some energy E = ¢*/2 includes
all wave vectors q with the same length. In the Bloch solution we take only one of
these. If we want to solve the Schrodinger equation inside the muffin tins with the
boundary condition imposed by this single plane wave solution then we would have
to include solutions that diverge at the nucleus, which is physically not allowed.

An APW basis function contains a muffin tin solution with a definite energy E,
and a Bloch wave exp(iq - X) in the interstitial region. It turns out to be possible to
match the amplitude of the wave function across the muffin tin sphere boundary.
In order to carry out the matching procedure at the muffin tin boundary we expand
the plane wave in spherical harmonics [13]:

00 [
exp(iq 1) =47y > iji(gr)¥}, (0q. 09 Y} (0. 0) (6.28)
=0 m=—1
where r, 6 and ¢ are the polar coordinates of r and ¢, 64 and ¢4 those of q. To keep
the problem tractable, we cut all expansions in Im off at a finite value for /:

lmax

DI 3D ©29)

=0 m=—1I =0 m=—1
From now on, we shall denote these sums by ) ;..

The matching condition implies that the coefficients of the Y,ﬁl must be equal for
both parts of the basis function, (6.26) and (6.28), as the Y,ln form an orthogonal
set over the spherical coordinates. This condition fixes the coefficients Ay, and we
arrive at

(4R
VAPV (r) = 4x Z [%CI(R)]RI( )Y, (B, 9) V(6. 9) (6.30)

for the APW basis functlon inside the sphere.
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Summarising the results so far, we can say that in the APW method the wave
function is approximated in the interstitial region by plane waves, whereas in the
core region the rapid oscillations are automatically incorporated via direct integra-
tion of the Schrodinger equation. The basis functions are continuous at the sphere
boundaries, but their derivative is not. The APW functions are not exact solutions
to the Schrodinger equation, but they are appropriate basis functions for expanding
the actual wave function:

Y(r) = Y Ckvpg (). (6.31)
K

The muffin tin parts of the Y apw in this expansion are all evaluated at the same
energy E. The coefficients Cg are given by the lowest energy solution of the
generalised eigenvalue equation:

HC = ESC (6.32)

where the matrix elements of H and S are given by quite complicated expressions.
In the resulting solution, the mismatch in the derivative across the sphere boundary
is minimised.

Before giving the matrix elements of the Hamiltonian and the overlap matrix,
we must point out that (6.32) differs from usual generalised eigenvalue equa-
tions in that the matrix elements of the Hamiltonian depend on energy. This
dependence is caused by the fact that they are calculated as matrix elements of
energy-dependent wave functions (remember the radial wave functions depend
on the energy). Straightforward application of the matrix methods for generalised
eigenvalue problems is therefore impossible.

In order to obtain the spectrum, we rewrite Eq. (6.32) in the following form:

(H—E)C =0 (6.33)

where H = H—ES+ET (1is the unit matrix). Although the form (6.33) suggests that
we are dealing with an ordinary eigenvalue problem, this is not the case: the overlap
matrix has been moved into H. To find the eigenvalues we calculate the determinant
|H — EI| on a fine energy mesh and see where the zeroes are. It is sometimes
possible to use root-finding algorithms (see Appendix A3) to locate the zeroes of
the determinant, but these often fail because the energy levels may be calculated
along symmetry lines in the Brillouin zone and in that case the determinant may
vary quadratically about the zero, so that it becomes impossible to locate this point
by detecting a change of sign (this problem does not arise in Green’s function
approaches, where one evaluates the Green’s function at a definite energy).

For crystals with one atom per unit cell, the matrix elements of the Hamiltonian
for APW basis functions with wave vectors q; = k + K; and q; = k + K; are
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given by

Imax R/I(R)
Hij = (k + KiHIk + Kj) = —EA; + By + ) Cin o
=0

(6.34)

In this expression, R';(R) is dR;(r) /dr, evaluated at the muffin tin boundary » = R.
The coefficients A;;, B;j and Cjj are given by
—47R? j1 (IK; — Kj|R)
+ alja
Q IKi — K

Aj =

1
Bjj = 54j(qi - q) and
27 R? i+
Cit = @1+ D= py (ql L
§2 qi4j
Here, 2 is the volume of the unit cell. Note that there is no divergence in the
expression for the matrix elements Aj; if |K; — K;| vanishes, as j;(x) — x/3 for

)jz (qiR)ji1(gjR). (6.35)

small x.

In addition to the inconvenient energy dependence of the Hamiltonian, another
problem arises from the occurrence of R;(R) in the denominator in (6.34). For ener-
gies for which the radial solution R; happens to be zero or nearly zero on the border
of the muffin tin spheres, the matrix elements become very large or even diverge,
which may cause numerical instabilities. In the linearised APW (LAPW) method, an
energy-independent Hamiltonian is used in which the radial solution does not occur
in a denominator, and therefore both problems of the APW method are avoided.
The APW method is hardly used now because of the energy-dependence problem.
The reasons we have treated it here are that it is conceptually simple and that the
principle of this method lies at the basis of many other methods. Further details on
the APW method can be found in Refs. [14—16].

6.5.2 An APW program for the band structure of copper

Copper has atomic number Z = 29. We consider only the valence states. The core
states are two s- and two p-states, and theeleven valence electrons occupy the third
s-level and the first d-levels. Its crystal structure is fcc (Figure 6.1) with lattice
constant @ = 6.822 a.u. The unit cell volume € is equal to 3a>/4. The reciprocal
lattice is a bce lattice with basis vectors

—1 1
2 2 2
b= (1) b)), b
a a

1 1

The Brillouin zone of this lattice is shown in Figure 6.9.

(6.36)
4\
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Figure 6.9. Brillouin zone of the fcc lattice.

For a given vector k in the Brillouin zone, we construct the APW basis vectors
as q = k + K. The norm of a reciprocal lattice vector K = [b; + mb, 4 nbs is
given by

2
K| = /32 + 3m? + 3u — 2im — 2nl — 2nm. (6.37)
a

We take a set of reciprocal lattice vectors with norm smaller than some cut-off
and it turns out that the sizes of these sets are 1, 9, 15, 27 etc. A good basis set
size to start with is 27, but you might eventually do calculations using 113 basis
vectors, for example. The set of such reciprocal lattice vectors is easy to generate
by considering all vectors with /, m and n between say —6 and 6 and neglecting all
those with norm beyond some cut-off.

The program must contain loops over sets of k-points in the Brillouin zone
between for example I and X in Figure 6.9. The locations of the various points
indicated in Figure 6.9, expressed in cartesian coordinates, are

27 0 2 } 27 3/4
=—10 H X=—10 5 K=— 3/4 >
4 \o 4 \o “\o
(6.38)
27 1 27 172
w=""l12], L=""| 12
“\o “\ 12

For each k, the matrix elements A;;, Bj; and Cyj in (6.35) are to be determined. Good
values for the cut-off angular momentum are /3x = 3 or 4. Then, for any energy
E, the matrix elements of HH according to (6.34) can be found by first solving the
radial Schrodinger equation numerically from » = 0 to r = R and then using the
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Figure 6.10. Band structure of fcc copper. The Fermi energy is shown as a
horizontal dashed line.

quotient R} (R)/R;(R) as obtained from this solution in (6.34). Our program will
not be self-consistent as we shall use a reasonable one-electron potential.’

It is best to use some numerical routine for calculating the determinant. If such
a routine is not available, you can bring your matrix to an upper-triangular form
as described in Appendix A8 and multiply the diagonal elements of the resulting
upper triangular matrix to obtain the determinant.

If you have a routine at your disposal which can calculate the determinant
for each k-vector and for any energy, the last step is to calculate the eigenval-
ues (energies) at some k-point. This is a very difficult step and you are advised
not to put too much effort into finding an optimal solution for this. The prob-
lem is that often the determinant may not change sign at a doubly degenerate
level, and energy levels may be extremely close. Finally, changes of sign may
occur across a singularity. A highly inefficient but fool-proof method is to cal-
culate the determinant for a large amount of closely spaced energies containing
the relevant part of the spectrum (to be read off from Figure 6.10) and then scan
the results for changes of sign or near-zeroes. It is certainly not advisable to try
writing a routine which finds all the energy eigenvalues automatically using clever
root-finding algorithms.

% The potential can be found on www.cambridge.org/9780521833469. There are in fact two files in which
the potential is given on different grids: the first one is a uniform grid and the second an exponential grid
considered in Problem 5.1. Details concerning the integration of the Schrodinger equation on the latter are to be
found in this problem.


http://www.cambridge.org/9780521833469

6.6 The linearised APW (LAPW) method 141

PROGRAMMING EXERCISE
Write a program for calculating the determinant |H — E|.

Check Check that the determinant vanishes near the values which you can read
off from Figure 6.10 for a few points in the Brillouin zone.

The Fermi level for the potential supplied lies approximately at 0.29 a.u., so
one conclusion you can draw from the resulting band structure is that copper is a
conductor as the Fermi energy does not lie in the energy gap.

You will by now have appreciated why people have tried to avoid energy-
dependent Hamiltonians. In the next section we shall describe the linearised APW
(LAPW) method which is based on the APW method, but avoids the problems
associated with the latter.

6.6 The linearised APW (LAPW) method

A naive way of avoiding the energy-dependence problem in APW calculations
would be to use a fixed ‘pivot’ energy for which the basis functions are calculated
and to use these for a range of energies around the pivot energy. If the form of the
basis functions inside the muffin tin varies rapidly with energy (and this turns out
to be often the case) this will lead to unsatisfactory results.

The idea of the LAPW method [17, 18] is to use a set of pivot energies for
which not only the solution to the radial Schrédinger equation is taken into account
in constructing the basis set, but also its energy derivative. This means that the
new basis set should be adequate for a range of energies around the pivot energy
in which the radial basis functions can be reasonably approximated by an energy
linearisation:

R(r,E) = R(r, Ep) + (E — E,)R(r, E,). (6.39)

Here, and in the remainder of this section, the dot stands for the energy derivative, as
opposed to the prime, which is used for the radial derivative — for any differentiable
function f(r, E):

f(r.E)= %f (r,E) and (6.402)

f'(r,E) = %f (r,E). (6.40b)

The energy derivatives of the radial solution within the muffin tins are used alongside
the radial solutions themselves to match onto the plane wave outside the spheres.
Note that the APW Hamiltonian depends on energy only via the radial solutions
Ry, so if we take these solutions and their energy derivatives R, at a fixed energy
into account, we have eliminated all energy dependence from the Hamiltonian.
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In comparison with the APW method, we have twice as many radial functions
inside the muffin tin sphere, R; and Ry, and we can match not only the value but
also the derivative of the plane wave exp(iq - r) across the sphere boundary. We
write the wave function inside as the expansion

Puik () = Y [AmRi(r; Ep) + BinRa(r; Ep)1Y,, (0, $) (6.41)

Im

and the numbers Ay, and By, are fixed by the matching condition. There is no energy
dependence of the wave functions, and they are smooth across the sphere boundary,
but the price which is paid for this is giving up the exactness of the solution inside
the sphere for the range of energies we consider.

We end up with a generalised eigenvalue problem with energy-independent over-
lap and Hamiltonian matrices. These matrices are reliable for energies in some range
around the pivot energy. It turns out that the resulting wave functions have an inac-
curacy of (E — Ep)2 as a result of the linearisation and that the energy eigenvalues
deviate as (E — Ep)4 from those evaluated at the correct energy — see Ref. [18].

The expressions for the matrix elements are again quite complicated. They
depend on the normalisations for R; and Rl which will be specified below. For
the coefficients Aj, and By,, the matching conditions lead (with q = k + K,
q =k +K)to:

Am(qQ) = 4nRA'QTV2YL (0, dp)ar; (6.42a)
a; = ji(gRRy(R) — ji(qR)R)(R):; (6.42b)
Bin(q) = 47 R*'Q712Y] " (6,, 0 (6.42¢)
bi = ji(qRR 1(R) — jj(gR)R(R). (6.42d)

The matrix elements of the overlap matrix and the Hamiltonian can now be
calculated straightforwardly — the result for the overlap matrix is [18]

, 47 R* A A ] ]
Sk = UK —-K') + S Z(Zl—l—l)Pl(q'q)sK’K/ with (6.43a)
1
sk = a@ai(q) + bi(@)bi(g)N; and (6.43b)
47 R? j;(KR
UK) = Sk.0 — ’; ”(K ), (6.43¢)

Here, NV, is the norm of the energy derivative inside the muffin tin (see below). The
Hamiltonian is given by

47 R?

Hgkk =(q-q) UK -K) + R

@I+ DPEsg g+ (6.44a)
l
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with

v = RIBRRIR))(qR)ji(q'R) + ji(gR)j)(g'R)]
— [RIRR)(R)j1(qR)j1(q'R) + RiI(RYR(R)j)(qR)j)(¢R)].  (6.44b)

We see that a pleasing feature of these expressions is that we do not get APW-type
numerical inaccuracies due to radial solutions vanishing at the muffin tin radius and
occurring in the denominator of the expressions for the matrix elements.

Finally, we must find out how the energy derivative of the solution of the
radial Schrédinger equation, Ry, can be calculated. By differentiating the radial
Schrodinger equation

(H-—E)YRy(r;E) =0 (6.45)

with respect to E, we find that R, satisfies the following differential equation:
(H — EYRi(r; E) = Ry(r; E). (6.46)

This second order inhomogeneous differential equation needs two conditions to fix
the solution. The first condition is that Rl (like R;) is regular at the origin which
leaves the freedom of adding aR;(r) to it, for arbitrary o (R; is the solution of
the homogeneous equation). The number « is fixed by the requirement that R; is
normalised:

R
/O dr r*RI(r;E) = 1 (6.47)

which, after differentiation with respect to E, leads to
R .
/ PRi(r)Ry(r)dr =0 (6.48)
0
i.e. R; and 721 are orthogonal. The norm of 7.31,
R .
Ny = / drr?|Ry(r) |2, (6.49)
0

which occurs in the definition of the overlap matrix, is therefore in general not
equal to one. It can be shown that the normalisation condition (6.47) leads to the
following boundary condition at the muffin tin bounday (r = R):

RRIBRIR) — RBORR)] = 1; (6.50)

see Problem 6.5.

The interested reader might try to write a program for calculating the band
structure of copper using this linearisation technique. The determination of the
eigenvalues will be found much more easily than in the case of the APW calculation,
as the Hamiltonian is energy-independent.
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¥,

Figure 6.11. The principle of the pseudopotential. The wave functions of the full
potential (W) and of the pseudopotential (W,) are equal beyond some radius.

6.7 The pseudopotential method

We have already seen that the main problem in calculating band structures is the
deep Coulomb potential giving rise to rapid oscillations close to the nuclei. In the
pseudopotential method this problem is cleverly transformed away by choosing a
potential which is weak. It is not immediately obvious that this is possible: after
all, the solutions of the problem with a weak and with a deep potential can hardly
describe the same system! The point is that the pseudopotential does not aim at
describing accurately what happens in the core region, but it focuses on the valence
region. A weak potential might give results that outside the core region are the same
as those of the full potential.

In order to obtain a better understanding of this, we must return to Chapter 2,
where the concept of phase shift was discussed. The phase shift uniquely determines
the scattering properties of a potential — indeed, we seek a weak pseudopotential
that scatters the valence electrons in the same way as the full potential, so that the
solution beyond the core region is the same for both potentials. An important point
is that we can add an integer times 7 to the phase shift without changing the solution
outside the core region, and there exist therefore many different potentials yielding
the same valence wave function. To put it another way: if we make the potential
within the core region deeper and deeper, the phase shift will increase steadily,
but an increase by 7 does not affect the solution outside. The pseudopotential is a
weak potential which gives the same phase shift (modulo ) as the full potential
and hence the same solution outside the core region. The principle is shown in
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Figure 6.11 which shows two different potentials and their solutions (for the same
energy). These solutions differ strongly within the core region but they coincide in
the valence region.

What the pseudopotential does is to remove nodes from the core region of the
valence wave function while leaving it unchanged in the valence region. The nodes
in the core region are necessary in order to make the valence wave functions ortho-
gonal to the core states. If there are no core states for a given /, the valence wave
function is nodeless and the pseudopotential method is less effective. Such is the
case in 3d transition metals, such as copper.

The phase shift depends on the angular momentum / and on the energy. A pseudo-
potential that gives the correct phase shift will therefore also depend on these
quantities. The energy dependence is particularly inconvenient, as we have seen in
the discussion of the APW method. In Section 6.7.2 we shall see that this depend-
ence disappears automatically when solving another problem associated with the
pseudopotential: that of the distribution of the charge inside and outside the core
region. More details will be given in that section, and we restrict ourselves here to
energy-independent pseudopotentials.

There is a considerable freedom in choosing the pseudopotential as it only has
to yield the correct phase shift outside the core region, and several simple para-
metrised forms of pseudopotentials have been proposed. These are fitted either to
experimental data for the material in question (the semi-empirical approach), or
to data obtained using ab initio methods for ions and atoms of the same material,
obtained using full-potential calculations.

We give two examples of pseudopotentials.

e The Ashcroft empty-core pseudopotential [19]:

Ze
r>re

Vi =1 r° : (6.51)
0 r<re
Z is the valence of the ion and there is only one parameter to be adjusted: the
cut-off length r.. Although its simplictity is very attractive, this potential does
not perform very well for wide energy ranges, although it reproduces some
material properties reasonably well.
o The Fourier-component parametrisation

V) = Z;{VKeiK'R. (6.52)

where the sum )" is over a limited set of K-vectors. This parametrisation is
convenient for the plane wave basis set which is (nearly) always used in
pseudopotential calculations. In the next subsection we shall use this form of
the pseudopotential in a band structure program for silicon.
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Figure 6.12. The diamond structure.

There are numerous review articles on the pseudopotenial method and readers who
are interested in the subject are referred to those by Heine [10], Brust [20] and
Pickett [21].

6.7.1 A pseudopotential band structure program for silicon

In this section, the construction of a pseudopotential program for silicon is
described. For details, the review by Brust [20] and the paper by Chelikowsky
and Cohen [22] may be consulted.

Silicon is considered here in the diamond structure which is a fcc lattice with,
at each lattice point, two atoms at relative positions 1/8(a; + a + a3) (see
Figure 6.12). We have already described the fcc crystal structure and the special
points in the first Brillouin zone in Section 6.5. The lattice constant is 5.43ag. The
pseudopotential is given in the convenient form of a few Fourier components (see
above). We restrict the number of coefficients by assuming the pseudopotential to
be a repetition of spherically symmetric potentials in cells surrounding the atoms,
which leads to the following form of the Fourier components of the pseudopotential
Vps arising from a single atom per cell:

1 .
Ve (K) = —— / &r ViR (e T, (6.53)
P Veell Jeenl P

The Fourier components depend only on the length of the wave vector K, and this
property reduces the number of independent Fourier coefficients.

Another reduction comes about when calculating the Fourier compon-
ent of the sum of the potentials arising from the two atoms at positions
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d;» = £1/8(a; +ay + a3) relative to the lattice points:
VI(K) = VIV (K) B 4 e h), (6.54)

The sum of the exponentials on the right hand side is known as the structure factor.
Therefore, we find for a vector K = 2?21 n;b; that

VI (K) = cos[ (n) + ny + n3) /41VE (K). (6.55)

It follows immediately that the pseudopotential components vanish if the sum of
the n; is an odd multiple of 2: the structure factor causes extinction of certain wave
vectors. Furthermore, we can choose the component Vétsm) (K = 0) to be equal to
zero, as this induces a mere shift in the energy offset. Collecting all bits and pieces,
we are left with the following values of |K| = K for which the pseudopotential
does not vanish (apart from a factor 472 /a?):

K?=23,8,11,... (6.56)

and only these first three components are taken into account in the pseudopotential.
This means that only three numbers are to be fitted and the whole band structure
follows from them.

We shall not carry out the fitting procedure but quote the resulting values for the
potential from literature, resulting from a fit to optical transition energies [22] —
they read (in atomic units):

VIO (V/3) = —0.1121; Vi (V/8) = 0.0276; VIV (v/11) = 0.0362.  (6.57)

The matrix element of the pseudopotential Hamiltonian for plane waves k + K
and k + K' is given by (AK = K — K)

1 T
Hix = 51k + K%k + V(IAK]) cos [(AKl +AKy + AKg)Z] (658)

The diagonalisation of the resulting matrix is straightforward: the plane waves are
orthogonal and hence no overlap matrix has to be taken into account. You can use
basis sets of size 9, 15, 27 etc., just as in the APW case. In Figure 6.13 the band
structure is represented for a basis with 113 states.

The band structure in Figure 6.13 matches the results of calculations using more
sophisticated methods very well, which is remarkable if you note that only three free
parameters enter into the potential. The fact that the band gap comes out well is not
surprising since it has been used in the fitting procedure. It turns out to be 1.17 eV,
and you might compare this with kg7 at room temperature in order to estimate
the fraction of electrons excited into the conduction band using the Fermi—Dirac
distribution.
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Figure 6.13. Band structure of silicon.

6.7.2 Accurate energy-independent pseudopotentials

Suppose we have a pseudopotential that gives exactly the same phase shift as the
full potential. In the valence region, the wave functions have the same shape as
for the full potential, but their normalisation may differ: the wave functions in
the valence region for the two potentials are the same only up to a scaling factor.
The point is that if two normalised wave functions differ within the core region
while being similar (up to a multiplication constant) in the valence region, their
respective charges will be distributed differently among core and valence regions.
The resulting charge difference is called orthogonality hole and one should correct
for it, for example by rescaling the full pseudo-wave function.

It turns out that the normalisation of the states is related to energy dependence of
the pseudopotential. It can be shown (see Problem 6.1) that for the full potential, the
charge inside a sphere around the nucleus with radius R carried by the solution v
of the Schrodinger equation evaluated at energy E is related to the energy derivative
of the wave function at R.:

/ Eriy @) = /dQR2 W (r)——— 92y (r) (6.59)
core 2 oroE r=R.

where the integration is carried out over the spherical angles, d€2 = d cos #dg. This
is another instance of the relation between norm and energy derivative which was
previously encountered in connection with the energy derivatives of the solution of
the radial equation in the LAPW wave functions in Section 6.6.
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If we now consider an energy-dependent pseudopotential Vs with eigenstate ¢,
we obtain, aside from the surface integral on the right hand side, an integral over

the energy derivative of Vps:
1 3V( ,E)
Brio@)P = fdszR2¢<> +/ SURAAULIPYT]
»/C.OIG 2 a 8E core
(6.60)

The first term on the right hand side is equal to the right hand side in (6.59) if we
fix the amplitude of ¢ to be equal to that of v at R.. Therefore, if both solutions
have the same amount of charge inside the core region, the second term on the
right hand side must vanish, which implies that the pseudopotential is independent
of energy. This means that if we have solved the orthogonality hole problem, we
have obtained an energy-independent pseudopotential, so that we have solved two
problems at once.

Bachelet, Hamann and Schliiter [23] have constructed accurate norm-conserving
pseudopotentials and we refer to their paper and to the review article by Pickett [21]
for further details. Goedecker, Teter and Hutter [24] have developed a particularly
convenient type of pseudopotential which, being based on Gaussian functions,
allows for analytic Fourier transforms. We shall use this pseudopotential in the
following section in the construction of a fully self-consistent pseudopotential
program.

6.7.3 Building a self-consistent pseudopotential program

The construction of a fully self-consistent pseudopotential program is quite elabor-
ate — we shall therefore restrict ourselves to the case of a cubic unit cell and instead
of summing over all points in the Brillouin zone, we shall only consider the I"-point
(i.e. reciprocal vector K = 0). This restriction is often applied when dealing with
molecules: the cell is taken big enough to ensure that the electron density vanishes
near the cell boundary. This choice therefore renders our program more suitable
for molecular systems or clusters than for periodic solids. However, the method for
periodic systems uses very similar techniques, and the interested reader is invited
to extend his or her program to that case.

It is important to build up the program in a step by step fashion and check each
step very carefully. The steps are described below. We closely follow the setup of
the CPMD program, described in the review paper by Marx and Hutter [25]. For
more details concerning the program and further background, that paper should be
consulted.

We start with some remarks concerning definitions and conventions relating
to Fourier transforms and choice of basis functions. For simplicity, we restrict
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ourselves to cubic unit cells. Although all quantities are expanded in a basis of
plane waves with wave vectors on a grid in reciprocal space, we cannot always use
periodicity on this grid. Consider for example the potential of a nucleus or ion core,
located at position rp in the unit cell. We expand this potential using a grid of wave
vectors
2

K= f(nx, ny,n;) (6.61)
with 7, running from 1 to N, L/N being the resolution in real space. If we represent
the potential in real space on the real-space grid, its Fourier transform is periodic
in K-space, with a period 27t N /L in each Cartesian direction. Usually we are given
the (Fourier transform of the) pseudopotential for an ion core located at the origin.
If the atom is actually located at some place rg, the Fourier transfrom acquires an
extra structure factor exp(—iK - rg). If ro does not lie on the real-space grid, this
structure factor is nonperiodic in reciprocal space!

Another example of a nonperiodic operator in reciprocal space is the kinetic
energy, for which we know the Fourier transform of the operator in continuum
space: -

T = WK (6.62)
2m
(in atomic units, this reduces to K2 /2). This expression is cut off at some maximum
wave vector beyond which the components of the orbitals are supposed to be very
small. Note that we do not use the periodic discrete form of the kinetic energy (with
Fourier transform 3 — cos(Kya) — cos(Kya) — cos(K,a); a = L/N); the form (6.61)
is a more accurate representation.

As a basis, we use Fourier waves eKT / Vo (remember that 2 is volume of the

unit cell). An orbital ¢ is then expanded in these basis vectors as

¢(j)(r) ZC(I) iKr (6.63)

The coefficients cI(?

normalised according to

come out of a diagonalisation routine and are usually

Sl =1. (6.64)
K
Therefore we have:
, N3
Z ?(r)|? = Z > el T~ (6.65)
r KK’

The density due to all orbitals is therefore given by
nr) =Y fle? (6.66)
J
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where f; is the occupancy, which is usually the Fermi-Dirac function with an
additional factor of 2 in the closed-shell case. To check that the normalisation
is indeed correct, we calculate the total charge for the closed-shell system at 7 = 0:

f n(r) d3r=2Z|¢@<r>|2d3r—2—ZZ|¢@<r>| =Na  (6.67)

Joce Joce

where N is the number of electrons (the factor 2 in front of the second and third
expressions is due to the spin degeneracy). Note that the prefactor $2/N3 results
from the transition of the integral to a sum.

We can formulate Fourier transforms in continuous, real space by writing oper-
ators and vectors with respect to the basis functions exp(iK - r)/+/€. In that case,
the discrete representation converges to the continuum one for fine grids, and there
is no ambiguity concerning the prefactors in the Fourier transforms (powers of €2).
The only exception is the density, which is not a vector or operator in Hilbert space,
and we have therefore some freedom in the definition of its Fourier transform. We
adopt the convention usually taken in this field, writing

n(r) = Z n(K)e'Xr. (6.68)

K
It then follows from Egs. (6.63) and (6.66) that

n(K) = f n(r)e KT & = — Z f Z e el (6.69)

An important issue concerns the truncation of the sums over K. The point is that
the potential is expressed in terms of the density, and not of the wave function. Now
suppose that we can safely assume that the wave function vanishes for K-vectors
beyond some maximum value Kpax. In that case, from working out the density in
real space,

n@ =Y [P =Y £ cfeXrole K
J

j KK’
= — Z]‘]‘ Z CK+K,C;<((/])61KI' _ Zn(K)eiK-r’ (670)
Jj KK K

we see that n(K) contains contributions K — K’ running up to 2Knax! Therefore,
the potential also contains nonzero components for K up to 2Kpax. To see that these
terms occur in the Hamiltonian matrix, we consider now a local potential: this is a
potential which depends only on r. Fourier transforming leads to a potential Vk k-
in reciprocal space which is translationally invariant:

Vkk = V(EK-K)). (6.71)
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Even if both |K| and |K’| are smaller than Ky, their difference can attain lengths
up to 2Kmax!

A two-dimensional representation of the situation is depicted in Figure 6.14,
where the sphere of radius Kn,x is indicated as a dashed circle, called C1. The
kinetic energy is evaluated only for values of K within this circle. When evaluating
the kinetic energy, only the points lying inside C1 must be taken into account.
However, the Fourier transorm of the density, which satisfies periodicity in K-space,
has nonzero components for points inside the bigger circle C2.

Now let us again consider the contribution to the Hamiltonian of a local potential.
The matrix elements are given by

1 —i(K—K)-r 3.0 1 —i(K-K')-r /
VK,K/ZE/e V(r)drmer:e V() =V(EK -K).

(6.72)
The last expression on the right hand side is the discrete Fourier transform of the
potential in real space. We regularly must perform Fourier transforms, for which
we use the FFT algorithm (see Appendix A9). There exist packages containing FFT
routines, and we mention here the FFTW package (http:// www.fftw.org).
Often, these packages have their own type definitions for real and complex numbers,
which should then be used throughout your program.

The simplest possible nontrivial case is the one with seven wave vectors in C1:
one in the origin and two along each of the three Cartesian axes. These are used for
the Hamiltonian and the wave functions. The wave vectors for which the density is
evaluated run over a grid with a linear size at least four times as large as the cut-off
wave vector Knax (see Figure 6.14), which would suggest a unit cell with a side of
four grid points. We take the grid size one larger (i.e. a 5 x 5 x 5 grid) in order
to avoid the coincidence of point pairs like (2,0, 0) and (—2, 0, 0) for functions or
operators which are nonperiodic in reciprocal space (such as the pseudopotential
of an ion which is not located at a real-space grid point, see above).

6.7.4 Free particle in a box

We start by considering a free particle in the box. The Hamiltonian only contains

the kinetic term:
2

K /
Hyk = —-3(K - K). (6.73)

For a box of size L x L x L, the seven vectors K we take into account are the null
vector and the vectors with size 27 /L along the positive and negative Cartesian
axes. The eigenvalues are therefore equal to 0 (with multiplicity 1) and 27%/L?
(with multiplicity 6). If we put four electrons in the box, the total energy is given by


(http://www.fftw.org
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uc

Gridsize 1

Figure 6.14. Two-dimensional representation of the reciprocal grid. The dashed
sphere C1 contains the wave vectors of the wavefunctions — its periodic images
are also shown as solid circles. The bigger circle C2 contains the reciprocal wave
vectors for representing the electron density, and we need all those points for
accurately constructing the Hamiltonian. The cell UC is a unit cell of the reciprocal
lattice.

472 /L?, as two of these have energy 0 and the other two are divided over the second
level. In fact, in each of the six degenerate levels, we should put 1/3 electron because
of symmetry. This is an example of fractional filling resulting from degeneracy.

PROGRAMMING EXERCISE

Write a program which diagonalises the Hamiltonian for a particle confined
to a box.

Check For the density in a box of size 5 a.u. we find in this case that the density
is homogeneous and equals 0.032 = 4/125. This is not surprising as we put four
electrons in a box of volume 5° = 125.

6.7.5 Adding a pseudopotential

The pseudopotential is part of the total potential felt by the electrons. The pseudo-
potential consists of a local and a nonlocal part. A local potential can be evaluated
asin Eq. (6.71). The local pseudopotential potential depends only on r — rgy, where
I is the centre of an atom. We have:

Vkk = V(K —K') = ¢ {K-K)mo / e IK=KITY (1) @3, (6.74)
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Note that K and K’ are indices of the Hamiltonian — therefore they lie inside the
C1 in Figure 6.14. Their difference will be inside C2.

For the j-th component (j = x, y,z) of K, K; = 27rn;/L, the periodic image lying
on the grid in Fig. 6.14 is found as follows:

Kj = 2w (n; mod GridSize), (6.75)

where [...] denotes the integer part.

For rp on the real-space grid, the structure factor in front of the integral is periodic
in K-space. However, an atom does not know how we define our grid and may be
located in between grid points (of course, with only one atom in the cell, we could
always move the atom to R = 0). This nonperiodicity of the structure factor is
responsible for the difference between potential at the points (2, 0,0) and (—2, 0, 0)
(in units of the reciprocal grid constant) — hence we cannot take a grid size of 4
units, but instead need a 5 x 5 x 5 grid, as mentioned above.

We now give a specific form of the pseudopotential. We shall use the Goedecker—
Teter—Hutter (GTH) potential described in refs. [24] and [26]. This potential for a
core, located at the origin, with s and p electrons has the form:’

V(ra l‘/) = Vcore(r) + Vloc (l‘)5(l’ - l‘/) + Vnonloc(r, l‘,) (676)
with
v, ——Ze—fferf< ’ ) (6.77a)
core — r \/Eéz ) .
Vioe(r) = exp[—(r/£)?/2] x [C1 + Ca(r/8)*], (6.77b)
and

2
Vaonloe (1, 1) = Y YO @)Y (mhp? (') ¥§™ ()

i=1

+ > @l Ohip )Y, #) (6.78)
m=1,0,—1

In these expressions, &, C;, hf are parameters, and the pf are the functions

Hle—(1/20/m)?

by =2 d 6.79

PO =N s T ©7)
1424~ (1/2)(r/r)?

) =v2—— 2t (6.80)

FH12 JTT+772)

® The form given here is somewhat simpler than the full GTH potential. For the atoms considered here,
however, the present form is sufficient.
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Table 6.1. Parameters for the GTH pseudopotential

Hydrogen Silicon
£ 0.2 0.44
Ci —4.0663326 —6.9136286
C, 0.6778322D0 0.0
ri=o - 0.4243338
n=0 - 3.2081318
n=0 - 2.5888808
ri=1 - 0.4853587
n=0 - 2.6562230

Source: [24,26]
Only values for hydrogen and silicon are listed.

The Gamma-function in the denominators ensures proper normalisation:

/ pinplryrtdr = 1. (6.81)

Let us spend a few moments studying this potential. The very first term,
—Zer /rerf (r/2£), is the Coulomb potential of a Gaussian charge distribution with
total charge Z.¢r and width &: for large arguments, that is, far from the ion core,
the error function erf tends to 1. The remaining terms are short-ranged and allow
therefore for refinement of the shape of the radial charge distribution. The nonlocal
term is, as usual, a projection onto the different / subspaces. For a complete list of
pseudopotential parameters, we refer to Refs. [24] and [26]; here we give those for
hydrogen and silicon — see Table 6.1.

The Fourier transform of the GTH potential can be calculated analytically,
yielding the following closed forms.

Zogr e~ KE?/2

Veore (K) = _4776 K2 > (6.82)
3
Vioe(K) = ¢<2n>3%e—<’(f>2/2{c1 + Caf3 — (K&)*1} (6.83)
and
2 A A
Vaontoe (K, K') = >~ Y0 (K)p{ (K)i{p{ (K" Y™ (K')
i=1
— > YaRp K)RpLK)Y, (K. (6.84)

m=1,0,—1
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The projector functions have the form pf:

1
P = o 2y 4~ Krs/2, (6.85a)
Py = Lsrs,/%n”‘*e—“ﬁ)z/z[s — (Kry)?],and (6.85b)
VLY 15
1
Pl = =81t/ r3—1n5/4e—<’<’s>2/21(. (6.85¢)

This pseudopotential can be directly incorporated into the Kohn—Sham
Hamiltonian. It does not depend on the density, so if we simply want to calu-
late the energies and eigenfunctions of a particle moving in the pseudopotential,
we just have to diagonalise the Hamiltonian which consists of the kinetic energy
plus pseudopotential. A self-consistency cycle is not necessary.

The Fourier transform of the local part of the pseudopotential for a core located
at R,, must be multiplied by exp(—iK - R;,). The nonlocal part must be multiplied
by exp[i(K — K') - R,].

Check Doing this for a cubic cell with an edge length of 5 a.u. containing one
hydrogen-core and an energy cut-off of (1/ 2)1(3lax = 1.3, we obtain the eigen-
values —0.03572203 (once), 0.68175686 (once), 0.80555307 (three times) and
0.83735807 (twice). If we fill all seven levels, the density should be 0.05600 on
any real-space grid point. Try this first for a hydrogen at the origin, and then
some arbitrary position within the cell.

6.7.6 Exchange-correlation and Hartree potentials

The exchange-correlation and Hartree potentials are density-dependent; therefore,
including them makes a self-consistency cycle necessary. We shall first consider the
general problem of including density-dependent potentials into the problem. First,
we must have the density at our disposal. After diagonalising the Hamiltonian, we
calculate the Fourier transforms ¢’ (r) of the eigenfunctions cl(é) asin (6.63). Then
we calculate the density on all real-space grid points inside the cell according to
(6.66). Finally, we calculate the density in reciprocal space according to

n(K) = ]% Z n(rye KT, (6.86)

For the exchange-correlation potential, we use the GTH parametrisation of the
pseudopotential of Perdew and Wang [27]. This is a form of Padé approximant:
4 i—1
1 air’
= ——Z’j S (6.87)
im1 bir§

Exc
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Table 6.2. Parameters for the GTH parametrisation
of the exchange-correlation energy.

ar 0.4581652932831429 by 1.0

ay 2.217058676663745 by 4.504130959426697
a3z 0.7405551735357053 b3 1.110667363742916
as  0.01968227878617998 b4 0.02359291751427506

Here, ry = [3/(47n)]'/3 is the radius of the spherical volume per atom; the numbers
a; and b; are given in Table 6.2. The exchange-correlation potential is given as the
derivative of the energy with respect to n. It must be calculated in real space, where
it is periodic (as it depends on the density, which is periodic), and then Fourier-
transformed so that it can be added to the (K-space) Hamiltonian. The procedure is
therefore to first fill a grid with the values of V. (r). This is then Fourier-transformed
to Vxc(K). Then, the contribution Vi (K, K’), where K and K’ lie inside the circle
C1 of Figure 6.14, is found by first translating K — K’ to a point inside the unit cell
UC of the reciprocal grid, and then taking for Vi (K, K’) the Fourier-transformed
exchange-correlation potential at that reciprocal grid point.
The Hartree potential

n(r’)
VH(r) = / md?)r/ (688)
can be Fourier-transformed to give

Va(K,K) = Vg(K - K') = n(K — K. (6.89)

T
K — K'|2
For the density, the difference K — K’ has to be translated to lie inside the unit cell
UC (see Figure 6.13), just as in the case of the exchange correlation potential. For

the denominator, we simply take the norm of the smallest periodic image of the
difference K — K'.

Check If we incorporate both the exchange-correlation and the Hartree poten-
tials, we have a complete self-consistent pseudopotential Kohn—Sham program.
For the calculation with one hydrogen atom in a cubic cell of size 5 and a cut-off
of 1.3 atomic units, we obtain the energy spectrum:

—0.468131; 0.249348; 0.373144; 0.373144;
0.373144; 0.404949; 0.404949.
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6.7.7 Evaluating the energy

If you have obtained the correct spectrum, the density should necessarily be correct
too. One major task remains, however: evaluating the total energy. The energy can
be evaluated either by adding all the Kohn—Sham eigenvalues and subtracting the
appropriate corrections as in Eq. (5.3), or by using the Kohn—Sham eigenfunctions
to evaluate all the contributions to the energy as in (5.17) one by one. We take the
second approach. First of all, the kinetic energy is given by

Ein =Y _f(E) Y 1cVPK?/2. (6.90)
Jj K
The exchange-correlation energy is evaluated in real space:

Exe =Y exe(r)n(r), (6.91)

where the sum is over the real-space lattice points, or in reciprocal space, where it
reads:

Ep = Z e(K)n*(K). (6.92)
K

Following Marx and Hutter [25], we combine the electrostatic contributions from
the electrons and the ion cores. Remember that the core part of the pseudopotential,

Veore = — Zn erf |l'——Rn| 5 (6.93)
Ir — Ry V28

derives from a Gaussian charge distribution:

Meore(F) = ——21 2 exp | — 1 (r — R”)2 : (6.94)
(V2&,)3 2 3

The Fourier transform of the core density is

Z, 1 _iK.
eore (K) = =2 exp {—5@102} e R, (6.95)
For the total charge density we have

1ot (K) = 11 (K) + ncore (K). (6.96)

The electrostatic energy resulting from the total charge density is

Eps = l/ nel (D)nei (r') B d3r/+/ncore(r)nel(r,) &Br a3
2 r —r’ | Ir — 1’|

= Z |R R/ (6.97)
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where the first term is the Hartree electrostatic energy due to the electrons, the
second term is the interaction between the electrons and the core, and the last term
is the core—core interaction.

This last term causes problems as we must sum it over all periodic images of the
unit cell for which we are performing the calculations (for a discussion concerning
convergence of this type of expression, see Section 8.7.1). These problems can
be avoided by replacing the last term by the electrostatic interaction of the core
charges. This is done by adding and subtracting a term

_ l/ Neore (T)Mcore (1)
) r —r/|

to the expression for the total energy, Eq. (6.97). The added term, together with the
first two terms in that equation, yields a contribution

1 / Ngot (1) 740t (1)

2 It — 1|

&drdr (6.98)

5 d*r &3 (6.99)

The remaining terms can be written as a convergent sum [25], leading to

Eps = l/ Ao (1) 7yt (1) Brddy
2 Ir —r/|
1 ZnZy IRy — Ry| z2

+ = —erfc | — | — e 6.100
2§|Rn_Rn,|eC het+ed) 2iagm G100

The second term on the right hand side is due to the overlap of the core distributions,
and the third term corrects for the self-energy (that is, the energy of a core with
itself). Both of these are contained in the first term.

For periodic boundaries, we can reformulate this expression in Fourier space,
where it reads:

ot (K) |2
Egs =2n Q2 Z % + Eovil — Eselt, (6.101)
K0

where ny (K) is given above (Eq. (6.95)) and where

ZnZy R,—R,—L
Eoi=Y.Y nZw ppe | R Rw L (6.102)
L / IR, — R,y — L /2(&2 + gZ)
n,n n n

where L is an integer linear combination of the sides of the unit cell, the second
sum is restricted to n < n’ for L = 0, and

72
Egeif = Z 2«/%?5”' (6.103)
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Table 6.3. Contributions to electronic energy of
hydrogen atom.

Contribution Value

Kinetic 0.15923087
Short range part of pseudopotential —0.021083 18
Local pseudopotential —0.244116 10
Exchange correlation —0.21059925
Hartree energy 0.024 35153
Nonlocal pseudopotential 0.000 000 00
Local core energy 1.12582002
Self-energy 0.92508958
Electrostatic overlap 0.000 000 00
Total energy —0.55783594

Finally, we must include the energy contributions due to the pseudopotential.
These do not depend on the charge distribution and they contain the local and the
nonlocal terms. The local contribution is easily evaluated using

Elocal = f Z Vlocal,n(r — R,)n(r) d3r
=Q) > ViecalnK)e " Fn*(K). (6.104)
n K

where n runs over the atoms in the cell. The nonlocal energy reads:

Enonlocal = Zﬁ Z Z( ]]m lm ][m (6.105)

n lmen

where [, men denotes the orbital with quantum numbers /,m belonging to atom
number n, and

= e KR (K) Yy, (K)pl, (K). (6.106)
K

Now that you have everything in place, you can calculate the electronic energy
of the hydrogen atom. It is built up from the contributions shown in Table 6.3.

6.8 Extracting information from band structures

Apart from ground state energies, from which cohesion energies and lattice spacings
can be determined, and those energy levels that can be measured directly using
spectroscopy experiments, it is useful to determine the density of states, n(E),
which can also be determined experimentally. This is defined as the number of levels
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between E and E + dE, divided by dE. Another quantity of interest is the charge
density, which is needed for calculating the Hartree and exchange and correlation
potentials in the DFT self-consistency loop. The charge density is given by

EF
dE n(r, E), (6.107)
[e.e]

nm) = W@ = f
k.n

where the sum in the second expression is over the occupied levels, i.e. those with
energy below the Fermi energy EFr.

The charge density can also be found from an integration over the energy of the
local density of states, which is defined as the charge density resulting exclusively
from states at energy E. An elegant way of finding this quantity using Green’s
functions is described in Problem 6.3. Such an approach is necessary when the
total charge of the system is not known, as is the case for a small system coupled
to a large reservoir which determines the chemical potential: for a metal, this is (to
very good approximation) the Fermi energy of the large system. This Fermi energy
is defined with respect to the vacuum energy as the work function: the energy needed
to remove an electron from the large system. There exist Green’s function methods
in which the small system (e.g. an atom or a molecule) is coupled to the surface
Green’s function of a metal. The electronic structure can then still be determined in
a self-consistency loop, in which the charge density is determined from the Green’s
function of the combined system plus reservoir rather than from the eigenstates of
the Hamiltonian [28].

To find physical properties or quantities, we often must perform an integration
over the Brillouin zone, as the vectors (together with the band labels) in this zone
are quantum numbers of the stationary states. Taking the crystal symmetry into
account, these integrations only need to be carried out in the ‘irreducible wedge’
of the Brillouin zone: this can be used to fill the whole Brillouin zone by crystal
symmetry transformations. For example, in a two-dimensional lattice having the
symmetry of the square, the Brillouin zone is also a square, but to integrate quantity
over the Brillouin zone, an integration over a wedge of area 1/8 of the whole square
needs to be carried out. For the Brillouin zone of the fcc lattice in Figure 6.9, this
irreducible wedge is the volume bounded by the labelled points.

There exist many different methods for performing Brillouin zone integration
[21]. The most popular methods are those using special points [29, 30] and tetrahed-
ron methods. In the latter, (part of) the Brillouin zone is divided up into tetrahedra,
in each of which either a linear or a quadratic approximation of the function to be
integrated is made. For calculating the density of states, the quadratic works very
well since it is capable of reproducing all known Van Hove singularities [31-34].
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6.9 Some additional remarks

In this chapter we have described how the nonrelativistic Schrodinger equation can
be solved efficiently in a solid. The core electrons near heavy nuclei move at speeds
where relativistic effects become significant, although they are still small, so that
relativistic corrections must be included. This can be done in a perturbative way,
and the resulting equation for the radial part R,; of the wave function reads:

[ 1 1d(2d2> I(1+ 1) V'(r) d

r @ W V(r)_ma} Rnl(r)=ERnl(r)'
(6.108)

V'(r) is the derivative of the potential V, and M is given in terms of the electron
rest mass m, the energy E and the potential as:

2M r2 dr

M(r)y=m+ %[E — V)]l (6.109)
2c

This equation is derived from the Dirac equation; see for example Ref. [13].

Solving the Schrodinger equation is only one step in a DFT self-consistency
equation. Having found the density as described in the previous section, we must
calculate the Hartree potential by solving Poisson’s equation:

V2Vu(r) = —4mn(r). (6.110)

Solving this equation in a pseudopotential method with a plane wave basis is not
so difficult, as the Laplace operator V2 has the diagonal form kr28rs in reciprocal
space. For muffin tins, most of the codes use a method developed by Weinert [35].
In this method we obtain an expansion of the potential in spherical harmonics. Note
that in the APW method considered above, we use the spherical average of the full
potential. We shall only briefly discuss the two main ideas upon which Weinert’s
method is based.

First of all, inside the muffin tins, the charge density and potential are expanded
in spherical harmonics. The radial part of the Hartree potential can then be found
by integration of a radial differential equation, as was done for the / = 0 case in
the local density program for helium — see Section 5.5. The problem then remains
of finding the solution outside the muffin tins, which is determined by the charge
density in and outside the muffin tin. It seems a good idea to solve this problem in
reciprocal space because of the Laplace operator being diagonal there. However, a
huge number of plane waves would be necessary for obtaining an accurate solution,
as the charge inside the muffin tin contains rapid oscillations (it is constructed from
the wave functions which, as we have seen, vary rapidly close to the nucleus). The
second ingredient of Weinert’s method is the replacement of the charge density
inside the spheres by a weaker one, just as in the replacement of the full potential
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by a pseudopotential. The new, weak charge density is called pseudo-charge dens-
ity. That this replacement is possible can be seen by realising that the effect of a
muffin tin charge distribution can be formulated in terms of the multipole moments
of the charge density, and many different charge densities give the same multi-
pole moments. Note that this justification is also analogous to the pseudopotential
method, where the fact that many different potentials yield the same phase shifts
justifies the replacement of the full potential by a pseudopotential. For details we
refer to Weinert’s paper.

6.10 Other band methods

There are numerous band structure methods [1, 10, 36]), and we have considered
only two illustrative examples in this chapter. Another important approach is the
Korringa—Kohn—Rostocker (KKR) method, [37-39] based on a scattering approach
with a muffin tin form of potential. It leads to a matrix whose size is equal to the
number of different states used in the muffin tins.

Linearising the KKR method, one obtains the linear muffin tin orbital (LMTO)
method with localised, energy-independent wave functions which are centred at
each atom — see Refs. [40] and [41].

Exercises

6.1 In this exercise we want to establish the relation between the energy derivative and the
charge of a core wave function, Eq. (6.59). Our derivation will not rely on a spherical
shape for the core region. We use the normalisation convention that the value of the
wave function at the boundary of the core region is equal to some fixed number, so
that we have

0 (rs)
oE
where r; lies at the core boundary.

= (1) =0

(a) Starting from the Schrodinger equation, derive an equation satisfied by vr. Note
that we use the full potential, which does not depend on energy.

(b) Green’s theorem applied to the core region for two arbitrary functions, ¥ and v,
reads

/dwmmwmm—mmwwm]

= /h . d*alyr1@)h - Vi (a) — Yo @i - Vi ()]

where the integral on the right hand side is a surface integral over the boundary of
the core region and 1 is a normal vector pointing out of the core boundary. Apply
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this theorem to v and its energy derivative and use the normalisation convention to
show that
3.2 1 2 - ;
dryi(r)y =—= d“ay(a)n - Vi (a).
core 2 Jshell
6.2 [C] Consider the following periodic potential in one dimension.

=4 -

| | | |
(n—1)a na (n+1)a

The height of the barriers is V(. The solution of the Schrédinger equation in
between two barriers at (n — 1)a and na can be written as

W(x) :Aneiq(xfna) +Bnefiq(x7na)

with ¢ = v/2E. Assume that the energy we are interested in is higher than the barrier
height V. On the nth barrier, the solution is written as

1//(x) — Cneik(x—na) + Dne—ik(x—na)

with k = 2(E — Vo).

The values of A, and Bj, in neighbouring interstitial regions are connected through

the so-called ‘transfer matrix’:
An+1> (An)
=T(E .
(Bn+l ) Bn

T is a 2 x 2 matrix which depends on energy.

(a) Show that the transfer matrix is given by

=4 (Th Tn
4e \To1 T2}’

with
2 2
Ty = @) | gixa <1 + f) _eikA <1 _ f) ,
q q
. K2
T, = —2ie'? <1 - —2> sin(k A);
q
and
Ty =Ty,
T = T{k2.

Show that the product of the two eigenvalues of this matrix is equal to 1. Hence
these eigenvalues can either be written as etk (or as e, real ). From Bloch’s
theorem we know that the solutions can be labelled by a wave vector g which is
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not necessarily equal to ¢, and that these solutions can be written as a periodic
'9* In our case this implies that

(k1))

Byt1 By,
An __ .iga An

T( B, ) =e B,)

This equation defines the band spectrum of the system. It is now easier to find the
vector g as a function of energy than vice versa: the above-mentioned eigenvalues
(which depend on energy via g and «) must be equal to el4%.

(b) [C] Write a simple computer program to determine the spectrum. In an APW
approach, the wave function outside the barriers is written as e'9»*, where
qm =k +2nm/a and —m/a < k < w/a (m is integer). It is now convenient to
confine ourselves to the unit cell [—a/2, a/2] and to use Bloch boundary
conditions on that cell. For a Bloch state x,:

xm(—a/2) = x(a/2)e .

function times e

and therefore

For each ¢, the value of the wave function outside and inside the barrier can be
matched at the boundaries of the barrier. Show that C,, and D,, are given by

_sin[(k + gm)A /2]

"o sin(k A) ’
D, = sin[(K.— qm)A/Z].
sin(k A)

In the APW method, the coefficients b, of the expansion

Y(x) = Z b Xom (%)

are found by solving the generalised eigenvalue problem
Hb = ESb

in which the matrix S is given by

-A/2 . a/2 .
Sy = / e ldm¥eldiv gy 4 [ e lm¥ 11X 4
—a/2 A/2

A2 . . . .
+/ [C:IE_IK’"X—‘rD;ZelK’"x][C[elK"x—G—Dle_”(]x]dx
—A/2
- sit+ 5

where we have split the expression for S into an integration over the interior of the
barriers and the part outside.
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(c) Show that
a— A ifm=1

St = =2 . (gm —qDA .
sin otherwise

qdm — 41 2

and
int KA
Spi = CuCn + DDy + (CuDy + C,,Dm)T.
(d) Show that the Hamiltonian matrix is given as
. 1
Hml = H,I;ytl + EQmCInSS;} + aI_Imn

where

H™ = —k sin(k A)(CuDy + CyDyy) + k> A(CyyCry + DiDy),

ml —
and where 0H is the matrix due to the jumps in derivatives across the barrier
boundaries. Show that 0H is given by
Hpn = —qn sin[(gn — gm) A /2]
— Cpk sin[(k — gn) A /2] — Dk sin[(k + gn) A /2].
(e) Write a program in which the matrices H,,; and S,,; are filled and find the zeroes of

the determinant |[H — ES| for various k. Compare the results with the numerically
exact ones, resulting from the previous program.

6.3 In this problem we consider the determination of the local charge density using the
Green’s function. The Green’s function for a Hamiltonian’s H is defined as

(H—E)G(r,Y;E) = §(r,1).
(a) Show that G can be written as

1
Z_En

Gr,r';2) =Y Yu(r) Y ().
n=1

(b) Show that the electron density (charge density) can be found as

1
n(r) = =— / G(r,r;z)dz,
27‘[[ r

where T is a closed contour in the complex plane which contains all the occupied
energy levels (these of course all lie on the real axis).

6.4 [C] As plane waves form an orthogonal basis, it is possible to use the Lowdin
perturbation method discussed in Section 3.4. Write an extension to your
pseudopotential program to incorporate large lattice vectors into the Hamiltonian in a
perturbative manner. Compare the results with those of the direct diagonalisation.

6.5 In this problem we derive the normalisation condition (6.50) from the normalisation
(6.47) of the radial solution inside the muffin tin.
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(a) Show that the normalisation condition (6.47) can be rewritten as
(RilH — E|R;) = 1.

(b) Use this result, together with the fact that R; is an eigenfunction of H inside the
muffin tin with eigenvalue E, and partial differentiation, to derive Eq. (6.50).
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7

Classical equilibrium statistical mechanics

7.1 Basic theory

In this chapter we briefly review the theory of classical statistical mechanics with
emphasis on those issues which are relevant to computer simulations. We shall
assume that the reader has some background in thermodynamics and statistical
mechanics; for further reading, numerous textbooks are available [1-8].

Statistical mechanics concerns the study of systems with many (in principle infin-
itely many) degrees of freedom. The degrees of freedom are usually the positions
and momenta of particles, or magnetic moments (‘spins’). We restrict ourselves to
classical systems for which all degrees of freedom commute. The space spanned by
the degrees of freedom is called phase space — every point in phase space represents
a particular configuration of the system. In the course of time, the system follows
a path in phase space, determined by the equations of motion. We are obviously
not interested in the values of all these degrees of freedom as a function of time:
only the time averages of physical quantities such as pressure are measurable. This
is because our measuring devices (thermometers, barometers) respond relatively
slowly; hence they give a time average of the physical quantity of interest. How-
ever, even if we could perform an instantaneous measurement of some quantity
we would find a result very close to the time average of that quantity as a result
of the law of large numbers, which teaches us that if a quantity is composed of N
uncorrelated contributions, fluctuations in that quantity are of order 1/+/N. This
implies that for typical macroscopic physical quantities (such as the temperature of
your cup of tea) for which N is of the order of 10?4, the fluctuations are as small
as ~10712 if we neglect correlations. If correlations extend over ~100 particles,
the number of uncorrelated contributions is ~10?*/100 = 1072, so the fluctuations
remain extremely small.

Computer simulations always sample relatively few degrees of freedom, since
only arestricted amount of data can be stored in memory: system sizes in simulations

169
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are always much smaller than those of experimental systems.' Furthermore, a time
average of a physical quantity A is given by

T— o0

_ 1 T
A= lim —/ A@t)dt, (7.1)
T Jo

and we want to obtain results in a finite amount of time! In a molecular dynam-
ics simulation (see Chapter 8), the typical simulation time is of the order of
107°-107° seconds, far below the time in which most measuring devices sample
physical quantities. The results of such simulations can only be representative if
the spatial correlations extend over ranges smaller than the system size and if the
correlation time of the system is smaller than the simulation time. Sometimes it is
possible to extract useful information from simulations of systems with a size much
smaller than the correlation length by extrapolation — this is done in the finite-size
scaling method which will be discussed in Section 7.3.2. In this chapter, we shall
almost exclusively be concerned with systems in equilibrium.

7.1.1 Ensembles

If a system is thermally and mechanically insulated, the internal energy will remain
unchanged in the course of time. If the system is not insulated, it will eventually
take on the temperature of its surroundings (we assume that the surroundings have
a constant temperature). Such physical quantities, which are either kept fixed or
whose average value is controlled externally, are called system parameters. Differ-
ent experimental circumstances correspond to different parameters being kept fixed.
In the theory of statistical physics, these cases correspond to different ensembles.
We shall see that adapting the simulation techniques for classical many-particle
systems (Monte Carlo and molecular dynamics) to these experimental situations is
a nontrivial problem — that is why we consider the ensemble theory in some detail
in this section.

The fundamental postulate, or assumption, of statistical mechanics pertains to
systems with fixed energy E, volume V and particle number N (in magnetic sys-
tems, instead of the volume V, the external magnetic field H is kept constant).
The fundamental postulate says that all states accessible to the system and hav-
ing a prescribed energy, volume and number of particles are equally likely to be
visited in the course of time (the ergodic hypothesis). This leads to an identifica-
tion of the time average A (7.1) of the physical quantity A with a uniform average
over all accessible states — the latter is denoted as (A). Denoting the states by X,

' A notable exception is formed by the so-called mesoscopic systems which contain typically 102 to 10°

particles.
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we have

_ Lup A Yy ASIHX) — E]

Z{XlE} 2_x 8[H(X) — E]
‘H(X) is the Hamiltonian which gives the energy for a point X in phase space.
The denominator ensures proper normalisation. The sum Z{Xl gy denotes a sum
over all states X with a fixed energy E; in the unrestricted sums the delta-function
takes care of the restriction to the states with energy E (the restriction to a specific
volume and particle number is tacitly assumed). In the case of continuous degrees of
freedom, the sums will generally be replaced by integrals. In the case of a monatomic
liquid consisting of N moving particles with spherically symmetric interactions, for
example, the sum is replaced by the following integral over the positions r; and
momenta p; of the particles:

1 3N
Y- <Z) / Erdi.. dry / Epdipy. . By (13)
1%

X

(A) =A. (7.2)

where 4 is Planck’s constant. The average (7.2) is called the ensemble average and
the set of states under consideration (fixed N, V and E) is called the microcanonical
ensemble or (NVE) ensemble (the (NHE) ensemble in the magnetic case). From
now on, the volume V of a system of moving particles can be replaced by the
external magnetic field H for magnetic systems unless stated otherwise.

The denominator in (7.2) counts the number of states with the prescribed energy.
In fact, quantum mechanics imposes a way of counting which for the case of
identical particles is quite different from the classical procedure: as the particles
are indistinguishable, configurations that can be obtained from each other by per-
muting the particles should be counted only once. This implies that the sum in the
denominator of (7.2) should be divided by N!.” The number of states with energy
E is then given by

1
Q(N,V,E) = i Z S[H(X) — E] (7.4)
X

(for mixtures, the factor N! is replaced by the product N{!N,!..., where the sub-
scripts label the different species). The entropy is defined in terms of Q2 (N, V, E) as

S(N,V,E) =kgInQ(N,V,E) (7.5)

where kp is Boltzmann’s constant. The quantum counting factor N! is necessary
in order to make the entropy thus defined an extensive variable, i.e. a variable
that scales linearly with system size. The thermodynamic quantities temperature 7',

% This only holds for systems in which there is at most one particle per quantum state. Properly taking into
account more particles per state leads to quantum statistical distributions.
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chemical potential i and pressure P are given as derivatives of the entropy with
respect to the system parameters:

3s\ ! S S
T=(-— w=-T[— P=T(=— (7.6)
0E )y v N ) gy vV )y

as can be readily seen from the first law of thermodynamics:’
dE =TdS — PdV + pdN. (7.7)

In experimental situations, it is often the temperature that is kept constant and
not the energy (for the latter to be constant, the system must be insulated thermally
and mechanically). In order to achieve constant temperature, the system under
consideration is coupled to a heat bath, a much larger system with which it can
exchange heat. It turns out that a time average for the system under consideration
is equal to a weighted average over states with fixed volume and particle number
(the energy is no longer restricted); the weighting factor is the so-called Boltzmann
factor exp[—H(X)/(kgT)]. Writing 8 = 1/(kgT), we have

1

(A = == D AX)e P, (7.8a)
N'Z "

1
- —BHX)
ZN.V.T) = — e . (7.8b)
X
The factor Z ensures proper normalisation. It is called the partition function and
it is related to the free energy F:
F=—kgTInZ(N,V,T) (7.9)
which, in terms of thermodynamic quantities, is given by
F=E-T8S. (7.10)

In equilibrium, the free energy assumes its minimum under the constraint of fixed
volume and particle number. The average in (7.8) is called the canonical ensemble
average or (NVT) ensemble average. Note that the partition function can be written
as a sum over sets of states with fixed energy:

Z(N,V,T) :Ze_ﬂEQ(N,V,E), (7.11)
E

where Q (N, V, E) is the number of states with energy E as defined already in the
microcanonical ensemble. The number of states 2(N, V, E) is a rapidly increasing
function of E and the Boltzmann distribution is a rapidly decreasing function of E.

3 Often, the first law is stated without including changes in particle number dN.
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The product of the two functions peaks sharply at some value E and the system
will be found to have an energy very close to this value most of the time. This
suggests that there is in practice not much difference between the canonical and
the microcanonical system in which the energy is kept rigorously fixed at E. This
is a manifestation of the so-called ensemble equivalence: because of the law of
large numbers, measurable physical quantities exhibit very small fluctuations —
hence fixing them to their average value leaves the system essentially unchanged.
For finite systems, the differences between the ensembles increase with decreasing
system size.
Using the definition of the entropy (7.5), we may write (7.11) as

Z(N,V,T) = Z e AETS) = Z e PrE, (7.12)
E E

where F is the free energy E — TS with S evaluated in the microcanonical ensemble
with energy E, and we see that the sum is indeed dominated by the states for which
the free energy is minimal.

Again using the first law of thermodynamics, (7.7), we can derive the following
thermodynamic quantities from the free energy:

oF oF oF
w=\— P=—-— S=—(— . (7.13)
IN/Jy 1 V)Nt T Jy N

If the pressure P is kept constant and not the volume, as in a cylinder closed
by a movable piston, we obtain an average over the isothermal-isobaric or (NPT)
ensemble:

1
(A npr = NG f dV e PPV " e FHDOA(x); (7.14a)
’ X

1
O(N,P,T) = / dv e_ﬂPVﬁZe_ﬂH(X) = f dv e PPVZ(N,V,T),
X

(7.14b)
where Q(N, P, T) is again called the partition function. We see that Q is related to

the canonical partition function Z in much the same way as Z was related to the
function Q2 in the microcanonical ensemble — see Eq. (7.11). Q is related to the
Gibbs free energy or Gibbs potential G:

G=—kgTInQ(N,P,T). (7.15)
G can be expressed in terms of thermodynamic quantities as

G=E—TS+PV, (7.16)

and it assumes its mimimum value when the system has reached equilibrium under
the condition of fixed temperature and pressure. For magnetic systems, the role of
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the pressure P is taken over by the total magnetic moment M. The other relevant
thermodynamic quantities follow from the definition of G(N, P, T):

0G 0G 0G
w=\— V=|—= S=—-(=—= . (7.17)
IN/pr WP )N T /pn

If the volume is again fixed, but the number of particles is allowed to vary, we
obtain the grand canonical ensemble average:

1 1 _
(A) = 7 Z PN N Z e PHX A (x) (7.18a)
N D¢

1
Zo(u,V,T) = Zef’ﬂN Vi Ze_ﬂH(X). (7.18b)
N X

Here, v is the chemical potential for the addition or removal of a particle.
Zg(u,V,T) should not be confused with the canonical partition function
Z(N,V,T); it can be expressed in terms of the latter as

Z(u,V,T) =Y eP*NZ(N, V., T). (7.19)
N

Zc defines the grand canonical potential Q2g, analogous to similar definitions for
the other ensembles:

In equilibrium, this potential assumes its minimum value for fixed u, 7 and V.
From the definition of Zg and from the expression for the average values in the
grand canonical ensemble, it follows that

Qg(u,V, T) =F — uN. (7.21)

The internal energy can be written in terms of the variables S, V and N and it
satisfies the Gibbs—Duhem equation [4]
E(S,V,N) =TS — PV + uN (7.22)
so that we have
Qc(wu,V,T)=—PV. (7.23)

From the grand canonical potential we can derive thermodynamic quantities:

IQ IQ IQ
N=_ <_G) pP=—_ (_G) S=— <_G) . (124
om Jyr WV Jur T Jyu

Expectation values of thermodynamic quantities are calculated either as
ensemble averages or as integrals over phase space. As an example of an ensemble
average, consider the internal energy. The expectation value of this quantity in the



7.1 Basic theory 175

canonical ensemble is given by
Sy e PHOH(X)

(E)Nvr = S e FH) (7.25)
and from this it is readily seen that
Eyr = 222, (.26)
Ip
The specifc heat at constant volume Cy is defined as
Cy = (8_E> (7.27)
oT ) yy
and it can therefore be related to the root mean square (rms) fluctuation of the energy:
¢ L Pz
ksT? 082
1 [Zx e PHO12(X) (Zx lf-:—ﬂWX)?n{(X))2
kg T2 S e—BHX) Sy e—BHX)
= (B — (V). (7.28)
kB T2 NVT

Information about the microscopic properties of the system is given by correlation
functions, which can sometimes be measured experimentally, for example through
neutron scattering experiments [9]. In the next section we shall encounter several
examples of correlation functions.

In later chapters, we shall describe the molecular dynamics and Monte Carlo
simulation methods, which enable us to evaluate ensemble averages of different
physical quantities expressed in terms of the system coordinates. Such ensemble
averages are called mechanical averages. Free energies and chemical potentials are
not directly given as mechanical averages but as phase space integrals. Integrals
over phase space cannot be estimated directly in simulations, but fortunately dif-
ferences between free energies at two different temperatures can be formulated as
ensemble averages. Suppose, for example, that we know the free energy of system
at a temperature T, and we would like to know it at a different temperature 7”. The
difference BF(T) — B'F(T’) is then found as

recany _ ZB)

exp[BF(B) — BF(B)] = Z%)
_ Yxexpl-pHX] _
© Lyexpl-BHO]
where (- - -) g denotes a canonical ensemble average evaluated at inverse temperature
B. Determination of this expectation value in a simulation suffers from bad statistics.

{expl(—=B'+ BYH])p (7.29)
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The reason is that in these simulations the system is pushed into a narrow region
around a hypersurface in phase space where the configurational energy is equal
to its average value, say E, at temperature 8. In Eq. (7.29), we want to probe the
region where the configurational energy is equal to its average E’ at temperature
B’ — hence this region will only be probed correctly if 8 and 8’ are fairly close, so
that the hypersurface with configurational energy E’ lies within the narrow region
around the E-hypersurface probed by the phase space integral. If this is not the case,
simulations can be performed for a number of temperatures between 7' and 7”; the
resulting free energy differences are then added to find the desired free energy
difference. Such is frequently done, although a slightly more subtle approach is
used in practice [10].

Another approach is to integrate the free energy numerically from one value of
the volume or temperature to another (thermodynamic integration). According to
Egs. (7.13) and (7.26), we have [10]

Vi
F(T,Vy) = F(T,Vy) — / P(T,V) dV (7.302)
Vo
F(T,V) F(T,,V nET, v
(1):(0)+/ T 4. (7:300)
Tl TO To T

This method can be used to calculate energy differences between systems at different
temperatures or with different volumes. Integration over a particular path in phase
space can be performed by carrying out simulations for a number of points on that
path in order to determine (P) or (E) and then performing a numerical integration of
(7.30). Itis advisable to choose these points in accordance with the Gauss—Legendre
integration scheme — see Appendix A6. At a phase transition (see Section 7.3), the
free energy does not behave smoothly as a function of the system parameters.
Either the path must circumvent the transition line, or two integrations must be
performed, one for each phase, with starting points corresponding to appropriate
reference systems for which the free energy is known, for example at zero or infinite
temperature.

In Chapter 10 we shall consider additional methods for calculating free ener-
gies and chemical potentials. For a review of free energy calculation methods see
Ref. [10].

7.2 Examples of statistical models; phase transitions
7.2.1 Molecular systems

A model is defined by its degrees of freedom and by the Hamiltonian which assigns
an energy to every possible state of the system — that is, a specific set of values



7.2 Examples of statistical models; phase transitions 177

of the degrees of freedom. If we consider, for example, a system consisting of N

identical point particles, the degrees of freedom are given by all positions r; and all

momenta p;, i = 1, ..., N of the particles. We shall denote the full sets of positions
and momenta by R and P, respectively. The Hamiltonian H is given as

N pg

— l

H(R,P) = ; o

Vi (R) denotes the total potential energy of all the particles with positions given

by the 3N-coordinate R. In simulations one often uses an approximation in which

Vi (R) is written as a sum over pair potentials:

+ Vn(R). (7.31)
m

1 N
VNR) =2 3 Vallni =), (7.32)
if

i#]
where the sum is over all pairs i, j, except those with i = j. The factor 1/2 com-
pensates the double counting of pairs in the sum. Pair potentials are so popular
because usually the evaluation of all forces or all potentials is the most time-
consuming part of the program, and the time needed for this calculation increases
rapidly with the number of particles involved in the interaction. For pair potentials,
for example, there are N(N — 1)/2 interactions, for three-particle interactions we
would have O(N?3) contributions etc.
A Lennard—Jones parametrisation for the pair potential is often adopted:

Vii(r) = 4e [(%)lz — (%)6} . (1.33)

Such a potential has already been used in Chapter 2 for describing the interaction
between a hydrogen and a krypton atom.’ The 1/r° tail is based on polarisation
effects of the interacting atoms and the 1/r'? repulsive is chosen for numerical
convenience. For argon, the Lennard-Jones description has been quite successful
[11]; it has been applied to the solid, liquid and gas phases.

The canonical partition function Z is given as

N2
Z(N.V.T) = hml,N' /vd3NR &P exp [—ﬂ (Z% + VN(R)>i|. (7.34)

i=1

Irrespective of the form of Vi, we can perform the (Gaussian) integration over the
momenta since they do not couple with the spatial coordinates, and we find

3N/2
ZN,V,T) = ]% (2/3'"7727) /V $VR exp[—BVN(R)].  (1.35)

* Note that this form deviates from that given in Chapter 2. The present form is common in molecular
dynamics.
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For systems consisting of rigid polyatomic molecules, the interaction potential is
usually taken to be the sum of atomic pair potentials, aside from rigidity constraints.
A tantalising problem is the satisfactory description of water in simulations using
ab initio interaction potentials [12].

Macroscopic quantities such as pressure, specific heat, etc, can be determined
relatively easily from simulations and can be compared with experimental results.
They give global information concerning the state of the system. The pressure can
be found in a simulation using the virial theorem [13]:

pP Bl
—=1- 3—N< ;er,VN(R)> (7.36)
where (- - -) denotes the usual ensemble average, but in a dynamic system the time
average can be used instead.

The specific heat at constant volume can easily be calculated in the canonical
ensemble using Eq. (7.28), which relates this quantity to the fluctuation of the
total energy. However, in the microcanonical ensemble, the total energy is fixed,
so its fluctuation vanishes at all times. Fortunately, it can be calculated from the
fluctuation of the kinetic energy from a formula derived by Lebowitz [14]:

(K% 2 3N
mﬁ_ﬁo_fﬁ' "

More detailed information can experimentally be obtained via X-ray and neutron
scattering experiments. In particular, several correlation functions can be measured
experimentally and they can also be determined in simulations. The static pair
correlation function g(r,r’) is proportional to the probability of finding a particle
at r and simultaneously one at r’. In the canonical ensemble, it is given by the
following expression:

1
g(r,r) = vzm/ d®r3 - dPryexp[—BVy(r, v r3,...,ry].  (7.38)
. \%

For ahomogeneous system, this function depends on Ar = r—r’ only and therefore
for large N it can be written as

14 3. Y / /
g(Ar) = NV </ dr %:a(r —r)8(r + Ar — r,)>. (7.39)
i#]

For large Ar, the correlation function tends to 1, and often the ‘bare’ correlation

function h(Ar), which is defined as h#(Ar) = g(Ar) — 1, is used instead.
The pair correlation function contains information concerning the local structure
of the fluid. For an isotropic, homogeneous system, the pair correlation function
depends only on the distance Ar = |r — r’|. Suppose we were to sit somewhere
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Figure 7.1. The pair correlation function of argon at its triple point.

in the fluid and watch the surroundings for some time, then, on average, we would
see a homogeneous structure. If we were to move along with a particular particle,
however, and watch the scenery from this particle, we would find no particles close
to us because of the strong short-range repulsion. Then we have an increase in
density due to a layer of particles surrounding our particle, followed by a drop in
density marking the boundary between this layer and a second layer, and so on.
Because of the fluctuations, the layer structure becomes more and more diffuse for
increasing distances and the correlation function will approach a constant value
at large distances. A typical example of a pair distribution function in a fluid is
shown in Figure 7.1. For a discussion on the experimental determination of static
and dynamic correlation functions, see Ref. [13].

Another important correlation function is the velocity autocorrelation function,
which is a function of time. It is the expectation value of the dot product of the
velocity of a particular particle (‘tagged particle’) at time O with the velocity of the
same particle at time ¢:

¢y (1) = (vi(0) - vi(1)) (7.40)

for an arbitrary particle i. For a homogeneous system this is independent of i. Since
this correlation function is a dynamic quantity, it cannot be found as an ensemble
average, as the latter is suitable for evaluation of averages of static quantities only.
For identical particles, the velocity autocorrelation function is usually evaluated as
a combined time average and an average over the N particles in equilibrium:

N T
1 . 1 / / /
c,(t) = ~ Tll)moo i_gl ?/0 dr'vi(t) - vi(t' +1). (7.41)
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In 1970, Alder and Wainwright concluded from molecular dynamics simulations
for the hard sphere gas that this function decays algebraically as 1/¢°/2 (D is the
dimension of the system) [16], in striking contrast to the ‘molecular chaos’ assump-
tion according to which the velocity autocorrelation should decay exponentially.
The long time tail implies that a particle moving in a fluid does not so easily ‘forget’
its initial motion. It turns out that the tagged particle causes a pressure rise ahead
and a pressure drop behind itself and the resulting pressure difference produces
vortices (in two dimensions) or a sideways vortex ring (if D = 3) and these persist
for a relatively long time. Remarkable quantitative agreement has been found with
a hydrodynamic calculation of a sphere moving in a fluid [15, 16].

7.2.2 Lattice models

Another model is a ‘magnetic’ one: the famous Ising model [17, 18]. The quotes are
put around the qualification ‘magnetic’ to indicate that the model does not describe
magnetic systems satisfactorily; it does however give a good description of atoms
adsorbed on surfaces and of two-component alloys. Furthermore, the Ising model
is an example of a lattice field theory (lattice field theories will be discussed in
Chapter 15). Last but not least: the two-dimensional Ising model on a square lattice
was the first model that was found to exhibit a genuine phase transition and was
solved exactly [18, 19, 20].

The Ising model is defined on a lattice and we shall confine ourselves to the two-
dimensional version on a square lattice of size L x L (in the thermodynamic limit
L goes to infinity). The lattice sites are labelled by a single index i, and with (i, ;)
we denote a pair of neighbouring sites, where it is assumed that the spins on the top
row of the lattice are connected to the corresponding ones on the bottom row and
similarly for the left and right columns of sites (periodic boundary conditions; see
Figure 7.2). Oneachsite i, a ‘spin’ s; is located. This can assume two different values,
which we shall take to be +1 and —1. The spins are the degrees of freedom, and the
Hamiltonian assigns an energy to each configuration {s;} of the spins according to

Hisiy=—J) siss—HY _si. (7.42)
(i) i

J is a coupling constant. It couples only nearest neighbour spins: the first sum is
over nearest neighbour pairs on the lattice (taking periodic boundary conditions
into account). For positive J, the coupling term favours like nearest neighbour pairs
as this lowers the total energy: each spin wants to be surrounded by like spins on
neighbouring sites — this case is called ferromagnetic. For negative J-values the
model is called antiferromagnetic. The second term favours the spins to have a sign
equal to that of the external magnetic field H. The partition function of the Ising



7.2 Examples of statistical models; phase transitions 181

Figure 7.2. Periodic boundary conditions on the square lattice. All sites on the
left column are coupled to their counterparts on the right column, but only two of
these couplings are shown.

model is given by

7= exp [5] > sisi+ BH Zs,-]. (7.43)
{si} (i) i

Notice that the model is defined without any reference to dynamics. Dynamical

Ising models have been formulated [21] and these reflect somehow the behaviour

of real systems, but their form is not imposed by physical laws.

An interesting case is zero external magnetic field (H = 0), for which the model
has been solved analytically. The Hamiltonian is then invariant with respect to global
spin reversal. At absolute zero temperature, 8 — o0, either of two configurations,
with all spins + or all spins —, are allowed. Suppose we start off with all spins +.
We are interested in the behaviour of the average value of the spins, which we
shall call magnetisation and which is denoted m. Flipping a spin with four equal
nearest neighbours induces a penalty via the Boltzmann factor being reduced by a
factor e 88/ (remember the Boltzmann factor gives the weight, i.e. the probability
of occurrence in a time sequence) and for low temperature, as § is still large,
a particular spin turning over is therefore a very rare event. The relative occurrence
of a configuration with an arbitrary single spin turned over with respect to one
in which all spins are equal is given by L?e™ 3/, If we raise the temperature,
the probability of having one or more spins turned over increases and therefore the
magnetisation decreases (in absolute value). What will happen to the magnetisation
when increasing the temperature further? Let us first consider T — oo, or 8 = 0.
In that case all configurations have the same Boltzmann factor of 1 and the coupling
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Figure 7.3. Phase diagram of the Ising model. There are two branches, one with
negative and one with positive magnetisation, corresponding to the spin-reversal
symmetry present in the model.

between the spins is no longer noticeable. Therefore, each spin will assume values
+1 and —1 with equal probability and the average magnetisation will vanish. Two
scenarios are possible for intermediate temperatures: either the magnetisation will
decay asymptotically with increasing temperature, or it will vanish at some finite
temperature. If the latter happens, we shall see a nonanalytic behaviour in the
magnetisation curve, which seems highly improbable as the Hamiltonian depends
analytically on all spins. Indeed for finite systems, all physical variables are analytic
functions of the system parameters, but for N — 0o, nonanalytic behaviour might
show up. This is precisely what happens! The magnetisation for the infinite system
vanishes at a finite temperature 7 given by J/kgT. =~ 0.44 and this phenomenon
is called a phase transition [18, 19]. For reasons to be explained below, this phase
transition is often called ‘second order’, ‘critical’ or ‘continuous’. Figure 7.3 shows
the (m, T) phase diagram for zero magnetic field. Two branches are shown, one for
a system starting off with negative, and the other with positive magnetisation.

The behaviour of the Ising ferromagnet may be described in terms of the bal-
ance between entropy and energy. There is only one state with lowest energy (if
we restrict ourselves to positive magnetisation at low temperatures, see below), L?
states with one spin flipped, L>(L*> — 1)/2 states with two spins flipped and so on:
the number of states increases rapidly with energy. It also increases rapidly with
decreasing magnetisation for similar reasons. Therefore, there exist a huge num-
ber of disordered (zero magnetisation) states, having a relatively small Boltzmann
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factor, and a small number of ordered states, with a large Boltzmann factor. The
Boltzmann effect is reduced by increasing the temperature. At the point where
the numeric abundance (entropy effect) of the disordered states compensates for
the Boltzmann effect, energy and entropy of the domain walls separating the spin-
up from the spin-down phases are said to be in balance — this is the critical point,
where the average magnetisation reaches zero.

This entropy—energy balance can be quantified using an argument given by Peierls
[5]. A domain wall of length NV, separating a + from a — region, represents an energy
penalty of 2JN, since each pair of opposite spins on both sides of the wall carries
an energy J, as opposed to equal neighbouring spins representing an energy —J.
We can estimate the number of possible domain wall configurations by realising
that at each segment (a unit step of the interface) a domain wall has the option
of turning left or right, or continuing straight on, leading to three possibilities.
However, a domain wall cannot intersect itself, so at some segments only two of
the three options are allowed. Therefore the number of domain wall configurations
lies between 2V and 3V, and we have for the entropy S:

kTIn2V < S < kgT1In 3", (7.44)
The point where energy and entropy are in balance satisfies
kTN In2 < 2NJ < kgTN In 3, (7.45)

which leads to In2 < 2J/(ksT) < In3, or 0.3466 < J/(kgT) < 0.549, to be
compared with the exact value J/(kgT) =~ 0.44.

A remark is appropriate here. The picture sketched so far is a dynamic one:
we start off with a particular state (all spins 4) and consider what happens when
the temperature is increased. According to the postulate of statistical mechanics,
average values of physical quantities are given by ensemble averages, and we see
immediately that the average magnetisation is always zero, as the Hamiltonian is
symmetric with respect to flipping all spins. It is, however, believed that in any
realistic system the spins turn over one after another, or perhaps in small groups
at a time. Turning over the magnetisation requires a large number of spin flips
and the occurrence of a domain wall between two regions of different spin with
a length of the order of the linear system size. The probability of this happening
is exceedingly small and the system will never enter the opposite magnetisation
phase. This implies ergodicity violation since not all configurations are accessible
to the system. A nice way to get round this violation is to switch on a small but
positive magnetic field H which causes a difference between the energy of the
positive and negative magnetisation phase by an amount 2HL?, and therefore the
negative magnetisation phase no longer contributes to ensemble averages. After
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the calculation has been completed, the limit H — 0 is taken. It is to be noted that
for a finite external magnetic field the phase transition disappears.’

7.3 Phase transitions
7.3.1 First order and continuous phase transitions

As we have already seen in Section 7.2, phase transitions may occur in thermody-
namic systems. These transitions can be of two different types, first order and second
order. The latter are also called critical or continuous transitions. In this section we
consider phase transitions in more detail, with emphasis on phenomena and tech-
niques which are of interest in numerical simulations. In particular we discuss the
finite-size scaling technique for studying second order transitions in simulations.
The description here is short and simplified and for more detailed accounts the
reader is referred to the books by Plischke and Bergersen [5], Reichl [3], Pathria
[22], Le Bellac [8] and the various volumes in the Domb and Green/Lebowitz
series [23].

The state of a system is usually characterised by a particular value of a phys-
ical quantity which is called the order parameter. This order parameter is used to
distinguish between different phases. In the case of a gas—liquid transition at fixed
pressure and temperature, it is the density which plays the role of the order parameter
and the transition to the gas phase is indeed characterised by the density greatly
decreasing. In magnetic systems, with the magnetic field and the temperature as
system parameters, the order parameter is the magnetisation m which distinguishes
the magnetic (m # 0) from the nonmagnetic (m = 0) phase and which, as we have
seen above, is continuous at the zero-field Ising phase transition (the point where it
vanishes) but has a discontinuous derivative. The order parameter is a derivative of
the free energy (the density is expressed in terms of the volume, which is a derivative
with respect to pressure, and magnetisation is a derivative with respect to magnetic
field) and therefore a jump in the order parameter means a discontinuity in a first
derivative of the free energy — hence the name ‘first order’ for this type of transition.
If the order parameter is continuous at the phase transition, we speak of a continu-
ous, critical or second order transition. In fact, the discontinuity shows up ‘before
the second derivative’, as the free energy generally behaves as a broken power of
one of the external parameters, f ~ (K — K.)¥, where K is the external parameter
which assumes the value K. at the critical point, and « lies between 1 and 2.

As we have seen in Section 7.1, any system in equilibrium is characterised by
some free energy assuming its minimum for given values of the system parameters,

5 Switching from a positive magnetic field to a negative one induces a change in sign of the magnetisation m
if T < T¢. This is a first order phase transition, induced by the magnetic field instead of the temperature.
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Figure 7.4. Typical behaviour of the free energy as a function of the order para-
meter and temperature. The left hand side corresponds to the first order case, with

transitions temperature 7, and the right hand side to the continuous case, with
critical transition temperature 7.

and for this minimum the order parameter assumes a particular value. It is possible
to define a free energy for any fixed value of the order parameter by calculating
the partition function for exclusively those configurations that have the prescribed
value of the order parameter. As an example, we can define the free energy, F'(m),
for the Ising model with fixed magnetic field in terms of a partition function, Z(m),

defined as
Zm =" e*ﬂH(s( Y si— Ldm) (7.462)
{si}

F(m) = —kgT InZ(m), (7.46b)

where d is the dimension of the system. Note the delta-function in the definition
of Z(m) restricting the sum to configurations with a fixed magnetisation m. It is
instructive to consider how this free energy as a function of the order parameter
changes with an external parameter (the temperature for example) across the trans-
ition for the two different types of phase transitions. Typical examples are shown
in Figure 7.4.

The equilibrium situation is characterised by the minimum of the free energy.
If we imagine the leftmost minimum in the first order case to correspond to the
liquid phase and the right hand one to the gas phase, we see that, away from the
transition temperature, one of the two phases is stable and the other one metastable.
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The phase transition is characterised by the liquid phase going from stable to meta-
stable and the gas phase becoming stable. In the continuous case (right hand side
of Figure 7.4), there are two (or more) minima of equal depth, corresponding to as
many ordered phases, and these merge at the phase transition into one, disordered
phase; in the Ising model, the ordered phases are the positive and negative mag-
netisation phases, merging into a single, nonmagnetic, disordered phase. Close to
the phase transition the system can easily hop from one (weakly) ordered phase to
another, as the phases are separated by weak barriers and therefore fluctuations will
increase considerably: the phase transition is announced before it actually happens
by an increase in the fluctuations. This is unlike the first order case, in which the
order parameter jumps from one well into the other without this being announced
by an increase in the fluctuations.

Before focusing on second order transitions, we discuss some problems related
to detecting first order transitions in a simulation. From Figure 7.4 it is seen that,
in order for the actual transition to take place, the system should overcome a free-
energy barrier, and obviously the higher the barrier the longer the time needed for
this to happen. In the short time over which a typical system can be simulated, it will
not be able to overcome the barrier at or near the first order transition and we shall
observe a strong hysteresis: if, in the case of a liquid—gas transition, the system is
cooled down from the gas phase, it will remain in that phase well below the transition
temperature before it will actually decide to condense into the liquid phase. On the
other hand, if a fluid is heated, it will remain in the fluid state above the transition
temperature for quite some time before it enters the gas phase. In order to determine
the transition temperature it is necessary to obtain the free energy for both phases
so that the transition can be determined as the point where they become equal.
However, as mentioned already in Section 7.1, the free energy cannot be extracted
straightforwardly from molecular dynamics or Monte Carlo simulations, and the
special techniques mentioned there and those to be discussed in Chapter 10 must be
applied. In transfer matrix calculations (see Chapter 11), the free energy is directly
obtainable but this method is restricted to lattice spin models. Panagiotopoulos
[24, 25] has developed a method in which two phases of a molecular system can
coexist by adjusting their chemical potentials by the exchange of particles — see
Section 10.4.3.

*7.3.2 Critical phase transitions and finite-size scaling

Critical phase transitions are characterised by the disappearance of order caused
by different ordered phases merging into one disordered phase at the transition. In
contrast to first order transitions, critical phase transitions are ‘announced’ by an
important increase in the fluctuations. The Ising model on a square lattice described
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above is an ideal model for visualising what is going on close to a second order
phase transition.

An interesting object in connection with phase transitions is the pair correlation
function. As the Ising model in itself is not dynamic, only the static correlation
function is relevant. It is given by

~ 1
g(m,n) = (sysy) = N Z SmSn €Xp [ﬂ] Z sisj + BH Z si]. (7.47)

{si} (if) i
Instead of the pair correlation function defined in (7.47), the ‘bare’ correlation
function is usually considered:

g(i.) = §(i.j) — (si)? (7.48)
which decays to zero if i and j are far apart. The physical meaning of the bare pair
correlation function is similar to that defined above for molecular systems. Suppose
we sit on a site i, then g(i, j) gives us the probability of finding the same spin value on
site j in excess of the average spin on the lattice. The correlation function defined
here obviously depends on the relative orientation of i and j because the lattice
is anisotropic. However, for large distances this dependence is weak and the pair

correlation function will depend only on the distance r;; between i and j. The decay
of the bare correlation function below the transition temperature is given by

g(r) xe™5, large r. (7.49)

& is called the correlation length: it sets the scale over which each spin has a
significant probability of finding like spins in excess of the average probability. One
can alternatively interpret £ as a measure of the average linear size of the domains
containing minority spins. If we approach the transition temperature, more and more
spins turn over. Below the transition temperature, the system consists of a connected
domain (the ‘sea’) of majority spins containing ‘islands’ of minority spin. When
approaching the transition temperature, the islands increase in size and at 7 they
must grow into a connected land cluster which extends through the whole system in
order to equal the surface of the sea, which also extends through the whole system.
For higher temperature the system is like a patchwork of unconnected domains of
finite size. The picture described here implies that at the transition the correlation
length will become of the order of the system size. Indeed, it turns out that at the
critical phase transition the correlation length diverges and the physical picture [26]
is that of huge droplets of one spin containing smaller droplets of the other spin
containing still smaller droplets of the first spin and so on. This suggests that the
system is self-similar for a large range of different length scales: if we zoomed
in on part of a large Ising lattice at the phase transition, we would notice that the
resulting picture is essentially indistinguishable from the one presented by the lattice
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as a whole: the differences only show up at the smallest scales, i.e. comparable to
the lattice constant. This scale invariance is exploited in renormalisation theory
[27, 28] which has led to a qualitative and quantitative understanding of critical
phase transitions.”

One of the consequences of the scale invariance at the critical phase transition is
that the form of the correlation function should be scale invariant, that is, it should
be essentially invariant under a scale transformation with scaling factor b, and it
follows from renormalisation theory that at the transition, g transforms under a
rescaling as

g(r) = b g(rb) (7.50)
(d is the system dimension). From this, the form of g is found as

Constant

g(r) = 2 (7.51)

The exponent y is called the critical exponent. It turns out that this exponent is
universal: if we change details in the Hamiltonian, for instance by adding next
nearest neighbour interactions to it, the temperature at which the transition takes
place will change, but the critical exponent y will remain exactly the same. Systems
which are related through such ‘irrelevant’ changes in the Hamiltonian are said to
belong to the same universality class. If the changes to the Hamiltonian are too
drastic, however, like changing the number of possible states of a spin (for example
3 or 4 instead of 2 in the Ising model), or if we add strong next-nearest neighbour
interactions with a sign opposite to the nearest neighbour ones, the critical behaviour
will change: we cross over to a different universality class.

It should be noted that the spin pair-correlation function is not the only correla-
tion function of interest. Other correlation functions can be defined, which we shall
not go into, but it is important that these give rise to new exponents. Different cor-
relation functions may have the same exponent, or their exponents may be linearly
dependent. The set of independent exponents defines the universality class. In the
case of the Ising model this set contains two exponents, the ‘magnetic’ one, yg,
which we have encountered above, and the ‘thermal’ exponent y7 (which is related
to a different correlation function).

The critical exponents not only show up in correlation functions, they also
describe the behaviour of thermodynamic quantities close to the transition. For
example, in magnetic systems, the magnetic susceptibility x,,, defined as

_(9m 752
Xm_(E)T’ ( . )

6 More recently, the more extended conformal symmetry has been exploited in a similar way to the scale
invariance alone. Conformal field theory has turned out a very powerful tool to study phase transitions in
two-dimensional systems [29-31].
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exhibits a singularity near the phase transition:
xm(T) o |T = Te|™” (7.53)

where y is also called the ‘critical exponent’; its value is related to the y-exponents
by y = (—d + 2yg)/yr. For the specific heat cy, the correlation length & and the
magnetisation m we have similar critical exponents:

ca(T) o |T —Te|™“
E(T) o |IT —Tc|™" (7.54a)
m(T) x (-T +T)P; T <T.

and, moreover, we have an exponent for the behaviour of the magnetisation with
varying small magnetic field at the transition temperature:

m(H,T.) = H'/®. (7.55)

For the case of the two-dimensional Ising model on a square lattice, we know the
values of the exponents from the exact solution:

a=0, B=1/8, y=7/4,
§=15 v=1. (7.56)
The value 0 of the exponent « denotes a logarithmic divergence:
cy «<In|T — T.|. (7.57)

The fact that there are only two y-exponents and the fact that the five exponents
expressing the divergence of the thermodynamic quantities are expressed in terms
of these indicates that there must exist relations between the exponents «, 8 etc.
These relations are called scaling laws — examples are:

a+28+y =2 and (7.58a)

2—oa=dv, (7.58b)

with d the dimension of the system. The Ising exponents listed above do indeed
satisfy these scaling laws.

In dynamical versions of the Ising model, the relaxation time also diverges with

a critical exponent. The correlation time is the time scale over which a physical
quantity A relaxes towards its equilibrium value A — it is defined by’

Joo tIA@) — Aldt
T = — .
Jo TA@) — Aldt

(7.59)

7 In Section 7.4 we shall give another definition of the correlation time which describes the decay of the time
correlation function rather than that of the quantity A itself.
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Figure 7.5. Typical behaviour of a physical quantity A vs temperature close to the
critical point for various system sizes.

At the critical point the correlation time diverges according to
T =& (7.60)

This divergence implies that close to the critical point the simulation time needed to
obtain reliable estimates for physical quantities increases dramatically. This phe-
nomenon is called critical slowing down. For most models with a Hamiltonian
containing only short-range couplings, the value of the exponent z is close to 2.
For the Ising model in two dimensions, the dynamic critical exponent has been
determined numerically — its value is z ~ 2.125 [32].

For systems far from the critical point, the correlation length is small, and it is
easy to simulate systems that are considerably larger than the correlation length.
The values of physical quantities measured will then converge rapidly to those
of the infinite system. Close to the critical point, however, the correlation length
of the infinite system might exceed the size of the simulated system; hence the
system size will set the scale over which correlations can extend. This part of the
phase diagram is called the finite-size scaling region. It turns out that it is possible to
extract information concerning the critical exponents from the behaviour of physical
quantities with varying system size close to the critical point. Of course, for a finite
system, the partition function and hence the thermodynamic quantities are smooth
functions of the system parameters, so the divergences of the critical point are
absent. However, we can still see a signature of these divergences in the occurrence
of peaks, which in the scaling region (§ >> L) become higher and narrower with
increasing system size. Also, the location of the peak may be shifted with respect
to the location of the critical point. The general behaviour is shown in Figure 7.5.
These characteristics of the peak shape as a function of temperature are described
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in terms of additional exponents, the so-called finite-size scaling exponents:

o The shift in the position of the maximum with respect to the critical temperature
is described by
Te(L) — Te(00) oc L%, (7.61)

o The width of the peak scales as

AT(L) < L™°. (7.62)
o The peak height grows with the system size as

Amax (L) oc Lo, (7.63)

The behaviour of a system is determined by two length scales: L/a and & /a, with &
the correlation length of the infinite system, which in the finite-size scaling region
is larger than the linear system size L. As in the critical region, the fluctuations
determining the behaviour of the system extend over large length scales; phys-
ical properties should be independent of a. This leaves L/& as the only possible
parameter in the system and this leads to the so-called finite-size scaling Ansatz.
Defining

r-Te (7.64)
e = , .
T,
we can formulate the finite-size scaling Ansatz as follows:
A L
LE) _ . [ ] . (7.65)
Ao (8) oo (8)
Suppose the exponent of the critical divergence of the quantity A is o:
Ago x 67 9. (7.66)

Using, moreover, the scaling form of the correlation length & oc ¢, we can write
the scaling Ansatz as
Ap(e) = e 9f(Le") (7.67)

which can be reformulated as
Ar(e) =LV (LVe) (7.68)

where we have replaced the scaling function, f, by another one, ¢, by extracting a
factor (Le")°/¥ from f and then writing the remaining function in terms of (Lg")!/"
rather than (Le"). Obviously, ¢ (x) will have a maximum ¢,y for some value
X = Xmax With a peak width Ax. From Eq. (7.68) we then see immediately that:

o The peak height scales as L°/", hence 6,, = o /v.
o The peak position scales as L'/, hence A = 1/v.
o The peak width also scales as L™!/”, hence ® = 1/v.
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These are the finite-size scaling laws for any thermodynamic quantity which
diverges at the critical point as a power law. We see that if we monitor the peak
height, position and width as a function of system size, we can extract the correlation
length exponent v and the exponent o associated with A from the resulting data.

In reality this approach poses difficulties as the fluctuations increase near the
critical point and hence the time needed to obtain reliable values for the phys-
ical quantities measured also increases. This increase is stronger when the system
size increases — hence calculations for larger systems require more time, not only
because more computational effort is used per time step for a larger system, but
also because we need to generate more and more configurations in order to obtain
reliable results. An extra complication is that the fluctuations are not only huge,
but they correlate over increasing time scales, and the simulation time must be at
least a few times the relaxation time in order to obtain reliable estimates for the
physical quantities. In Chapter 15 we shall discuss various methods for reducing
the dynamic exponent z in Monte Carlo type simulations.

We have presented only the most elementary results of the finite-size scaling
analysis and the interested reader is invited to consult more specialised literature.
There exists a nice collection of key papers on the field [33] and a recent volume
on finite-size scaling [34].

7.4 Determination of averages in simulations

In Chapters 8 and 10 we shall encounter two simulation methods for classical many-
particle systems: the molecular dynamics (MD) method and the Monte Carlo (MC)
method. During a simulation of a many-particle system using either of these meth-
ods, we can monitor various physical quantities and determine their expectation
values as averages over the configurations generated in the simulation. We denote
such averages as ‘time averages’ although the word time does not necessarily denote
physical time. For a physical quantity A, the time average is

R
A= 7 z;A,,. (7.69)
n=

If the system size and the simulation time are large enough, these averages will
be very close to the averages in a macroscopic experimental system. Usually, the
system sizes and simulation times that can be achieved are limited and it is important
to find an estimate of the error bounds associated with the measured average. These
are related to the standard deviation o of the physical quantity A:

o = (A%) — (A)%. (7.70)

The ensemble average (- - -) is an average over many independent simulations.
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We can estimate the standard deviation as a time average:
o2 =AZ_ A" (7.71)

For a long enough simulation this reduces to the ensemble average, and the
expectation value of this estimate becomes independent of the simulation time.
Equation (7.71) estimates the standard deviation irrespective of time correlations
between subsequent samples generated by the simulation. However, the standard
deviation of the mean value of A calculated over M samples generated by the sim-
ulation, i.e. the statistical error, depends on the number of independent samples
generated in the simulation, and this is the total number of samples divided by the
correlation ‘time’ 7, measured in simulation steps.

In order to study the standard deviation of the mean (the statistical error), we first
analyse the time correlations. These manifest themselves in the time correlation
function:

can(k) = ((An — (A Ansx — (Ana))) = (AnAnpx) — (An)°. (1.72)
Note that the right hand side of this expression does not depend on n because of time
translation symmetry. For k = 0 this function is equal to o2, and time correlations
manifest themselves in this function assuming nonzero values for k # 0. The time

correlation function can be used to determine the integrated correlation time t,
defined as

o= i can(n) (1.73)
L caa(0) .
where the factor 1/2 in front of the sum is chosen to guarantee that for a correlation
function of the form exp(—|t|/7) with T > 1, the correlation time is equal to . Note
that this definition of the time correlation is different from that given in Eq. (7.59).
The current one is more useful as it can be determined throughout the simulation,
and not only at the beginning when the quantity A decays to its equilibrium value.

A third definition is the exponential correlation time Texp:

caa(r)
caa(0)
This quantity is the slowest decay time with which the system relaxes towards
equilibrium (such as happens at the start of a simulation when the system is not yet
in equilibrium), and it is in general not equal to the integrated correlation time.

Now let us return to the standard deviation of the mean value of A as determined
in a simulation generating M configurations (with time correlations). It is easy to
see that the standard deviation in the mean, ¢, is given by

, 1 Z 1 & X
= <A7 an]A,,Am> -~ <<A_/I ZA,,>) =5 n;I can(n—m).  (1.75)

n=1

Texp = —1/1n , large t. (7.74)
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If we define [ = n — m, then this can be rewritten as

1 M n—M
g2 = e > caald). (7.76)

n=1Il=n—1

The lowest and highest values taken on by [ are —(M — 1) and M — 1 respectively,
and some fixed value of [ between these two boundaries occurs M — |I| times. This
leads to the expression

M—1
1 |l| large M T T
2 2
= — 1-— ) —— 2— 0)=2—0". 7.77
€ z—_E( _1)< M) caa(l) MCAA( ) 7° (1.77)

We see that time correlations cause the error ¢ to be multiplied by a factor of /27
with respect to the uncorrelated case. The obvious procedure for determining the
statistical error is first to estimate the standard deviation and the correlation time,
using (7.71) and (7.73) respectively, and then calculate the error using (7.77).

In practice, however, a simpler method is preferred. The values of the physical
quantities are recorded in a file. Then the data sequence is chopped into a number
of blocks of equal size which is larger than the correlation time. We calculate the
averages of A within each block. For blocks of size m, the jth block average is then

given as

4= m(f) A (7.78)

A= — k- .

' n k=jm+1

The averages of the physical quantities in different blocks are uncorrelated and
the error can be determined as the standard deviation of the uncorrelated block
averages. This method should yield errors which are independent of the block size
provided the latter is larger than the correlation time and sufficiently small to have
enough blocks to calculate the standard deviation reliably. This method is called
data-blocking.

Exercises

7.1 In this problem we analyse the relation between the differential scattering cross
section for elastic X-ray scattering by a collection of particles and the structure factor
in more detail. Consider an incoming X-ray with wave vector Ko, which is scattered
into k; by particle number j at r; at time #". When the wave ‘hits’ particle j at time ¢/,
its phase factor is given by

eikorj—iwt’ _
(a) Give the phase of the scattered wave when it arrives at the detector located at r at
time 7.
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(b) We assume that the incoming rays have intensity Iy. Show that the average total
intensity of waves with wave vector K; arriving at the detector is given by

N
I(k] , r) — IO < Z eiAk(l‘l—l’j)>
Lj=1
with Ak = k; — Kg.
(c) Show that this expression is equal to [pNS(AK), where S is the static structure
factor, defined in terms of the correlation function g as

Sk) =1 +n/d3rg(r)eikr.

(n is the particle density N/V.)

7.2 The magnetic susceptibility of the Ising model on an L x L square lattice is defined
by x = om/dH, where m is the magnetisation and & the magnetic field.

(a) Show that the magnetic susceptibility can be written as
1 2
T ;«s,-s,n — {si))-

(b) A scaling exponent 1 associated with the magnetic correlation function (see
Eq. (7.48)) is defined by

g(r) « p2d=n,

Assuming that close to the critical point this form extends to a distance &, where &
is the correlation length, find the following scaling relation between y, n and v:

y =v(2—mn).
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8

Molecular dynamics simulations

8.1 Introduction

In the previous chapter we saw that the experimental values of physical quantities
of a many-particle system can be found as an ensemble average. Experimental
systems are so large that it is impossible to determine this ensemble average by
summing over all the accessible states in a computer. There exist essentially two
methods for determining these physical quantities as statistical averages over a
restricted set of states: the molecular dynamics and Monte Carlo methods. Imagine
that we have a random sample of, say, 107 configurations of the system which are
all compatible with the values of the system parameters. For such a large number
we expect averages of physical quantities over the sample to be rather close to the
ensemble average. It is unfortunately impossible to generate such a random sample;
however, we can generate a sample consisting of a large number of configurations
which are determined successively from each other and are hence correlated. This
is done in the molecular dynamics and Monte Carlo methods. The latter will be
described in Chapter 10.

Molecular dynamics is a widely used method for studying classical many-particle
systems. It consists essentially of integrating the equations of motion of the system
numerically. It can therefore be viewed as a simulation of the system as it develops
over a period of time. The system moves in phase space along its physical trajectory
as determined by the equations of motion, whereas in the Monte Carlo method it
follows a (directed) random walk. The great advantage of the MD method is that it
not only provides a way to evaluate expectation values of static physical quantities;
dynamical phenomena, such as transport of heat or charge, or relaxation of systems
far from equilibrium can also be studied.

In this section we discuss the general principles of the molecular dynamics
method. In the following sections more details will be given and special tech-
niques will be discussed. There exists a vast research literature on this subject and
there are some review papers and books [1-5].

197
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Consideracollection of N classical particles in arectangular volume L x Ly x L3.
The particles interact with each other, and for simplicity we shall assume that the
interaction force can be written as a sum over pair forces, F(r), whose magnitude
depends only on the distance, r, between the particle pairs and which is directed
between them (see also the previous chapter). In that case the internal force (i.e. the
force due to interactions between the particles) acting on particle number i is given as

Fi(R) = Y F(r; — rjDFy. (8.1)
J=LN;
J#i
R denotes the position coordinates r; of all particles in the notation introduced in
Section 7.2.1 (P denotes the momenta); ¥;; is a unit vector directed along r; — r;,
pointing from particle i to particle j. In experimental situations there will be external
forces in addition to the internal ones — examples are gravitational forces and forces
due to the presence of boundaries. Neglecting these forces for the moment, we can
use (8.1) in the equations of motion:
d’ri() _ Fi(R)
a2~ m;
in which m; is the mass of particle i. In this chapter we take the particles identical
unless stated otherwise. Molecular dynamics is the simulation technique in which
the equations (8.2) are solved numerically for a large collection of particles.
The solutions of the equations of motion describe the time evolution of a real
system although obviously the molecular dynamics approach is approximate for
the following reasons.

8.2)

o First of all, instead of a quantum mechanical treatment we restrict ourselves to a
classical description for the sake of simplicity. In Chapter 9, we shall describe a
method in which ideas of the density functional description for quantum
many-particle systems (Chapter 5) are combined with the classical molecular
dynamics approach. The importance of the quantum effects depends strongly on
the particular type of system considered and on the physical parameters
(temperature, density ...).

o The forces between the particles are not known exactly: quantum mechanical
calculations from which they can be determined are subject to systematic errors
as a result of the neglect of correlation effects, as we have seen in previous
chapters. Usually these forces are given in a parametrised form, and the
parameters are determined either by ab initio calculations or by fitting the
results of simulations to experimental data. There exist systems for which the
forces are known to high precision, such as systems consisting of stars and
galaxies at large mutual distances and at nonrelativistic velocities where the
interaction is largely dominated by Newton’s gravitational 1/r2 force.
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Figure 8.1. Periodic boundary conditions for molecular dynamics. Each particle
interacts not only with every other particle in the system but also with all other
particles in the copies of the system. The arrows from the white particle point to
the nearest copies of the other particles in the system.

o Another approximation is inherent to most computer simulations aiming at a
description of the real world: the system sizes in such simulations are much
smaller than those of experimental systems. In the limit where the correlation
length is much smaller than the system size this does not matter too much, and
in the opposite regime, in which the correlation length exceeds the system size
we can use the finite-size scaling methods discussed in Chapter 5 in order to
extrapolate results for physical quantities in the finite system to those of the
infinite system (although second order transitions are seldom studied in
molecular dynamics because of the heavy demands on computing resources).
The finiteness of the system size is felt through the presence of the boundary.
The convention adopted in the vast majority of molecular simulations is to use
periodic boundary conditions (PBC) as it is assumed that for these boundary
conditions the behaviour of the system is most similar to that of a system of the
same size embedded in an infinite system. In fact, with periodic boundary
conditions the system of interest is surrounded by similar systems with exactly
the same configuration of particles at any time (see Figure 8.1). The interaction
between two particles i and j is then given by the following expression:

3
Fppc(r; — l‘j) = ZF ri—rj+ Z Lunu (8.3)
n u:]



200 Molecular dynamics simulations

where L, are vectors along the edges of the rectangular system volume and the
first sum on the right hand side is over all vectors n with integer coefficients 7,,.
The force F is directed along the line connecting particle i and the image
particle r; — Zi:l L, n, according to the convention of Eq. (8.1). Of course,
calculating terms of this infinite sum until convergence is achieved is a
time-consuming procedure, and in the next section we shall consider techniques
for approximating this sum efficiently.

e The time average must obviously be evaluated over a finite time. For liquid
argon, which is the most widely studied system in molecular dynamics because
simple Lennard—Jones pair forces yield results which are in very good
agreement with experiment, the typical time step used in the numerical
integration of the equations of motion is about 10~'* seconds, which means that
for the ~10 integration steps which can usually be carried out in a reasonable
amount of computer time, the total simulation is restricted to about
10~ seconds. The correlation time of the system should therefore be much
smaller than this. There is also a limitation in time because of the finite size of
the system. This might in principle become noticeable when the particles have
travelled on average more than half the linear system size, but in practice such
effects occur at much longer time scales, of the order of the recurrence time, the
time after which the system returns to the initial configuration (in continuum
mechanics, this is called the Poincaré time).

o The numerical integration algorithm is not infinitely accurate. This forces us to
make some optimum choice between speed and accuracy: the larger the
integration time step, the more inaccurate the results of the simulation. In fact, the
system will follow a trajectory in phase space which deviates from the trajectory
it would follow in reality. The effect on the physical quantities as measured in the
simulation is of course related to this deviation in the course of time.

We may summarise by saying that MD is — in principle — a direct simulation
of a many-particle system but we have seen that, just as with any computational
technique in physics, MD simulations must be carried out with considerable care.
It is furthermore advisable to carry out reference tests for systems for which exact
results exist or for which there is an extensive literature for comparison.

8.2 Molecular dynamics at constant energy

In the previous section we sketched the molecular dynamics method briefly for the
simplest case in which the equations of motion for a collection of particles are solved
for forces depending on the relative positions of the particles only. In that case energy
and momentum are conserved.' Trivially, the particle number and system volume are

' The angular momentum is not conserved because of the periodic boundary conditions breaking the

spherical symmetry of the interactions.
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conserved too, so the time averages of physical quantities obtained by this type of
simulation are equivalent to averages in the microcanonical or (NVE) ensemble. In
this section we describe the microcanonical MD method in more detail.

The algorithm of a standard MD simulation for studying systems in equilibrium
is the following:

o Initialise;
o Start simulation and let the system reach equilibrium;
o Continue simulation and store results.

We will now describe these main steps in more detail.

Initialise: The number of particles and the form of the interaction are specified.
The temperature is usually of greater interest than the total energy of the system
and is therefore usually specified as an input parameter. We shall see below how
the system can be pushed toward the desired temperature.

The particles are assigned positions and momenta. If a Lennard—Jones potential is
used, the positions are usually chosen as the sites of a Bravais-fcc lattice, which is the
ground state configuration of the noble gases like argon (although the Lennard—Jones
system is hexagonal close-packed in the ground state [6]). The fcc lattice contains
four particles per unit cell, and for a cubic volume the system contains therefore 4M°>
particles, M = 1,2, ... This is the reason why MD simulations with Lennard—Jones
interactions are often carried out with particle numbers 108, 256, 500, 864, ....

The velocities are drawn from a Maxwell distribution with the specified temper-
ature. This is done by drawing the x, y and z velocity components for each particle
from a Gaussian distribution; for the x-component of the velocity this distribution
is exp[—mvﬁ /(2kgT)]. In Appendix B3 it is described how random numbers with
a Gaussian distribution can be generated. After generating the momenta, the total
momentum is made equal to zero by calculating the average momentum p per
particle, and then subtracting an amount p from all the individual momenta p;.

Start simulation and let the system reach equilibrium: The particles being
released from fcc lattice positions, the system is generally not in equilibrium and
during the initial phase of the simulation it is given the opportunity to relax. We now
describe how the integration of the equations of motion is carried out and how the
forces are evaluated. Finally we shall explain how in this initial phase the desired
temperature is arrived at.

Numerical algorithms for molecular dynamics will be considered in detail in
Section 8.4. Suffice it here to mention briefly the most widely used algorithm
which is simple and reliable at the same time — the Verlet algorithm (see also
Appendix A7.1). The standard form of the Verlet algorithm for the integration of
the equation of motion of a single particle subject to a force F depending only on
the position of the particle reads

r(t 4+ h) = 2r(t) — vt — h) + K2F[r(1)]/m (8.4)
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where r(¢) is the position of the particle at time ¢ = nh (h is the time step; n is an
integer). From now on we choose units such thatm = 1. The error per time step is of
order 4* and a worst case estimate for the error over a fixed time interval containing
many time steps is of order 4> (see Problem A3). To start up the algorithm we need
the positions of the particles at two subsequent time steps. As we have only the
initial (+ = 0) positions and velocity at our disposal, the positions at t = h are
calculated as

2
r(h) = r(0) + hv(0) + %F[r(r —0)] (m=1), (8.5)

with an error of order /3.
During the integration, the velocities can be calculated as

r(t+h)—r(—h)
B 2h
When using periodic boundary conditions in the simulation, we must check for each
particle whether it has left the simulation cell in the last integration step. If this is
the case, the particle is translated back over a lattice vector L, to keep it inside
the cell (we shall see below that this procedure facilitates the common procedure
for evaluating the forces with periodic boundary conditions). The velocity must
obviously be determined before such a translation.

There exist two alternative formulations of the Verlet algorithm, which are exactly
equivalent to it in exact arithmetic but which are less susceptible to errors resulting
from finite numerical precision in the computer than the original version. The first
of these, the leap-frog form, introduces the velocities at time steps precisely in
between those at which the positions are evaluated:

v(t +h/2) = v(t — h/2) + hF[r ()], (8.7a)
r(t +h) = r(t) + hv(t + h/2). (8.7b)

V(1) + OH). (8.6)

These steps are then repeated over and over. Note that they must always be applied
in the given order: the second step uses v(¢ 4+ //2) which is calculated in the first
step.

Another form is the so-called velocity-Verlet algorithm [7] which is also more
stable than the original Verlet form and which, via the definition

_x(t+h) —r(t—h)

t 8.8
V(1) 7 (8.8)
evaluates velocities and positions at the same time instances:
r(t +h) =r(0) + hv(t) + B°F(1) /2, (8.9a)

v(t+h) =v()+h[F@+h) +F()]/2. (8.9b)
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This form is most convenient because it is very stable with respect to errors due to
finite precision arithmetic, and it does not require additional calculations in order
to find the velocities. It should be noted that all formulations have essentially the
same memory requirements. It may seem that, as this algorithm needs two forces
the second step, we need two arrays for these, one containing F(¢) and the other
F(¢ + h). However, the following form of the algorithm is exactly equivalent and
avoids the need for two force arrays:

V() = v(t) + hF(1)/2, (8.10a)
r(t+h) =r() + hv(), (8.10b)
v(t+h) =v(t)+ hF(t+h)/2. (8.10c¢)

The new force F(¢ + h) is calculated between the second and third step.

The force acting on particle i results from the interaction forces between this
particle and all the other particles in the system — usually pair-wise interactions
are used. The calculation of the forces therefore takes a relatively long time as
this requires O(N?) steps. A problem in the evaluation of the force arises from
the assumption of periodic boundary conditions. These imply that the system is
surrounded by an infinite number of copies with exactly the same configuration
as in Figure 8.1. A particle therefore interacts not only with each partner j in the
system cell we are considering but also with the images of particle j in all the copies
of the system. This means that in principle an infinite number of interactions has
to be summed over. In many cases, the force decays rapidly with distance, and
in that case remote particle copies will not contribute significantly to the force. If
the force between the particles can safely be neglected beyond separations of half
the linear system size, the force evaluation can be carried out efficiently by taking
into account, for each particle in the system, only the interactions with the nearest
copy of each of the remaining particles (see Figure 8.1): each infinite sum over all
the copies is replaced by a single term! This is the minimum image convention. In
formula, for a cubic system cell the minimum image convention reads

min
v

jo o= min|r; — 1+ L (8.11)

with the same notation as in Eq. (8.3), but where the components of n;, assume
the values 0, %1, provided all the particles are kept within the system cell, by
translating them back if they leave this cell. The potential is no longer analytic in
this convention, but discontinuities will obviously be unimportant if the potential
is small beyond half the linear system size.

Often it is possible to cut the interactions off at a distance rqy¢-ofr sSmaller than half
the linear system size without introducing significant errors. In that case the forces
do not have to be calculated for all pairs. However, all pairs must be considered to
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check whether their separation is larger than rcy-ofr. In the same paper in which he
introduced the midpoint integration algorithm into MD, Verlet [§] proposed keeping
alist of particle pairs whose separation lies within some maximum distance ry,x and
updating this list at intervals of a fixed number of steps — this number lies typically
between 10 and 20. The radius ry,y is taken larger than r¢yi-off and must be chosen
such that between two table updates it is unlikely for a pair not in the list to come
closer than rey-off. If both distances are chosen carefully, the accuracy can remain
very high and the increase in efficiency is of the order of a factor of 10 (the typical
relative accuracy in macroscopic quantities in a MD simulation is of order 10~%).

There exists another method for keeping track of which pairs are within a certain
distance of each other: the linked-cell method. In this method, the system is divided
up into (rectangular) cells. Each cell is characterized by its integer coordinates
IX,IY,IZ in the grid of cells. The cell size is chosen larger than the interaction range
which is about the size of rmax > reut-off 10 the Verlet method. If we wanted a list
of particles for each cell, we could simply restrict the interactions to particle pairs
in the same, or in neighbouring cells. However, as particles will leave and enter the
cells, the bookkeeping of these lists becomes a bit cumbersome. This bookkeeping
can however be done very efficient by using a list of particle indices. The procedure
is reminiscent of the use of pointers in a linked list. We need two ingredients: we
must have a routine which generates a sort of table containing information about
which particle is in what cell, and we need to organise the force calculation such
that it uses this information.

To be specific, let us assume that there are M x M x M cells. The particles are
numbered 1 through N, so each particle has a definite index. We use an integer array
called ‘Header’ which is of size M x M x M: Header(IX,I1Y,1Z) tells us the highest
particle index to be found in cell IX,IY,IZ. We also introduce an integer array ‘Link’
which is of size N. The arrays Header and Link are filled in the following code:
dimension header(M,M,M), link(N)

Set Header (IX,IY,IZ) to O
Set Link(I) to 0
FOR 1=1,NDO
IX = int(M*x(I)/L)+1
IY = intM*y(I)/L)+1
1Z = int(M*z(1)/L)+1
link(i) = header(IX,IY,1Z)
header(IX,IY,IZ) =1
END FOR

Now, Header contains the highest index present in all cells. Furthermore, for particle
I, Link(]I) is another particle in the same cell. To find all particles in cell IX, 1Y, IZ,
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we look at Header(IX,IY,IZ) and then move down from particle I to the following
by taking for the next particle the value Link(I). Using this in the force calculation
leads to the pseudocode:

FOR all cells with indices (IX,IY,IZ) DO
{Fill the list xt, yt and zt with the particles of the central cell}
icnt =0;
j = Header(IX,1Y,1Z);
WHILE (j>0) DO
j = link());
icnt = icnt + 1;
xt(icnt) = x(j); yt(icnt) = y(j); zt(icnt) = z(j);
LocNum = icnt;
END WHILE
{Now, LocNum is the number of particles in the central cell}
FOR half of the neighbouring cells DO
Find particles in the same way as central cell
and append them to the list xt, yt, zt;
END FOR
Calculate Lennard—Jones forces between all particles in the central cell;
Calculate Lennard—Jones forces between particles in central and
neighbouring cells;
END FOR

Note that we loop over only half the number of neighbouring cells in order to avoid
double counting of particle pairs. The cell method is less efficient than the neighbour
list method as the blocks containing possible interaction candidates for each particle
substantially bigger than the spheres of the neighbour list. The advantage of the
present method lies in its suitability for parallel computing (see Chapter 16).

Cutting off the force violates energy conservation although the effect is small if
the cut-off radius is chosen suitably. To avoid this violation, the pair potential U (r)
can be shifted so that it becomes continuous at reyt-off. The shifted potential can be
written in terms of the original one as

Ushift(r) = U(r) — U (reut-off)- (8.12)

The force is not affected by this shift; it remains discontinuous at the cut-off and
this gives rise to inaccuracies in the integration. Applying a shift in the force in
addition to the shift in the potential yields [9, 10]

d
Usorce shife(r) = U(r) — U (reut-oft) — EU(rcut—off)(r — Tcut-off) (8.13)
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and now the force and the potential are continuous. These adjustments to the
potential can be compensated for by thermodynamic perturbation theory (see
Ref. [11]).

Electric and gravitational forces decay as 1/r and cannot be truncated beyond a
finite range without introducing important errors. These systems will be treated in
Section 8.7.

The time needed to reach equilibrium depends on how far the initial configuration
was from equilibrium, and on the relaxation time (see Section 7.4). To check whether
equilibrium has been reached, it is best to monitor several physical quantities such
as kinetic energy and pressure, and see whether they have levelled down. This can be
judged after completing the simulation by plotting out the values of these physical
quantities as a function of time. It is therefore convenient to save all these values
on disk during the simulation and analyse the results afterwards. It is also possible
to measure correlation times along the lines of Section 7.4, and let the system relax
for a period of, for example, twice the longest correlation time measured.

A complication is that we want to study the system at a predefined temperature
rather than at a predefined total energy because temperature is easily measurable
and controllable in experimental situations. Unfortunately, we can hardly forecast
the final temperature of the system from the initial configuration. To arrive at the
desired value of the temperature, we rescale the velocities of the particles a number
of times during the equilibration phase with a uniform scaling factor A according to

vi(t) = Avi(?) (8.14)

for all the particles i = 1, ..., N. The scaling factor X is chosen such as to arrive at
the desired temperature Tp after rescaling:

N — 1)3kgT
= [N DeTo (8.15)
Yoy mv}

Note the factor N — 1 in the numerator of the square root: the kinetic energy is
composed of the kinetic energies associated with the independent velocities, but as
for interparticle interactions with PBC the total force vanishes, the total momentum
is conserved and hence the number of independent velocity components is reduced
by 3. This argument is rather heuristic and not entirely correct. We shall give a more
rigorous treatment of the temperature calculation in Section 10.7.

After a rescaling the temperature of the system will drift away but this drift will
become less and less important when the system approaches equilibrium. After a
number of rescalings, the temperature then fluctuates around an equilibrium value.
Now the ‘production phase’, during which data can be extracted from the simulation,
begins.
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Continue simulation and determine physical quantities: Integration of the
equations of motion proceeds as described above. In this part of the simulation,
the actual determination of the static and dynamic physical quantities takes place.
We determine the expectation value of a static physical quantity as a time average
according to
1

n—ng

Z A,. (8.16)

v>ng

A=

The indices v label the n time steps of the numerical integration, and the first ng
steps have been carried out during the equilibration. For determination of errors in
the measured physical quantities, see the discussion in Section 7.4.

Difficulties in the determination of physical quantities may arise when the para-
meters are such that the system is close to a first or second order phase transition
(see the previous chapter): in the first order case, the system might be ‘trapped’ in
a metastable state and in the second order case, the correlation time might diverge
for large system sizes.

In the previous chapter we have already considered some of the quantities of
interest. In the case of a microcanonical simulation, we are usually interested in the
temperature and pressure. Determination of these quantities enables us to determine
the equation of state, a relation between pressure and temperature, and the system
parameters — particle number, volume and energy (NVE). This relation is hard to
establish analytically, although various approximate analytical techniques for this
purpose exist: cluster expansions, Percus—Yevick approximation, etc. [11].

The pair correlation function is useful not only for studying the details of the
system but also to obtain accurate values for the macrosopic quantities such as the
potential energy and pressure, as we shall see below. The correlation function is
determined by keeping a histogram which contains for every interval [iAr, (i + 1)
Ar] the number of pairs n(r) with separation within that range. The list can be
updated when the pair list for the force evaluation is updated. The correlation
function is found in terms of n(r) as

(8.17)

o2V [<n<r>>]

N(N —1) | 4nriAr
Similar expressions can be found for time-dependent correlation functions — see
Refs. [2] and [11].

If the force has been cut off during the simulation, the calculation of average
values involving the potential U requires some care. Consider for example the
potential energy itself. This is calculated at each step taking only the pairs with
separation within the minimum cut-off distance into account; taking all pairs into
account would imply losing the efficiency gained by cutting off the potential. The
neglect of the tail of the potential can be corrected for by using the pair correlation
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function beyond r¢yt-off:

(U) = <U>cut-oﬁ+2nw T e Ung(r) (8.18)

Teut-off
where (---)cut-off 1S the average restricted to pairs with separation smaller than
Feut-off- Of course, we can determine the correlation function for » up to half the
linear system size only because of periodic boundary conditions. Verlet [12] has
used the Percus—Yevick approximation to extrapolate g beyond this range. Often g
is simply approximated by its asymptotic value g(r) = 1 for large r.

Similarly, the virial equation is corrected for the potential tail:

P ! dU(R) 2N [ 3U()
=1-— ” — 7 dr,
nkgT 3NkgT <;§m o > TV r— g(r)dr

Tcut-off
(8.19)

cut-off

where g(r) can also be replaced by 1.
The specific heat can be calculated from Lebowitz’s formula, see Eq. (7.37).

8.3 A molecular dynamics simulation program for argon

In the previous section we described the structure of a MD program and here we give
some further details related to the actual implementation. The program simulates
the behaviour of argon. In 1964, Rahman [13] published a paper on the properties
of liquid argon — the first MD simulation involving particles with smoothly varying
potentials. Previous work by Alder and Wainwright [14] was on hard sphere fluids.
Rahman’s work was later refined and extended by Verlet [8] who introduced several
features that are still used, as we have seen in the previous section.
The Lennard—Jones pair potential turns out to give excellent results for argon:

U(r) = 4¢ [(%)12 — (%)6} . (8.20)

The optimal values for the parameters ¢ and o are ¢/kg = 119.8 K and 0 =
3.405 A respectively.

In the initialisation routine, the positions of a face centred cubic lattice are gen-
erated. For an L x L x L system containing 4M?3 particles, the fcc lattice constant a
isa = L/M. It may be safer to put the particles not exactly on the boundary facets
of the system because as a result of rounding errors it might not always be clear
whether they belong to the system under consideration or a neighbouring copy.

The procedure in Appendix B3 for generating random numbers with a Gaussian
distribution should be used in order to generate momenta according to a Maxwell
distribution. First generate all the momenta with some arbitrary distribution width.
Then calculate the total momentum po; and subtract a momentum p = Pro /N from
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each of the momenta in order to make the total momentum zero. Now the kinetic
energy is calculated and then all momenta are rescaled to arrive at the desired kinetic
energy.

When calculating the forces, the minimum image convention should be adopted.
It is advisable to start without using a neighbour list. For the minimum image
convention it should be checked for each pair (7, j) whether the difference of the x-
components x; —x; is larger or smaller than L /2 in absolute value. If it is larger, then
an amount L should be added to or subtracted from this difference to transform it to
a value which is smaller than L /2 (in absolute value). In many codes, this translation
is implemented as follows:

x —x—[x/L]*L, (8.21)

where [ ] denotes the integer part. This procedure is then repeated for the y- and
z-components. Potential and force may be adjusted according to Eqs (8.12) and
(8.13).

The equations of motion are solved using the leap-frog or the velocity form of
the Verlet algorithm. A good value for the time step is 10~ % s which in units of
(mo?/e)'/? is equal to about 0.004. Using the argon mass as the unit of mass, o as
the unit of distance and T = (mo? / )72
force acting on particle i resulting from the interaction with particle j is given by

as the unit of time, the x-component of the

FU = (x; — x)(48r; "% — 24r.%) (8.22)

with similar expressions for the y- and z-components.

After each step in the Verlet/leap-frog algorithm, each particle should be checked
to see whether it has left the volume. If this is the case, it should be translated over
a distance £L along one or more of the Cartesian axes in order to bring it back into
the system in accordance with the periodic boundary conditions.

During equilibration, the velocities (momenta) should be rescaled at regular
intervals. The user might specify the duration of this phase and the interval between
momentum rescalings.

During the production phase, the following quantities should be stored in a file
at each time step: the kinetic energy, potential energy, and the virial

> rF (ry). (8.23)
i

Furthermore, the program should keep a histogram-array containing the numbers
of pairs found with a separation between r and r + A for, say, A = L/200 from
which in the end the correlation function can be read off.
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Table 8.1. Molecular dynamics data for
thermodynamic quantities of the Lennard—Jones liquid.

p(1/c) To(e/kg) T BP/p U(e)

0.88 1.0 0.990 (2) 2.98 (2) —=5.704 (1)
0.80 1.0 1.010 (2) 1.31(2) —5.271 (1)
0.70 1.0 1.014 (2) 1.06 (4)(5) —4.662 (1)

Ty is the desired temperature; 7 is the temperature as determ-
ined from the simulation; p is the density: p = N/V. All
values are in reduced units.

PROGRAMMING EXERCISE

Write a program that simulates the behaviour of a Lennard—Jones liquid with
the proper argon parameters given above.

Check I To check the program, you can use small particle numbers, such as 32 or
108. Check whether the program is time-reversible by integrating for some time
(without rescaling) and then reversing velocities. The system should then return
to its initial configuration (graphical display of the system might be helpful).

Check 2 The definite check is to compare your results for argon with literature.
A good value for the equilibration time is 10.0 7 and rescalings could take place
after every 10 or 20 time steps. A sufficiently long simulation time to obtain
accurate results is 20.0 T (remember the time step is 0.004 7). In Table 8.1
you can find a few values for the potential energy and pressure for different
temperatures. Note that the average temperature in your simulation will not be
precisely equal to the desired value. In Figure 7.1, the pair correlation function
forp =N/V =1.06 and T = 0.827 is shown.

It is interesting to study the specific heat (Eq. (7.37)) in the solid and in the gas
phase. You may compare the behaviour with that of an ideal gas, cy = 3kg/T
per particle, and for a harmonic solid, ¢, = 3kgT per particle (this is the Dulong—
Petit law).

Note that phase transitions are difficult to locate, as there is a strong hysteresis in
the physical quantities there. It is however interesting to obtain information about
the different phases. For T = 1, p = 0.8 the argon Lennard—Jones system is found
in the liquid phase, and for p = 1.2 and T = 0.5 in the solid phase. The gas
phase is found for example with p = 0.3 and and 7 = 3.0. It is very instructive
to plot the correlation function for the three phases and explain how they look.
Another interesting exercise is to calculate the diffusion constant by plotting the
displacement as a function of time averaged over all particles. For times smaller



8.4 Integration methods: symplectic integrators 211
than the typical collision time (time of free flight), you should find
(x%) o 12, (8.24)
and this crosses over to diffusive behaviour
(x*) = D, (8.25)

with D the diffusion constant. In the solid phase, the diffusion constant is 0. In the
gas phase, the diffusive behaviour sets in at later times than in the fluid.

If the program works properly, keeping a Verlet neighbour list as discussed
in the previous section can be implemented. Verlet [8] used rey-off = 2.50 and
rmax = 3.30. A more detailed analysis of the increase in efficiency for various
values of rmax With rey-off = 2.50 shows that rpax = 3.00 with the neighbour list
updated once every 25 integration steps is indeed most efficient [2, 15].

PROGRAMMING EXERCISE

Implement the neighbourlist in your program and check whether the results
remain essentially the same. Determine the increase in efficiency.

8.4 Integration methods: symplectic integrators

There exist many algorithms for integrating ordinary differential equations, and a
few of these are described in Appendix A. In this section, we consider the particular
case of numerically integrating the equations of motion for a dynamical system
described by a time-independent Hamiltonian, of which the classical many-particle
system at constant energy is an example. Throughout this section we consider the
equation of motion for a single particle in one dimension. The discussion is easily
generalised to more particles in more dimensions.

The Verlet algorithm is the most popular algorithm for molecular dynamics and
we shall consider it in more detail in the next subsection. Before doing so, we
describe a few criteria which were formulated by Berendsen and van Gunsteren
[16] for integration methods for molecular dynamics. First of all, accuracy is an
important criterion: it tells us to which power of the time step the numerical traject-
ory will deviate from the exact one after one integration step (see also Appendix A).
Note that the prefactor of this may diverge if the algorithm is unstable (e.g. close to a
singularity of the trajectory). The accuracy is the criterion that is usually considered
in numerical analysis in connection with integration methods.

Two further criteria are related to the behaviour of the energy and other con-
served quantities of a mechanical system which are related to symmetries of the
interactions. Along the exact trajectory, energy is conserved as a result of the time-
translation invariance of the Hamiltonian, but the energy of the numerical trajectory
will deviate from the initial value and this deviation can be characterised by its drift,
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a steady increase or decrease, and the noise, fluctuations on top of the drift. Drift is
obviously most undesirable. In microcanonical MD we want to sample the points in
phase space with a given energy; these points form a hypersurface in phase space —
the so-called energy surface. If the system drifts away steadily from this plane it is
obviously not in equilibrium.

It is very important to distinguish in all these cases between two sources of
error: those resulting from the numerical integration method as opposed to those
resulting from finite precision arithmetic, inherent to computers. For example, we
shall see below that the Verlet algorithm is not susceptible to energy drift in exact
arithmetic. Drift will however occur in practice as a result of finite precision of
computer arithmetic, and although different formulations of the Verlet algorithm
have different susceptibility to this kind of drift, this depends also on the particular
way in which numbers are rounded off in the computer.

Recently, there has been much interest in symplectic integrators. After con-
sidering the Verlet algorithm in some detail, we shall describe the concept of
symplecticity” and its relevance to numerical integration methods.

8.4.1 The Verlet algorithm revisited
Properties of the Verlet algorithm
In this section we treat the Verlet algorithm
x(t +h) = 2x(t) — x(t — h) + h*F[x(1)] (8.26)

in more detail with emphasis on issues which are relevant to MD. A derivation of
this algorithm can be found in Appendix A7.1. The error per integration step is
of the order /*. Note that we take the mass of the particle(s) involved equal to 1.
Unless stated otherwise, we analyse the one-dimensional single-particle version of
the algorithm. The momenta are usually determined as

p(0) = [x(t + h) — x(t — h)]/h) + O?). (8.27)

Note that there is no need for a more accurate formula, as the accumulated error in
the positions after many steps is also of order 4#2. We shall check this below, using
also a more accurate expression for the momenta [16]:

h
p(t) =[xt +h) —x(t —h)]/(2h) — E{F[X(I + )] — Flx(t — )1} + Oh?).
(8.28)

This form can be derived by subtracting the Taylor expansions for x(¢# 4+ /) and
x(t — h) about t, and approximating dF[x(¢)]/dt by {F[x(t + h)] — F[x(t — h)]}/h.

2 Some authors use the term ‘symplecticness’ instead of ‘symplecticity’.
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Figure 8.2. The energy of the harmonic oscillator determined using the various
velocity estimators described in the text. E; is the energy using (8.29), E, uses
(8.27) and E3 was calculated using (8.28).

In the leap-frog version, we have the velocities at our disposal for times halfway
between those at which the positions are given:

p(t +h/2) = [x(t + h) — x()]/h + OH?). (8.29)

Each of the expressions (8.27-8.29) for the momentum gives rise to a different
expression for the energy.

We first analyse the different ways of calculating the total energy for the simple
case of the one-dimensional harmonic oscillator

H=@p*+x%))2 (8.30)

and we can use any of the formulae (8.27-8.29) for the momentum. In Figure 8.2
the different energy estimators are shown as a function of time for the harmonic
oscillator which is integrated using the Verlet algorithm with a time step 7 = 0.3.
This is to be compared with the period T = 27w of the motion x(¢) = cos(t) (for
appropriate initial conditions). It is seen that the leap-frog energy estimator is an
order of magnitude worse than the other two. This is not surprising, since the fact
that the velocity is not calculated at the same time instants as the position results
in deviation of the energy from the continuum value of order / instead of 4> when
using (8.27). The energy estimator using third order momenta according to (8.28)
is better than the second order form. Note that the error in the position accumulates
in time to give O(h?) (see Problem A3), so that there is no point in calculating the
momenta with a higher order of accuracy, as this will not yield an order of magnitude
improvement. The fact that the error for the third order estimator is about a factor
of 3 better than that of the second order one for the harmonic oscillator does not
therefore indicate a systematic trend. More importantly, the error in both estimators
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(8.27) and (8.28) does indeed scale as /42. In the following we determine momenta
according to Eq. (8.27). In the leap-frog version the momentum estimator is

p(t) = [p(t + h/2) + p(t — h/2)1/2 + OH?). (8.31)

The results for the various energy estimators can be obtained by solving the
harmonic oscillator in the Verlet algorithm analytically. The ‘Verlet harmonic
oscillator’ reads

x(t + h) = 2x(t) — x(t — h) — h*x(1). (8.32)

If we substitute x(#) = exp(iwt) into the last equation, we obtain
cos(wh) = 1 — h?/2 (8.33)

and this defines a frequency o differing by an amount of order 4” from the angular
frequency w = 1 of the exact solution. The difference between the numerical and
the exact solution will therefore show a slow beat.

A striking property of the energy determined from the Verlet/leap-frog solution
is that it does not show any drift in the total energy (in exact arithmetic). This stabil-
ity follows directly from the fact that the Verlet algorithm is time-reversible, which
excludes steady increase or decrease of the energy for periodic motion. In a molecu-
lar dynamics simulation, however, the integration time, which is the duration of the
simulation, is much smaller than the period of the system, which is the Poincaré
time, that is the time after which the system returns to its starting configuration.
The error in the energy might therefore grow steadily during the simulation. It turns
out, however, that the deviation of the energy remains bounded in this case also, as
the Verlet algorithm possesses an additional symmetry, called symplecticity. Sym-
plecticity will be described in detail in Section 8.4.2. Here we briefly describe what
the consequences of symplecticity are for an integration algorithm. Symplecticity
gives rise to conserved quantities, and in particular, it can be shown that a discrete
analogue of the total energy is rigorously conserved (in exact arithmetic) [17]. It
turns out that this discrete energy deviates from the continuum energy at most an
amount of order /¥, for some positive integer k. Therefore, the energy cannot drift
away arbitrarily and it follows that the noise remains bounded.

To illustrate this point we return to the harmonic oscillator. In this particular
case we can actually determine the conserved discrete energy. In the leap-frog
formulation:

p(t +h/2) = p(t — h/2) — hx(1); (8.34a)
x(t + h) = x(t) + hp(t + h/2), (8.34b)

it is equal to [18]
Hp = 3[p(t — h/2)* +x(t)* — hp(t — h/2)x(D)]. (8.35)
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The fact that this quantity is conserved can also be checked directly using (8.34b).
This energy is equal to 1/2—h? /8 for the solution cos(w?) with w givenin Eq. (8.33).
For general potentials, the discrete energy is not known.

As mentioned before, the absence of drift in the energy in the case of the harmonic
oscillator can be explained by the time-reversibility of the Verlet algorithm, and
comparisons with Runge—Kutta integrators for example, which are in general not
time-reversible for potentials such as the harmonic oscillator, do not convincingly
demonstrate the necessity for using a symplectic algorithm. Symplecticity does
however impose a restriction on the noise, but time-reversibility does not.

Symplectic integrators are generally recommended for integrating dynamical
systems because they generate solutions with the same geometric properties in
phase space as the solutions of the continuum dynamical system. The fact that the
deviation of the energy is always bounded is a pleasant property of symplectic
integrators. Symplectic integrators are considered in more detail in Section 8.4.2.

Finite precision of computer arithmetic obviously does not respect the symplectic
geometry in phase space. Hockney and Eastwood observed that when numbers are
rounded off properly in the computer, the system tends to heat up because the
rounding effects can be viewed as small random forces acting on the particles [19].
If real numbers are systematically truncated to finite precision numbers, the system
cools down slowly. Both effects are clearly signs of nonsymplectic behaviour.

Several classes of symplectic integrators with explicit formulas for different
orders of accuracy have been found. Runge—Kutta—Nystrom integrators (not to be
confused with ordinary Runge—Kutta algorithms) have been studied by Okunbor
and Skeel [20]. Yoshida [21] and Forest [22] have considered Lie-integrators. Their
approach follows rather naturally from the structure of the symplectic group, as we
shall see in Section 8.4.2.°

Let us make an inventory of relevant symmetry properties of integrators. First of
all, time-reversibility is important. If it is present in the equations of motion, as is
usually the case in MD, it is natural to require it in the integration method. Another
symmetry is phase space conservation. This is a property of the trajectories of the
continuum equations of motion — this property is given by Liouville’s theorem —
and it is useful to have our numerical trajectories obeying this condition too (note
that time-reversibility by itself does not guarantee phase space conservation). The
most detailed symmetry requirement is symplecticity, which will be considered in
greater detail below (Section 8.4.2). This incorporates phase space conservation and
conservation of a number of conserved quantities, the so-called Poincaré invariants.
The symplectic symmetry properties can also be formulated in geometrical terms

3 Gear algorithms [16, 23, 24] have been fashionable for MD simulations. These are predictor—corrector
algorithms requiring only one force evaluation per time step. Gear algorithms are not symplectic and they are
becoming less popular for that reason.
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as we shall see below. Most important for molecular dynamics is the property
that the total energy fluctuates within a narrow range around the exact one. Some
comparison has been carried out between nonsymplectic phase space conserving
and symplectic integrators [25], and this gave no indication of the superiority of
symplectic integrators above merely phase-space conserving ones. As symplectic
integrators are not more expensive to use than nonsymplectic time-reversible ones,
their use is recommended as the safest option. Investigating the merits of the various
classes of integration methods for microcanonical MD is a fruitful area for future
research.

Frictional forces

Later we shall encounter extensions of the standard MD method where a fric-
tional force is acting on the particles along the direction of the velocity. The Verlet
algorithm can be generalised to include such frictional forces and we describe this
extension for the one-dimensional case which can easily be generalised to more
dimensions. The continuum equation of motion is

X=Fx) —yx, (8.36)

and expanding x(4) and x(—#h) around ¢ = 0 in the usual way (see Appendix A7.1)
gives

x(h) = x(0) + hx(0) + K2 [—yx(0) + F(0)]/2 + K’ % (0)/6 + O(h*) (8.37a)
x(—h) = x(0) — hx(0) + h*[—yx(0) + F(0)]/2 — hi*X(0)/6 + O(h*). (8.37b)
Addition then leads to
x(h) = 2x(0) — x(—=h) + K*[—yx(0) + F(0)] + O(h* (8.38)
where x(0) remains to be evaluated. If we write
2(0) = [x(h) — x(—h)1/(2h) + O(K?), (8.39)
and substitute this into (8.38), we obtain
(1 4+ yh/2)x(h) = 2x(0) — (1 — yh/2)x(—h) + K*F(0) + O(h%).  (8.40)

A leap-frog version of the same algorithm is

x(h) = x(0) + hp(h/2); (8.41a)
(I =yh/2)p(—h/2) + hF(0)
p(h/2) = s ) (8.41b)

If the mass m is not equal to unity, the factors 1 £y h/2 are replaced by 1 £y h/(2m).
It is often useful to simulate the system with a prescribed temperature rather
than at constant energy. In Section 8.5 we shall discuss a constant-temperature MD
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method in which a time-dependent friction parameter occurs, obeying a first order
differential equation:

(1) = —y(O)x(@) + Flx(®)] (8.422)
y () = glx(®)]. (8.42b)

The solution can conveniently be presented in the leap-frog formulation. As the
momentum is given at half-integer time steps in this formulation, we can solve for
y in the following way:

y(h) = y(0) + hglp(h/2)] + O(h?), (8.43)

and this is to be combined with Eqs. (8.41). Velocity-Verlet formulations (Egs. (8.9))
for equations of motions including friction terms can be found straightforwardly.
This is left as an exercise to the reader — see also Ref. [26].

*8.4.2 Symplectic geometry; symplectic integrators

In recent years, major improvement has been achieved in understanding the merits
of the various methods for integrating equations of motion which can be derived
from a Hamiltonian. This development started in the early 1980s with the observa-
tions made independently by Ruth [27] and Feng [28] that methods for solving
Hamiltonian equations of motion should preserve the geometrical structure of
the continuum solution in phase space. This geometry is the so-called symplectic
geometry. Below we shall explain what this geometry is about, and what the prop-
erties of symplectic integrators are. In Section 8.4.3 we shall see how symplectic
integrators can be constructed. We restrict ourselves again to a two-dimensional
phase space (one particle moving in one dimension) spanned by the coordinates
p and x, but it should be realised that the analysis is trivially generalised to arbit-
rary numbers of particles in higher dimensional space with phase space points
P1>---»Pm>T1,---,p). The equations of motion for the particle are derived from a
Hamiltonian which for a particle moving in a potential (in the absence of constraints)

reads
2

Hpv) =5+ V. (8.44)
The Hamilton equations of motion are then given as
IH(p,
p= _Hp.x) (8.452)
ox
oH(p,
i = IR0 (8.45b)
op

4 Although we use the notation r; for the coordinates, they may be generalised coordinates.



218 Molecular dynamics simulations

It is convenient to introduce the combined momentum—position coordinate 7z =
(p, x), in terms of which the equations of motion read

z2=JVH(2) (8.46)

0 —1
J=(1 o) (8.47)

and VH(z) = (3H(z)/dp, 0'H(z)/0x).’
Expanding the equation of motion (8.46) to first order, we obtain the time
evolution of the point z to a new point in phase space:

z(t+ h) = z(t) + IV H[z(1)]. (8.49)

where J is the matrix

The exact solution of the equations of motion can formally be written as
z2(t) = exp(tJV; H)[z(0)] (8.50)

where the exponent is to be read as a series expansion of the operator tJV,H.
This can be verified by substituting Eq. (8.50) into (8.46). This is a one-parameter
family of mappings with the time ¢ as the continuous parameter. The first order
approximation to (8.50) coincides with (8.49).

Now consider a small region in phase space located at z = (p, x) and spanned by
the infinitesimal vectors 8z and 8z°. The area 8A of this region can be evaluated
as the cross product of 8z% and 8z which can be rewritten as®

SA = 87% x 872 = 874 - (J87P). (8.51)

It is now easy to see that the mapping (8.50) preserves the area §A. It is sufficient
to show that its time derivative vanishes for t = 0, as for later times the analysis
can be translated to this case. We have

@ _ i tJV.;H ayy . tJV;H b
G| = gl e e el
= IV HS2D] - (J82°) + (82%) - IV H(BZD)]. (8.52)

We can find H(8z%") using a first order Taylor expansion:

H(6z") = H(z + 8z%) — H(z) = 8z* - V/H(2), (8.53)
3 In more than one dimension, the vector z is defined as (pq, ..., PNsX1seens xp ), and the matrix J reads in
that case
0o -1
J= (1 0 ) (8.48)

where [ is the N x N unit matrix.

® Note that the area can be negative: it is an oriented area. In the language of differential geometry this area
is called a two-form.
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and similar for H(8z%). This leads to the form

déA

| =—@hee () — (52 - UL s (8.54)

t=0

where L is the Jacobian matrix of the operator JV,H:

_pr _Hxx)

(8.55)
Hpp  Hpx

Ly =Y Jald*H(z)/0z10z] = (
k
Here H,, denotes the second partial derivative with respect to x etcetera. It is easy
to see that the matrix L satisfies

L] +JL =0, (8.56)

where LT is the transpose of L, and hence from (8.54) the area A is indeed
conserved.

We can now define symplecticity in mathematical terms. The Jacobi matrix S of
the mapping exp(tJVH) is given as S = exp(zL). This matrix satisfies the relation:

SsTJS = J. (8.57)

Matrices satisfying this requirement are called symplectic. They form a Lie group
whose Lie algebra is formed by the matrices L satisfying (8.56). General nonlinear
operators are symplectic if their Jacobi matrix is symplectic.

In more than two dimensions the above analysis can be generalised for any pair
of canonical variables p;, x; — we say that phase space area is conserved for any
pair of one-dimensional conjugate variables p;, x;. The conservation law can be
formulated in an integral form [29]; this is depicted in Figure 8.3. In this picture the
three axes correspond to p, x and ¢. If we consider the time evolution of the points
lying on a closed loop in the p, x plane, we obtain a tube which represents the flow
in phase space. The area conservation theorem says that any loop around the tube
encloses the same area § pdx. In fact, there exists a similar conservation law for
volumes enclosed by the areas of pairs of canonical variables: these volumes are
called the Poincaré invariants. For the particular case of the volume enclosed by
areas of all the pairs of canonical variables, we recover Liouville’s theorem which
says that the volume in phase space is conserved. Phase space volume conservation
is equivalent to the Jacobi determinant of the time evolution operator in phase space
being equal to 1 (or —1 if the orientation is not preserved). For two-dimensional
matrices, the Jacobi determinant being equal to 1 is equivalent to symplecticity
as can easily be checked from (8.57). This is also obvious from the geometric
representation in Figure 8.3. For systems with a higher-dimensional phase space,
however, the symplectic symmetry is a more detailed requirement than mere phase
space conservation.
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p

Figure 8.3. The area conservation law for a symplectic flow. The integral § pdx
for any loop around the tube representing the flow of a closed loop in the p, x
plane remains constant. This integral represents the area of the projection of the
loop onto the xp plane. Note that the loops do not necessarily lie on a plane of
constant time.

We have seen that symplecticity is a symmetry of Hamiltonian mechanics in
continuum time; now we consider numerical integration methods for Hamiltonian
systems (discrete time). As mentioned above, it is not clear whether full sym-
plecticity is necessary for a reliable description of the dynamics of a system by a
numerical integration. However, it will be clear that the preservation of the sym-
metries present in continuum time mechanics is the most reliable option. The fact
mentioned above, that symplecticity implies conservation of the discrete version
of the total energy, is an additional feature in favour of symplectic integrators for
studying dynamical systems.

It should be noted that symplecticity does not guarantee time reversibility or
vice versa. Time reversibility shows up as the Hamiltonian being invariant when
replacing p by —p, and a Hamiltonian containing odd powers of p might still be
symplectic.

*8.4.3 Derivation of symplectic integrators

The first symplectic integrators were found by requiring that an integrator of some
particular form be symplectic. The complexity of the resulting algebraic equations
for the parameters in the integration scheme was found to increase dramatically with
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increasing order of the integrator. Later Yoshida [21] and Forest [22] developed a
different scheme for finding symplectic integrators, and in this section we follow
their analysis.

Consider a Hamiltonian of the simple form:

H=T@p) +UX (8.58)

(we still restrict ourselves to a particle in one dimension — results are easily
generalised). In terms of the variable z = (p, x) the equations of motion read

dz  ( 9H IH\ [ U TP)
dt_< ax’ap)_< ox 8p>

= JVH@E) =T + U(), (8.59)

where in the last expression the operator JV'H, which acts on z = (p, x), is split
into the contributions from the kinetic and potential energy respectively:

T(z) = (0, —aT(p)> (8.60a)
ap

J(z) = (— aU(x),o) . (8.60b)
0x

T and U are therefore also operators which map a point z = (p, x) in phase space
onto another point in phase space.
As we have seen in the previous section, the exact solution of (8.59) is given as

2(1) = exp(tJVH)[z(0)] = exp[t(T + U)1[z(0)]. (8.61)

The term exp(zJVH) is a time evolution operator. It is a symplectic operator, as
are exp(tf") and exp(tf] ) since these can both be derived from a Hamiltonian (for
a free particle and a particle with infinite mass respectively).

An nth order integrator for time step 4 is now defined by a set of numbers ay, by,
k=1,...,m,such that

m
]_[ exp(arhT) exp(byhU) = exp(hIVH) + O(W" ). (8.62)

k=1
Since the operators exp(akhT) and exp(bkhfj ) are symplectic, the integrator (8.62)
is symplectic too. The difference between the integrator and the exact evolution
operator can be expressed in Campbell-Baker—Hausdorff (CBH) commutators: if

e = efef then

C=A+B+IA,Bl/2+ ([A,[A,Bll + [B,[B,AID/12 + - - - (8.63)

where the dots represent higher order commutators. This formula can be derived
by writing exp(tA) exp(tB) = exp[t(A + B) + A], expanding the operator A in
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powers of ¢ and equating equal powers of 7 on the left and right hand sides of the
equality [30]. Applying this formula with A = AT and B = hU to increasing orders
of commutators, we find

exp(hJVH) = exp(hT) exp(hU) + O(h?) (8.64a)
exp(hJVH) = exp(hT /2) exp(hU) exp(hT /2) + O(h®) (8.64b)
etc.,

but the extra terms are often tedious to find. As 7 and U appear in the exponent,
these expressions do not seem very useful. However, as it follows directly from
Eq. (8.60) that applying 7" and U more than once gives zero, we have simply

exp(ahT) = 1 + ahT (8.65)

and similarly for exp(bhU). Therefore, the first order integrator is
p(t+h) =p@) — h{oU[x(1)]/0x}; (8.66a)
x(t+h) =x@) + h{oT[p( + h)]/op} (8.66b)

which is recognised as the Verlet algorithm (although with a less accurate definition
of the momentum).
The second order integrator is given by

pt +h/2) = p(t) — h{dU[x(1)]/0x}/2; (8.67a)
x(t + h) = x(t) + h{dT [p(t + h/2)1/dp}); (8.67b)
p(t+h) = p(t + h/2) — h{dU[x(t + h)]/dx}/2. (8.67¢)

Applying this algorithm successively, the first and third step can be merged into one,
and we obtain precisely the Verlet algorithm in leap-frog form with a third order
error in the time step 4. This error seems puzzling since we know that the Verlet
algorithm gives positions with an error of order 4* and momenta with an error of
order h2. The solution to this paradox lies in the interpretation of the variable p.
If at time ¢, p(¢) is the continuous time derivative of the continuum solution x(¢),
the above algorithm gives us x(¢ 4+ h) and p(¢ + h) both with error h3. If however
p(t) is defined as [x(t + h) — x(t — h)]/(2h), the algorithm is equivalent to the
velocity-Verlet algorithm and hence gives the positions x(¢ 4+ /) with an error of
order /#* and p(r + h) is according to its definition given with a 4? error. The way
in which initial conditions are given defines which case we are in.

Finding higher order algorithms is nontrivial as we do not know the form of
the higher order expansion terms of the operators exp(hT) and exp(hU). However,
Yoshida [21] proposed writing the fourth order integrator in the following form:

Sa(ah)S2(Bh)S2(ech) (8.68)
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where S is the second order integrator, and he fixed o and 8 by the requirement that
the resulting expression is equal to the continuum operator to fourth order. Higher
order integrators were found similarly. The general result can be written as

fork =1tondo
x® = x®D — hadTp*=1/0p (8.69)
p® = p*=D _ ppaux®1/0x

end

and the numbers a; and by can be found in Yoshida’s paper. For the fourth order
case, they read

ar=as=1/[22-2"]; @y =a3=(1-2"3)q (8.70a)
by = by =2ay; by=-23b;; by=0. (8.70Db)

From Yoshida’s derivation it follows that there exists a conserved quantity which
acts as the analog of the energy. The integrator is certainly not the same as the exact
time evolution operator, but it deviates from the latter only by a small amount.
Writing the integrator S(h) as

S(h) = exp(hAp) (8.71)

we have a new operator Ap which deviates from the continuum operator A only by
an amount of order #"*!, as the difference can be written as a sum of higher order
CBH commutators. It will be shown in Problem 8.9 that for an operator of the form
exp(tAp) which is symplectic for all ¢, there exists a Hamiltonian Hp which is the
analogue of the Hamiltonian in the continuum time evolution. This means that, if
we know Hp (which is usually impossible to find, except for the trivial case of the
harmonic oscillator), we could either use the integrator (8.71) to give us the image
at time A, or the continuum solution of the dynamical system with Hamiltonian Hp
for t = h: both mappings would give identical results. The Hamiltonian Hp(z) is
therefore a conserved quantity of the integrator, and it differs from the energy by an
amount of order /"*!. The existence of such a conserved quantity is also discussed
in Refs. [17, 18, 31].

8.5 Molecular dynamics methods for different ensembles
8.5.1 Constant temperature

In experimental situations the total energy is often not a control variable as usually
the temperature of the system is kept constant. We know that in the infinite system
the temperature is proportional to the average kinetic energy per degree of freedom



224 Molecular dynamics simulations

with proportionality constant kg /2, and therefore this quantity is used in MD to
calculate the temperature, even though the system is finite (see Section 10.7 for a
discussion on temperature for a finite system). As the total energy remains con-
stant in the straightforward implementation of the molecular dynamics paradigm
as presented in the previous sections, the question arises how we can perform MD
simulations at constant temperature or pressure. We start with a brief overview
of the various techniques which have been developed for keeping the temperature
constant. Then we shall discuss the most successful one, the Nosé—~Hoover method,
in greater detail.

Overview of constant temperature methods
